This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world’s books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that’s often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book’s long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

+ Make non-commercial use of the files We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.

+ Refrain from automated querying Do not send automated queries of any sort to Google’s system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.

+ Maintain attribution The Google “watermark” you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.

+ Keep it legal Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can’t offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book’s appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google’s mission is to organize the world’s information and to make it universally accessible and useful. Google Book Search helps readers discover the world’s books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/.
In memory of Dr. W.V. Gri
A HANDBOOK
of
THERAPEUTICS.
PREFACE TO THE NINTH EDITION.

In this edition I have endeavoured to include the various new facts that have come to light since the issue of the last edition.
I have again to express my thanks to Dr. Maxwell of Woolwich, who has kindly prepared the index.

March, 1882.
CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>On the Tongue</td>
<td>2</td>
</tr>
<tr>
<td>The Pulse</td>
<td>6</td>
</tr>
<tr>
<td>The Skin</td>
<td>19</td>
</tr>
<tr>
<td>The Temperature of Health</td>
<td>20</td>
</tr>
<tr>
<td>Temperature of Disease</td>
<td>21</td>
</tr>
<tr>
<td>Abnormal Elevation of Temperature, or Fever</td>
<td>22</td>
</tr>
<tr>
<td>Chronic Fever</td>
<td>30</td>
</tr>
<tr>
<td>On Dropst</td>
<td>40</td>
</tr>
<tr>
<td>The Effects of Cold on the Body</td>
<td>45</td>
</tr>
<tr>
<td>The Cold Bath, including Sea-Bathing</td>
<td>47</td>
</tr>
<tr>
<td>On Packing with the Wet Sheet</td>
<td>56</td>
</tr>
<tr>
<td>The Influence of Cold Baths in Fevers</td>
<td>58</td>
</tr>
<tr>
<td>The Warm Bath and the Hot Bath</td>
<td>65</td>
</tr>
<tr>
<td>Shower, Douche, and Sponge Baths</td>
<td>68</td>
</tr>
<tr>
<td>The Turkish Bath</td>
<td>76</td>
</tr>
<tr>
<td>Poultices and Fomentations</td>
<td>81</td>
</tr>
<tr>
<td>The Uses of Ice and the Spinal Ice-bag</td>
<td>86</td>
</tr>
<tr>
<td>On the Spinal Ice-bag and the Spinal Hot-water bag</td>
<td>90</td>
</tr>
<tr>
<td>The Spinal Hot-water bag</td>
<td>92</td>
</tr>
<tr>
<td>The Internal Use of Water</td>
<td>93</td>
</tr>
<tr>
<td>On Enemata</td>
<td>96</td>
</tr>
<tr>
<td>On Acupuncture</td>
<td>101</td>
</tr>
<tr>
<td>"Counter-irritation" or the Influence of "Local" Agents on Disease</td>
<td>106</td>
</tr>
<tr>
<td>Oxygen</td>
<td>129</td>
</tr>
<tr>
<td>Peroxyde of Hydrogen</td>
<td>130</td>
</tr>
<tr>
<td>Carbon, Animal Charcoal, Wood Charcoal</td>
<td>131</td>
</tr>
<tr>
<td>Carbonic Acid</td>
<td>134</td>
</tr>
<tr>
<td>Sulphur</td>
<td>134</td>
</tr>
<tr>
<td>The Sulphide of Potassium, Sodium, Ammonium, and Calcium</td>
<td>139</td>
</tr>
<tr>
<td>Chlorine Gas, Chlorine Water, Chlorinated Soda, Chlorinated Lime and their Solutions</td>
<td>147</td>
</tr>
</tbody>
</table>
X

CONTENTS.

IODINE	149
IODIDE OF POTASSIUM	154
BROMIDE OF POTASSIUM, SODIUM, AMMONIUM, AND LITHIUM	162
A THEORY CONCERNING THE TOPICAL ACTION OF ACIDS AND ALKALIES ON SECRETION	175
SULPHURIC, HYDROCHLORIC, NITRIC, PHOSPHORIC, AND ACETIC ACID	177
SULPHURIC ACID, SULPHITES, HYSOSULPHITES	187
CHROMIC ACID	189
GROUP EMBRACING CAUSTIC POTAHS, SOLUTION OF POTAHS, CARBONATE AND BICARBONATE OF POTAHS, ACETATE OF POTAHS, CITRATE OF POTAHS, AND THE CORRESPONDING PREPARATIONS OF SODA, POTAHS SOAP, SODA SOAP, BORAX	190
SOLUTION OF AMMONIA, CARBONATE OF AMMONIA, SPIRITS OF AMMONIA	208
MANGNISIA, LIGHT MAGNESIA, CARBONATE OF MAGNESIA, LIGHT CARBONATE OF MAGNESIA, SOLUTION OF CARBONATE OF MAGNESIA	212
LIME, CAUSTIC LIME, LIME-WATER, LINIMENT OF LIME, SACHARATED SOLUTION OF LIME, CARBONATE OF LIME	213
PHOSPHATE OF LIME	218
HYPOPHOSPHITE OF LIME, HYPOPHOSPHITE OF SODA	221
CHLORIDE OF POTASSIUM, CHLORIDE OF SODIUM, CHLORIDE OF AMMONIUM	222
GROUP CONTAINING SULPHATE OF POTAHS, SULPHATE OF SODA, SULPHATE OF MAGNESIA, PHOSPHATE OF SODA, TARTRATE OF POTAHS, BITARTRATE OF POTAHS, TARTRATE OF POTAHS AND SODA	224
NITRATE OF POTAHS, NITRATE OF SODA	231
CHLORATE OF POTAHS	234
ALUM, DRIED ALUM, ACETATE OF ALUMINA	236
PREPARATIONS OF IRON	240
NITRATE OF BISMUTH, CARBONATE OF BISMUTH	248
LEAD SALTS	249
NITRATE OF SILVER, OXIDE OF SILVER	257
MERCURY AND ITS PREPARATIONS	262
PREPARATIONS OF COPPER	282
PREPARATIONS OF ZINC	284
PREPARATIONS OF ANTIMONY	288
PREPARATIONS OF ARSENIC	295
PHOSPHORUS	322
COLLODION	327
CONTENTS.

Cod-Liver Oil, Almond Oil, Poppy Oil, Hemp-Seed Oil, Linseed Oil, Cocoa-Nut Oil, Dugong Oil, Palm Oil, Lard, Suet, Wax, etc. 329
Castor Oil, Croton Oil .. 339
Glycerine .. 342
On Different Kinds of Tannin, on Gallic Acid 344
Hamamelis Virginica .. 349
Tar, Creasote, Carbolic Acid, Petroleum, Oil of Tar, etc. 350
Musk, Castoreum .. 358
Alcohol ... 358
Chloroform .. 369
Ether .. 380
Nitrous Oxide Gas .. 383
Iodoform ... 390
Hydrate of Chloral .. 391
Hydrate of Croton-Chloral 398
Nitrite of Amyl .. 403
Nitro-Glycerine ... 412
Camphor ... 415
Turpentine ... 417

Group containing:—Nutmegs, Cloves, Canella Bark, Cinnamon Bark, Cajeput Oil, Oil of Anise, Fennel Fruit, Caraway Fruit, Coriander Fruit, Dill Fruit, Elder Flowers, Lavender Oil, Oil of Rosemary, Oil of Sandal Wood, Oil of Peppermint, Oil of Spearmint, Oil of Rue, Oil of Lemons, Cubes, Buchu Leaves, Balsam of Tolu, Balsam of Peru, Copaiba, Mezereum, Sassafras, Storax, Juniper, Benzoin, etc. .. 421
Valerian, Valerianate of Zinc, Valerianate of Quinia, Valerianate of Ammonia ... 424
Savine .. 425
Assafetida, Ammoniacum, Galbanum 426
Cantharides .. 426
Mustard .. 429
Capsicum .. 432
Ipecacuanha and its Preparations 434
Veratrum Viride, Veratum Album, Veratria (Sabadilla) 447
Colchicum ... 452
Podophyllum .. 455
Staphisagria ... 461
Aconite Racemosa .. 461
Aconite and its Preparations 464
CONTENTS.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digitalis and its Preparations</td>
<td>476</td>
</tr>
<tr>
<td>Tobacco</td>
<td>504</td>
</tr>
<tr>
<td>Conium and its Preparations</td>
<td>506</td>
</tr>
<tr>
<td>Calabar Bean</td>
<td>513</td>
</tr>
<tr>
<td>Muscarin</td>
<td>521</td>
</tr>
<tr>
<td>Jaborandi (Pilocarpine)</td>
<td>526</td>
</tr>
<tr>
<td>Gelsemium Sempervirens</td>
<td>530</td>
</tr>
<tr>
<td>Grindelia Robusta</td>
<td>541</td>
</tr>
<tr>
<td>Therapeutics of Belladonna</td>
<td>541</td>
</tr>
<tr>
<td>Ethyl-A tropium, Methyl-A tropium</td>
<td>568</td>
</tr>
<tr>
<td>Hyoscyamus</td>
<td>570</td>
</tr>
<tr>
<td>Stramonium</td>
<td>573</td>
</tr>
<tr>
<td>Duboisia Myoporoides</td>
<td>574</td>
</tr>
<tr>
<td>Hydrocyanic Acid, Cyanide of Potassium</td>
<td>574</td>
</tr>
<tr>
<td>Opium and its Preparations</td>
<td>575</td>
</tr>
<tr>
<td>Nux vomica, Strychnia, Brucia, Thebaia</td>
<td>594</td>
</tr>
<tr>
<td>Lobelia Inflata</td>
<td>603</td>
</tr>
<tr>
<td>Cannabis Indica</td>
<td>605</td>
</tr>
<tr>
<td>Ergot</td>
<td>608</td>
</tr>
<tr>
<td>Tea, Coffee, Cocoa, Guarana</td>
<td>610</td>
</tr>
<tr>
<td>Cinchona and its Alkaloids</td>
<td>612</td>
</tr>
<tr>
<td>Salicine, Salicylic Acid, Salicylates</td>
<td>622</td>
</tr>
<tr>
<td>Calumba</td>
<td>639</td>
</tr>
<tr>
<td>Gentian</td>
<td>639</td>
</tr>
<tr>
<td>Quassia</td>
<td>640</td>
</tr>
<tr>
<td>Chamomile</td>
<td>640</td>
</tr>
<tr>
<td>Chiretta</td>
<td>640</td>
</tr>
<tr>
<td>Cascarilla</td>
<td>641</td>
</tr>
<tr>
<td>Orange-peel</td>
<td>641</td>
</tr>
<tr>
<td>Elaterium</td>
<td>641</td>
</tr>
<tr>
<td>Colocynth</td>
<td>642</td>
</tr>
<tr>
<td>Aloes</td>
<td>642</td>
</tr>
<tr>
<td>Squill</td>
<td>645</td>
</tr>
<tr>
<td>Jalap, Scamony</td>
<td>645</td>
</tr>
<tr>
<td>Rhubarb</td>
<td>647</td>
</tr>
<tr>
<td>Senna</td>
<td>648</td>
</tr>
<tr>
<td>Filix Mas, Kouso, Kamela, Santonin, Turpentine, Areca Nut, Bark of the Pomegranate Root, Powdered Tin, Mucuna, etc.</td>
<td>649</td>
</tr>
<tr>
<td>Dietary for Invalids</td>
<td>653</td>
</tr>
<tr>
<td>Index of Therapeutic Agents</td>
<td>669</td>
</tr>
<tr>
<td>Index of Diseases</td>
<td>673</td>
</tr>
</tbody>
</table>
THERAPEUTICS.

INTRODUCTION.

I have thought it might prove useful to the student and the young practitioner to add to this edition a brief account of the symptoms of disease. Of late years, since attention has been more drawn to the significance of physical signs, too little seems to me to be paid to the detection and appreciation of symptoms, objective and subjective. This is a marked defect among students. One often meets with a student, thoroughly equipped with all the resources pertaining to physical diagnosis, who is yet sorely puzzled with the indications afforded by the pulse or tongue. The reason of this is obvious. Physical signs are soon learned, whilst it requires a longer time, more patience, and a more discriminating observation to appreciate the meaning and to estimate the value of symptoms.

The indications of disease are divided into symptoms and "physical signs." The direct information to be obtained from the pulse, the skin, the tongue, the breathing, the evacuations, &c., are, for convenience, termed objective symptoms. The indirect information we gather from the patient's description of his own feelings and sensations, which can be detected only by the patient himself; these, likewise for the purpose of convenience, are termed subjective symptoms. Important though physical signs undoubtedly are, yet symptoms, especially objective symptoms, are far more valuable. Physical signs, as a rule, help us to detect only coarse and decided changes, and are chiefly useful in diagnosis, whilst symptoms are far more useful in prognosis and in treatment.

It may be said, that before we can efficiently treat a patient, we must first form a correct diagnosis; hence physical signs, by greatly assisting us in this respect, must likewise greatly aid in the treatment. No doubt, in some measure, this proposition is true; but when we have accurately diagnosed the disease, we, in most cases, treat the secondary effects rather than the primary disease; and these secondary effects generally make themselves apparent solely as symptoms. Only in a few instances, as ague and syphilis, can we directly cure the disease itself; but in other in-
ON THE TONGUE.

Examine the tongue to ascertain whether it is clean or furred: or moist; its colour, &c.

That is the meaning of a furred tongue:

Tongue may be furred from febrile disease: from local causes: in sympathy with the stomach, intestines, or liver.

Condition of the tongue in fever is, perhaps, more a help in diagnosis than in treatment. In most fevers the tongue at first is 1 with a moist fur: but in some cases the tongue, strange to remains quite clean. Sometimes this is the case in typhoid fever: the coated tongue in fever does not give us much guidance to treatment. For whether the tongue be clean or there is constipation, the bowels must be relieved; and if it is very hot, that is, thickly coated, a mercurial purge is indicated: that some fur usually remains whilst the fever.

From often foul: the tongue: Enlarged tonsils often as of a tongue. Decay, teeth often for a portion of
tongue. If one tonsil only is enlarged, or if the decayed teeth are situated on one side, then only one longitudinal portion of the tongue is furred. In neuralgia of the fifth, when the lower branches are affected, the tongue on the neuralgic side is apt to become furred.

Excessive smoking almost always furs the tongue.

The tongue very frequently indicates derangement of the stomach, bowels, or liver. For instance, if there is no fever, and no local cause, as enlarged tonsils, bad teeth, &c., then a coated tongue indicates some disturbance of the primæ viæ.

What does a coated tongue under these circumstances indicate? We shall rarely go wrong in taking this furred tongue as an indication for one of four medicines, or some of them combined: namely, mercury, podophyllin, tincture of nux vomica, or nitric acid.

How are we to determine which to give and its dose? If there is constipation then give a mercurial preparation or resin of podophyllin in purgative doses. Any purgative, it is true, will here be useful, especially the natural purgative waters, as Pullna, Friedrichshall, or Carlsbad; but these though valuable remedies are, in many instances, inferior, in the cases in question, to mercurial and podophyllin purges.

As regards mercury, our choice falls either on calomel or blue pill for adults, or calomel or grey powder for children. The calomel or blue pill should be combined with extract of belladonna or of hyoscyamus, since this addition obviates the griping and certainly seems to enhance the action of these drugs. An effective dose is half a grain of calomel with three grains of extract of hyoscyamus, for three consecutive nights; the first pill generally purges pretty freely, the second much less freely, and the third scarcely at all, though it helps to clean the tongue.

Which should we choose—mercurial purges or podophyllin resin? The answer to this question depends on the colour of the stool. If the motions are too light-coloured mercurial purges are best. If, on the other hand, the motions are too dark then podophyllin is needed. For this clinical fact I can give no explanation.

What is to be done when the bowels are freely open, or have been relaxed by medicine, but where the tongue still continues furred? We meet with such cases often in gastric, biliary, or intestinal disturbance, and sometimes in the early convalescence from acute illness the tongue is furred and disappears so quickly as it should—a sure sign of improvement. We should then again a mercurial preparation, or podophyllin, with tincture of
nux vomica and nitric acid. If the motions are too light then give a third or half a grain of grey powder, night and morning or three times a day; if the motions are too dark then give a small dose, say a thirtieth to twentieth of a grain of podophyllin resin, night and morning. Five drops each of tincture of nux vomica and dilute nitric acid thrice daily, will much promote the action of the mercury and the podophyllin. Sometimes the fur is dirty or brown, and the patient complains of a disagreeable bitter taste, especially in the morning; and this symptom is an additional indication for the foregoing treatment. Sometimes, however, in spite of this treatment, the disagreeable bitter taste persists in the morning, or even during the greater part of the day. Rinsing the mouth with a solution of permanganate of potash will generally temporarily remove the annoyance.

As the tongue cleans the fur recedes from the tip and edges and gradually becomes thinner, especially at its margin. With a little practice we can generally detect when the cleaning process is going on.

After an acute illness like typhoid fever, the tongue sometimes parts with its fur in flakes, leaving clear smooth patches, especially at its back. This tongue denotes a slow convalescence. In typhoid fever this tongue may a second time become dry, with a return of the abdominal symptoms. In a case like this turpentine is indicated in 10- to 20-minim doses every two or three hours.

A dry tongue occurs most frequently in fever. The dryness first invades the tip and extends up the centre, spreading the meanwhile laterally, till the whole tongue becomes dry. It grows moist in the inverse order of its invasion. A dry tongue generally indicates nervous depression, often shown by delirium, usually of a low muttering kind. This nervous prostration is often dependent on want of sleep. Narcotics therefore, like chloral, bromide of potassium, or opium, by inducing sleep, soothe and strengthen the nervous system, and indirectly moisten the tongue. Opium is often more useful than bromide of potassium, or chloral, for it appears to have a greater effect on the tongue than either of the other drugs, probably inducing a moist condition by its direct action on the tongue and stomach as well as through its sleep-producing effect on the nervous system.

Being frequently a sign of nervous depression, the dry tongue becomes also an indication for giving alcoholic stimulants. If, however, the nervous depression is due to wakefulness it is better, if possible, to secure refreshing sleep by a soporific, which, by
stances we must be content to combat the secondary and often fatal effects. A disease often neither endangers nor destroys life by its direct effect on the organ attacked, but through a secondary effect manifested on another organ or organs. Thus to take the case of pneumonia; here, by no means unfrequently, the dangers depend, not on the condition of the lung, but on nervous or cardiac depression. The fever depresses the nervous system, shown in sleeplessness and delirium, and this depressed state of the nervous system causes cardiac weakness and so endangers and destroys life. Or the fever may directly depress the heart and so weaken it that the patient dies. Now in both these instances, the effects on the nervous system and on the heart are manifested solely by symptoms, and without a due appreciation of, and a proper attention to, these symptoms, so much the worse for the patient.

Instances like this might be multiplied to any extent. Moreover, there is the wide range of diseases in which physical diagnosis is unavailing when there are only symptoms to guide our treatment; and these are just the cases in which, unless trained in the recognition and estimation of symptoms, the young practitioner is more likely to find himself at sea.

ON THE TONGUE.

We examine the tongue to ascertain whether it is clean or furred: dry or moist; its colour, &c.

What is the meaning of a furred tongue?

A tongue may be furred from febrile disease; from local causes; or from sympathy with the stomach, intestines, or liver.

The condition of the tongue in fever is, perhaps, more a help in prognosis than in treatment. In most fevers the tongue at first is covered with a moist fur; but in some cases the tongue, strange to say, remains quite clean. Sometimes this is the case in typhoid fever. Now the coated tongue in fever does not give us much suggestion with regard to treatment, for whether the tongue be clean or foul, if there is constipation the bowels must be relieved; and if the tongue is very foul, that is, thickly coated, a mercurial purge is best, notwithstanding that some fur usually remains whilst the fever continues.

Local causes often foul the tongue. Enlarged tonsils often coat the back of the tongue. Decayed teeth often fur a portion of the
tongue. If one tonsil only is enlarged, or if the decayed teeth are situated on one side, then only one longitudinal portion of the tongue is furred. In neuralgia of the fifth, when the lower branches are affected, the tongue on the neuralgic side is apt to become furred.

Excessive smoking almost always furrs the tongue.

The tongue very frequently indicates derangement of the stomach, bowels, or liver. For instance, if there is no fever, and no local cause, as enlarged tonsils, bad teeth, &c., then a coated tongue indicates some disturbance of the primæ viæ.

What does a coated tongue under these circumstances indicate? We shall rarely go wrong in taking this furred tongue as an indication for one of four medicines, or some of them combined: namely, mercury, podophyllin, tincture of nux vomica, or nitric acid.

How are we to determine which to give and its dose? If there is constipation then give a mercurial preparation or resin of podophyllin in purgative doses. Any purgative, it is true, will here be useful, especially the natural purgative waters, as Pullna, Friedrichshall, or Carlsbad; but these though valuable remedies are, in many instances, inferior, in the cases in question, to mercurial and podophyllin purges.

As regards mercury, our choice falls either on calomel or blue pill for adults, or calomel or grey powder for children. The calomel or blue pill should be combined with extract of belladonna or of hyoscyamus, since this addition obviates the griping and certainly seems to enhance the action of these drugs. An effective dose is half a grain of calomel with three grains of extract of hyoscyamus, for three consecutive nights; the first pill generally purges pretty freely, the second much less freely, and the third scarcely at all, though it helps to clean the tongue.

Which should we choose—mercurial purges or podophyllin resin? The answer to this question depends on the colour of the stool. If the motions are too light-coloured mercurial purges are best. If, on the other hand, the motions are too dark then podophyllin is needed. For this clinical fact I can give no explanation.

What is to be done when the bowels are freely open, or have been relaxed by medicine, but where the tongue still continues furred? We meet with such cases often in gastric, biliary, or intestinal disturbance, and sometimes in the early convalescence from acute illness the tongue does not clean so quickly as it should—a sure sign of impaired digestion. Here again a mercurial preparation or podophyllin is useful, given with tincture of
THE PULSE.

coated. Now in a case of this kind, though the heart may remain at 160 and the pulse becomes very weak in other qualities, being very compressible or even small and compressible, yet we may reasonably expect the patient to recover. The heart's substance too is generally inflamed: and this weakening of the heart's substance, coupled with the mechanical embarrassment rising from the pericardial effusion, excites very hurried, even panting breathing. Thus attacked, the patient often looks very ghastly, the face becomes dusky and distorted with the hideousness of sandozitis: yet if these symptoms can be clearly traced to the cardiac mischief, we may hold a well-grounded hope of the patient's recovery, even without the aid of large doses of alkaloids stimulants. In fact, acute pericarditis is rarely immediately fatal: it merely destroys life only by leading to dilatation with valvular insufficiency, or to fatty degeneration of the heart.

Rheumatic fever with other complications generally ends favourably in no matter how serious the aspect of the patient. Phenomena, even when acute and further complicated with extensive pericarditis, seldom destroy a patient.

Again, an irregular pulse from mitral disease may be very frequent, 120, 130 or more, without indicating extreme danger. Sometimes, in acute fevers, as typhoid fever, though the temperature is high, the pulse remains normal throughout the attack: such a pulse certainly shows absence of cardiac weakness, and is of course a favourable sign.

In chronic diseases a frequent pulse very generally indicates cardiac weakness.

With increased frequency other signs of cardiac weakness are associated. The weakened heart propelling the blood less energetically than in health diminishes arterial tension and the pulse becomes soft and compressible. Relaxation of the arteries plays a part still more important in producing a compressible pulse: this condition permits the blood to pass with greater readiness into the veins, and so to lessen arterial tension. This relaxed condition of the arterioles, unless the heart is very weak, causes the pulse to be large and voluminous. At first one might erroneously suppose that this pulse indicated an energetic arterial circulation and a well-beating heart, but the compressibility soon corrects this error. It is therefore highly important always to test the compressibility of the pulse. If the heart becomes still more weak, and the arterioles still more relaxed, then each beat propels the blood into the arteries, and these allowing the blood to pass readily into the veins, the pulse becomes small as well as quick and com-
pressible. Smallness of the pulse, therefore, indicates still greater weakness. When the pulse is very small it is said to be thready. When the heart is weakened its contraction often becomes sudden and sharp, rapidly reaching a maximum and rapidly declining, giving rise to a quick pulse, which thus often gives evidence of cardiac weakness, especially when combined with the other and surer indications of this state.

Therefore, in estimating the condition of the heart, we pay regard to the frequency, especially with reference to the temperature, to the compressibility, and to the size of the pulse. The quicker the pulse, the more compressible, the smaller the pulse, the greater the cardiac weakness, and the more imminent the patient's danger, and the greater the need of cardiac stimulants.

These pulse signs, therefore, both in febrile and non-febrile disease, are indications for giving cardiac stimulants, especially alcohol. These pulse signs, moreover, afford an accurate index of the effects of alcohol and of the amount required; for alcohol strengthens the debilitated heart, reduces the frequency of its beats, and contracts the vessels, and so heightens arterial tension and lessens the compressibility of the pulse.

Both in acute and chronic affections cardiac weakness is, as a rule, accompanied by evidence of general weakness, though this by no means is always the case. We may be called to a patient with an acute illness who at first sight shows no evidence of weakness; his temperature is found to be from 102° to 103°; he easily turns over or sits up in bed; his voice is strong; his tongue moist and but little furred, perhaps even clean; he takes his food and apparently digests it well. He sleeps well at night and is free from delirium; in fact the general appearance of the patient indicates no danger; but the pulse beats say 130 per minute, and it is small, compressible, and quick; and not due to excitement, as we ascertain by repeated observations; in fact this patient is in considerable danger. Are we to pay regard to the pulse or to the general condition? Certainly to the warning pulse, for in a case like this, just described, serious symptoms will set in in a few days, and the patient will sink. The pulse here is a much prompter and surer danger-signal than the other symptoms. To take another instance:—A febrile patient when first seen presents no serious symptoms, but as the case goes on, and whilst the patient's general state remains apparently satisfactory, the pulse gradually increases in frequency and loses in force. Here again the pulse is the better guide, giving early indications of approaching general prostration.
We must, however, bear in mind that owing to individual peculiarity, the pulse in some persons is easily made very frequent, and a moderate amount of fever may accelerate the pulse and make it 130 to over 150, without this frequency indicating any danger. Our previous knowledge of the patient will, however, enable us to rightly estimate the frequency of the pulse in these cases. Again, we meet with cases of this kind: a patient suffers from a moderately severe attack of fever, and the pulse is by no means frequent in proportion to the fever, but it is very small and very compressible. In forming our prognosis, we are to be guided by the smallness and compressibility, or the frequency of the pulse. In most cases certainly by the frequency. The size and compressibility of the pulse varies in health and very considerably in different persons. In some persons, in perfect health and capable of vigorous exercise, we find a very small and compressible pulse—not much ever be called thread-like. Such a pulse often occurs in the different members of the same family. Now if such a person becomes ill, the pulse becomes more frequent, and without any material weakness is of course small and compressible—and it is obvious if we disregarded frequency and paid attention only to the size and compressibility, we should be misled, both as regards prognosis and treatment. Of course, our previous knowledge concerning the patient will, in many instances, save us from falling into error, but should we see the patient for the first time in a feverish attack, if we regarded the size and compressibility rather than the frequency, we should probably be misled. Of course, if a previously good pulse becomes small and compressible that change is significant, but it rarely happens that this change occurs without a corresponding increase in the pulse's frequency.

It is true that sometimes signs of danger arise from other organs, perhaps in the nervous system, in the form of unsteadiness and delirium, yet as I have before pointed out, so long as the pulse remains good we feel that our patient is comparatively safe. If the nervous perturbation, whether spontaneously declines or yields to treatment, the pulse will ultimately fall, and the patient will sink.

In an intermittent pulse, an occasional beat is missed, the rhythm being otherwise regular. The missed beat may occur occasionally or unfrequently, at an equal or irregular interval. It must be clearly understood that an intermittent pulse is very different from an irregular pulse, and has an altogether different significance. Some persons have an intermittent pulse all their lives, and ordinary
first occurs after middle age. It may be persistent or occasional; and when occasional only it is often due to an idiosyncrasy on the part of the patient, and is caused by some article of food, as tea, perhaps green tea, smoking, or indigestion. Certain patients are unconscious of the intermission, and as Dr. Broadbent points out, this is especially the case when the intermission is habitual. Other persons are made very uncomfortable and nervous by a sensation as if the heart stopped or rolled over. The intermission often occurs in the artery only simultaneously with a weak beat of the heart.

In most cases an intermittent heart is of no significance, and does not appear in any way to imperil life, though Dr. Broadbent states that a patient so affected succumbs more readily to any illness; when, however, associated with unequivocal evidence of heart disease intermittency is of more serious import.

An irregular is of far more serious significance than an intermittent pulse. The pulse is irregular both in force and rhythm, succeeding beats differing in length, force, and character. It is generally due to mitral and rarely occurs in other forms of heart disease, though sometimes met with in great cardiac prostration, as in an acute febrile illness a few hours before death. It occurs too in fatty degeneration of the heart and in the first and second stage of meningitis. It may be called the mitral pulse, and generally indicates the need of digitalis, which in most instances lessens or removes the irregularity. This irregularity from mitral disease may exist with a weakened and degenerated left ventricle. In my experience, if the walls of the heart are degenerated, digitalis fails to influence the irregularity.

Whilst an irregular pulse almost always indicates mitral disease, it must be borne in mind that a perfectly regular pulse may accompany extensive mitral disease; either obstructive or regurgitant, or both combined.

Some hold that the occurrence of irregularity in mitral disease is a sign of deficient compensation, the compensation being insufficient to meet the obstruction to the circulation offered by the mitral disease. But if this view is correct, how does it happen that a few doses of digitalis will in many cases restore regularity, and that with the discontinuance of the digitalis the irregularity does not return?

The irregular pulse is very rare in children under twelve though the conditions in which it occurs in adults are well marked. If, say, between six and seven, mitral disease is established, and the child, though suffering from its effects lives till it is over twelve, the intermittency then becomes gradually developed.
THE PULSE.

Though irregularity from mitral disease is rare in children, yet I have seen aconite, in half-drop doses repeated hourly, several times produce in them marked irregularity of the pulse. Irregularity of the pulse in children is common in the first and second stage of tubercular meningitis; in fact its existence is often a valuable diagnostic guide.

Hitherto I have referred to the dependence of the pulse exclusively or mainly on the condition of the heart. But the condition of the blood-vessels themselves also influences the pulse.

Through the action of the vasomotor nerves on the muscular coat of the arteries, the small blood-vessels undergo relaxation or contraction. When the vessels are relaxed the blood passes easily from the arteries to the veins, hence arterial tension is slight, and the pulse is soft and compressible, but owing to the relaxed state of the vessels it is also large. A relaxed condition of the arteries, therefore, produces a large, soft, compressible pulse.

In most diseases, a relaxed condition of the arteries is associated with a weak heart. Sometimes, however, we have arterial relaxation with a normal heart, in which case the pulse is soft and compressible, but large. This pulse is met with in the early stage of some fevers.

Arterial relaxation, or, in other words, diminished arterial tension, produces dicrotism. In this pulse one of the normal secondary waves of oscillation becomes greatly exaggerated, so that it can be easily felt by the finger. Indeed it may be so distinct that an inexperienced person mistaking it for the primary wave, might easily be led erroneously to think it indicated a cardiac contraction. Indeed a nurse has been known to make this mistake and thus to double the number of true pulsations. Dicrotism always indicates marked arterial relaxation, and often coincides with cardiac weakness. Some writers insist that this pulse indicates the use of alcohol, which should be pushed till the dicrotism ceases. Now, in this opinion I cannot concur, feeling convinced that in many cases with marked dicrotism no alcohol is needed. We must look rather to the frequency of the pulse, and if this shows the need for stimulation, then no doubt dicrotism affords additional evidence in favour of giving alcohol.

A pulse not very frequent, but dicrotous and compressible, occurring at the commencement of a fever, does not necessarily indicate the need for alcohol: but this state leads us to expect that stimulation may be shortly required, and warns us to watch our patient carefully, so as to anticipate and to prevent the accom-
ing of prostration. A dicrotous pulse is frequently met with in typhoid fever.

I now come to the pulse of high arterial tension; here the vessels are much contracted, and then as the blood escapes with greater difficulty from the arteries into the veins, the arterial tension becomes high. In some of the following remarks, I largely borrow from Dr. Broadbent's valuable lectures on the pulse; and the pulse in question cannot be better described than in his own words:—

"The artery, usually rather small but sometimes large, is hard and cord-like; it can be rolled under the finger and is easily traced in its course up the forearm, where it feels like another tendon lying amidst those in front of the wrist. It reminds one, as I have often said, of the vas deferens."

With the vessels in this condition the pulsation is often so slight that it might readily be mistaken for a weak pulse, but that its incompressibility prevents our falling into this error. It can be compressed only by using considerable force. It is, in fact, a slightly pulsatile pulse, for owing to the high arterial tension the vessel with each beat of the heart undergoes but little dilatation, hence the pulsation is indistinct. In addition to being small the pulse is slow and hard.

The following conditions give rise to arterial tension—
1. Degeneration of vessels.
2. Kidney disease, especially the contracted kidney.
3. Gout, jaundice; lead-poisoning; ergot; gallic acid.
4. Affections of the nervous system.
5. The rigor of fevers.

High arterial tension accompanies some forms of Bright's disease, occurring in the fatty, but especially in the acutely-inflamed and contracted kidney; in fact high arterial tension, and hypertrophy of the heart, associated with an increased quantity of urinary water containing a small quantity of albumen, enable us to diagnose the contracted form of Bright's disease. The albuminoid kidney is not associated with high arterial tension.

Although it is quite true that, in general, a soft compressible pulse of low tension accompanies a weakly acting heart, we meet with exceptions to this rule. For a patient prostrate, nay, even moribund, and consequently with a very feebly acting heart, may have a high tension pulse, the radial artery feeling hard and remaining to the touch like a firm cord, and is distinctly traceable some way up the forearm, even during diastole; whilst the temporal artery is also firm and resistant. This combination of a high
tension, and therefore small and resistant pulse, with great cardiac and general weakness is, I think, more commonly seen in children, and is sometimes strongly marked in tubercular meningitis and capillary bronchitis or broncho-pneumonia.

It is obvious from these facts that we must not be led to give a too favourable opinion because of the high tension pulse. When the frequency and the tension point in opposite directions we must rely on the frequency rather than the tension. In those cases where the heart is feeble, though the pulse shows high tension of the vessels, we can, from the feel of the pulse sometimes detect the condition of the heart, and thus estimate the true state of the patient, without having regard to the frequency of the pulse. The pulse, even during diastole, feels hard and resistant, and we can trace it a long distance beyond the point where it is usually felt, but each systolic distension feels smaller than usually, even with high tension of the vessels; moreover, with slight pressure, we can easily arrest the pulse-wave along the vessel.

Here, perhaps, I may profitably introduce, though at the risk of some repetition, an account of the modifications the pulse undergoes in the stages of an acute illness. First I will refer to the characters of the pulse of a man previously vigorous and robust smitten with an acute disease. The pulse differs in the separate stages of the fever, in the chill, the acme, and the decline. During the rigor or chill the arteries contract, and produce a pulse of high arterial tension. The pulse is frequent, small, often very small, hard, incompressible, and long, or as it is otherwise termed, slow. The chill over and the fever established, the pulse becomes larger; but as the heart is not yet weakened the pulse is large, full, and not easily compressed,—bounding as it is called. If the fever persists during many days and the patient grows weak, the pulse becomes softer, and more compressible, short (or quick); and often dicrotous.

In the case of a fever with great prostration the pulse is very frequent, small, short, very compressible; these characters becoming still more marked if the illness terminates fatally. If in the supposed case the patient, previously in weak health, is suddenly attacked with an acute illness, the pulse from the first would assume this character. During the decline of the fever, especially when it ends abruptly, and accompanied by free sweating, the pulse, unless the patient has been greatly weakened, is large, very soft, easily compressed, dicrotous, and short—all the characters, indeed, of extreme arterial relaxation. Indeed in febrile diseases,
even during their height, and in non-febrile diseases too, when the skin perspires freely, this is generally the character of the pulse. And this also is the pulse of acute rheumatism, because this disease is usually accompanied by sweating. Again, in a febrile disease, when by means of a drug we convert the dry into a moist skin, we find the pulse becomes soft, large, but compressible.

In well-marked aortic regurgitation, the pulse is often characteristic. The pulse is of two kinds, depending on the amount of regurgitation and the strength of the heart. The pulse gradually rises as usual till it reaches its acme, and suddenly collapses, the collapse being due to the regurgitation of the blood into the ventricle.

In more advanced cases the pulse gives to the finger a sharp, quick stroke. The extreme suddenness in the commencement of the pulse, as Dr. Galabin observes, gives to the finger in marked cases the impression of a sudden blow or jar. This is the diagnostic quality of the pulse. In some cases, especially when the heart is weak, if several fingers are placed on the artery, and the pressure is graduated, the pulse feels at a certain degree of pressure as if a small ball or shot was puffed under each finger. This is the shotty pulse.

In aortic regurgitation, as Dr. Corrigan points out, the pulse is often visible; and most conspicuous in the arteries. It becomes much more visible at the wrist when the arm is raised over the head. This visible pulsation is probably due, as Corrigan points out, to the empty condition of the artery during diastole. The blood flows easily into the veins, and much is poured back by the aorta through the patent aortic orifice into the ventricle, hence the arteries are imperfectly filled, and on receiving the blood from each contraction become widely dilated.

Is visible pulsation diagnostic of aortic regurgitation? Certainly not. Visible arterial pulsation of the neck and head accompanies not only aortic regurgitation, but also fibroid degeneration of the vessels, great arterial relaxation, and high arterial tension. Mere excitement, by increasing the force of the heart's contraction, often in nervous persons produces visible carotid pulsation, and this phenomenon is most frequent in women. But this nervous pulsation rarely extends more than half way up the neck, and hence can generally be at once detected from the visible carotid pulsation due to the more serious causes. Visible pulsation of the whole length of the carotid to the lobe of the ear and of the temporal, and perhaps of the facial artery, is far more frequently due to
aortic regurgitation than to high, or to the opposite condition, low arterial tension, or to degeneration of the arteries. Therefore extensive visible arterial pulsation in the neck, that is, when the pulsation can be distinctly seen as far as the back of the lobe of the ear, is strongly suggestive of aortic regurgitation; though I should mention that visible pulsation is well marked in pericarditis accompanied by carditis or pericardial effusion, this disease being generally associated with marked arterial relaxation.

Aortic regurgitation, degeneration of the arteries, and high arterial tension, will produce distinct visible pulsation not only of the carotid, but also of the brachial, radial, ulna, etc.

These three conditions,—aortic regurgitation, arterial degeneration, and high arterial tension, may be combined. Aortic regurgitation is especially a disease of middle or advanced life; the endo-arteritis and endo-carditis producing aortic and arterial degeneration, being due to age and strain from some laborious occupation. The chronic inflammation often affects the entire arterial system even to the smallest vessels, and by rendering them inelastic, and by narrowing the lumen of the smaller vessels friction is increased—a greater hindrance is offered to the passage of the blood, and the tension of the vessels rises.

How can we distinguish between the visible brachial pulsation due to simple arterial degeneration, and that due to simple aortic regurgitation? In arterial degeneration the arteries become elongated and tortuous, easily visible in the brachial just above the elbow. A tortuous pulse, therefore, always suggests arterial degeneration. Moreover, in arterial degeneration the arteries feel hard and cordy even when all blood is pressed out of them, and sometimes calcareous plates or atheromatous hardenings can be distinctly felt. A tortuous condition of the arteries, as of the brachial, does not, however, always point to degeneration, for as Dr. Broadbent tells me in confirmation of my own experience, this tortuosity may be produced by high arterial tension, but says it occurs only when high arterial tension has endured for some time, and is not seen in the cases of high arterial tension accompanying acute Bright's disease.

Long ago, Dr. Corrigan pointed out that raising the arm increased the visibility of the radial pulse in aortic regurgitation, and he used this fact to support his theory of the production of visible arterial pulsation in aortic regurgitation. This increased visibility of the radial pulse on raising the arm will not, however, enable us to diagnose aortic regurgitation, for in arterial degener-
eration the visible radial pulse becomes decidedly more obvious in this position, though perhaps not so great in a degree as in well-marked aortic regurgitation. I may mention, that in children even with considerable aortic regurgitation the pulse is rarely visible.

The pulse of aortic obstruction, so long as the left ventricle remains undegenerated, is slow, generally small, infrequent, and often hard. It is slow and small because even the hypertrophied ventricle can force the blood but slowly through the narrowed aortic orifice. It is infrequent because of the great length of each systole. If there is co-existing insufficiency, of course the character of the pulse is much modified. When compensation fails, the pulse becomes small and compressible.

In marked mitral obstructive disease, the pulse when not irregular is small and compressible.

In arterial degeneration the vessels become elongated, tortuous, and the pulse-beats become very visible. The artery feels hard and like a cord, or like the vas deferens, and sometimes the calcareous plates may be felt even in the radial artery at the wrist. This is a very significant condition, being evidence of senile decay of the arteries, a condition which leads to atrophy and degeneration of the organs. Many persons are constitutionally much older than their years will warrant, they are in fact prematurely old; whilst, on the other hand, many old people shew few signs of old age. In individuals prematurely old the arteries are found in a state of degeneration, whilst in hale old people their arteries show few or no signs of degeneration; it has been well said that a man is as old as his arteries.

Dr. Augustus Waller, (in the Practitioner of Dec. 1880,) describes a “recurrent pulsation in the radial artery.” After compressing the radial pulse and completely obliterating it, he points out that in many cases the pulse still beats at the distal side of the fingers. The arterial wave which produces the pulsation, he explains, comes from the ulna artery and travels through the radio-ulnar inosculating arteries, and so reaches the radial artery. If the ulnar artery likewise is compressed, this pulsation at the distal side of the fingers ceases. This “recurrent pulsation” is found generally in persons with relaxed arteries, in whom the heart beats fairly well; for a weak heart, is unable to propel a wave from the ulnar to the radial artery. Dr. Waller finds this recurrent pulse twice as often in women as in men.
THE SKIN.

The condition of the skin affords us a series of instructive symptoms; but in this place I must restrict myself to speak only of a dry, a moist, and a profusely wet and sodden skin.

In most fevers with persistently high temperature, the skin is hot, often pungently hot. Now, if we make the patient's skin comfortably moist, we shall considerably promote the comfort and well-being of the patient. Small often-repeated doses of tincture of aconite or tartar emetic, or full doses repeated every three hours of spirit of mindererusus, will induce perspiration. Aconite and tartar emetic are the most successful; in fevers without long implication, aconite is best, but in catarrh, bronchitis, or pneumonia, tartar emetic is preferable.

In many cases of diabetes and Bright's disease, it is very difficult to make the very dry skin perspire.

The occurrence of sweating often suggests hints for treatment or assists the prognosis.

The two chief causes of sweating are weakness and a fall in a febrile temperature, two causes often combined in the same individual in exhausting febrile diseases, as in phthisis.

In a non-febrile patient, the readiness to perspire often indicates weakness, and even measures its amount: thus, in depressed health, a person finds that exertion, even slight exertion, or any excitement, causes too free sweating. A trainer knows well that a trainee is in bad condition when he perspires too freely.

Again, in exhausting diseases, and during the weakness of convalescence, slight exertion, or even sleep, produces sweating often profuse. It must however, be borne in mind, that in sound health great differences in respect to the amount of sweating are met with in different individuals. A person returning from a residence in a hot climate where his skin has habitually acted very freely, finds on his return to a colder climate that, under slight exertion, he still continues to perspire very readily.

Profuse sweating occurs during the sudden fall of a febrile temperature, as in the sweating stage of ague, or during the fall of temperature after a rigor in pyæmia. Phthisical patients, too, in whom there occurs a great diurnal variation of temperature, rising to 102° or higher at night and falling in the early morning hours, commonly undergo with this fall a drenching perspiration. The amount of sweating in febrile cases depends on the extent of the
fall of temperature and the weakness of the patient; where the weakness is great, the sweating is often profuse, though the fall in the temperature may measure only two degrees or less.

These two forms of perspiration when uncombined can be easily discriminated. Except in the case of pyæmia, there occurs in febrile diseases only once daily, a rise and a fall of temperature, and consequently sweating when due to a fall in a febrile temperature occurs only once daily, and chiefly early in the morning. In weakness, on the other hand, sweating breaks out at any hour, and many times a day, being occasioned by exertion, sleep, or excitement.

In my experience, profuse sweating as a rule is more common and lasts longer in the convalescence from scarlet fever than in other acute febrile disease; hence during the recovery from scarlet fever, sudamina in large crops often occur, greatly hastening desquamation, the skin sometimes coming off in large patches.

With the exception of rheumatic fever, profuse sweating at the commencement of an acute febrile disease, when the temperature remains permanently high, indicates great weakness and adds to the gravity of the prognosis; when with the profuse sweating, there is duskiness of the face, ears, and under the nails, showing weak circulation from enfeeblement of the heart, the serious aspect of the case is strengthened. Again, the feel of the skin shows the condition of a patient. With much perspiration, the skin soft and sodden, points to general weakness, a state accompanied with a soft, perhaps large compressible pulse. These signs often indicate the need of alcoholic stimulants.

THE TEMPERATURE OF HEALTH.

Within certain narrow limits the body maintains its temperature in health, but within these limits the temperature varies in a definite daily cycle. During the day the temperature remains about 99°, but towards evening it begins to fall and generally reaches its minimum at midnight. At this point it remains steady during a few hours and then begins to rise, reaching its maximum about 9 A.M. The diagram of the temperature of a lad twelve years of age illustrates the daily course of the temperature in health.

The chart shows at once, that a temperature normal during the day, would be abnormal at night, and vice versa.
TEMPERATURE OF DISEASE.

During the day, between 9 A.M. and 4 P.M., the healthy temperature is usually about 99°, but there may be a consistent variation; thus it may not be higher than 98°, or it may rise to 99°5° Fah. Any rise above 99°5° constitutes fever. About four in the afternoon the evening fall begins, and at midnight the temperature is about 97° or even 96° Fah.

Whilst in many robust adults the temperature shows the same course as in children, yet with other healthy persons the course is somewhat modified from that just described; thus the daily cycles are not so considerable, the maximum temperature and the evening fall being less.

In persons under 25 the daily variation is 2° Fah.; whilst the variation in persons over 40 is more restricted, being often only 1° or even less.

TEMPERATURE OF DISEASE.

Whilst any elevation of temperature above 99°5° indicates disease, it need hardly be pointed out that a normal temperature does not necessarily indicate health. Many diseases, both acute and chronic, during their whole courses are unattended with fever. Indeed, in some diseases, the temperature is depressed below the health standard.

The daily course of fever varies with the severity of the disease. In a mild attack there is a considerable diurnal variation, the temperature rising towards night and falling in the early morning hours: but in a severe attack of febrile illness, the diurnal variation may be very slight or even absent, the temperature remaining persistently high.

In private practice, as a rule, it is convenient to make but two daily observations, and these should be taken at such times as to obtain the highest and lowest temperature of the day. The likeliest times to give these minimum and maximum temperatures are 8 to 9 A.M. and 8 to 9 P.M. Though as a rule the morning temperature is lower than the evening, in rare cases the reverse happens. In some especially in chronic cases, as in phthisis and sometimes in subacute rheumatism, the fever may last only for a few hours between 8 A.M. and 8 P.M., and thus observations taken at these times, though the temperature is then normal, do not absolutely prove that the patient is fever-free. If only one observation daily is made it should be taken in the evening, as, even in the
diseases so severe as scarlet fever, the morning temperature may
be nearly normal throughout the attack, whilst the evening tem-
perature may rise to 103°; hence a morning observation only
would lead to a great mistake concerning the severity, and pos-
sibly the nature, of the illness.

ABNORMAL ELEVATION OF TEMPERATURE, OR FEVER.
Contagious and inflammatory diseases are accompanied by a rise
of temperature, which is not only dependent on, but proportionate
to, the activity of the attack. In other febrile diseases, non-contag-
ious or non-inflammatory, the temperature is also proportionate
to the activity of the disease; hence the thermometer is an accurate
index of the amount and intensity of the inflammation and of the
severity of the attack. It must be borne in mind, that the same
amount of disease produces in children a relatively higher temper-
ature than in adults, and that there are moreover, probably indi-
vidual or family peculiarities apt to raise the temperature in disease
beyond the ordinary standard.

In forming an opinion on the course a case will run, and whether
it will end in recovery or in death, we must not trust simply to the
height of the temperature, for it is obvious that the issue will de-
pend not only on the severity of the attack, but also on the patient's
ability to resist the disease. Therefore, in estimating the danger,
whilst we must regard the temperature of the patient as a measure
of the severity of the attack, we must consider, too, the general
condition of the patient as manifested by the state of his heart,
nervous system, stomach, etc. To illustrate this point take two
ordinary cases of typhoid fever. One patient with high tempera-
ture takes and digests his food fairly well, there is but little
diarrhoea, he sleeps well, his heart is not much weakened, and yet,
in spite of the high fever, or in other words the severity of the
attack, he makes a good recovery. Another patient, with de-
cidedly less fever, is troubled with sickness, diarrhoea, sleepless-
ness, delirium, and weak heart, and so, though his attack as
indicated by the temperature is not severe, yet he dies worn out.
Again, take two cases of phthisis. One patient, in spite of
considerable daily fever, eats, digests, and assimilates fairly well,
and for the most part maintains his ground. Another patient,
though his fever may be slight, and indeed sometimes even after it
TEMPERATURE OF FEVER.

has become normal or below normal, the appetite, digestion, or assimilation being greatly impaired, slowly but surely wastes away. In certain rare cases, though the appetite is good and the digestion is apparently well performed, yet if assimilation is at fault the patient in spite of plenty of food wastes away, even in cases when the temperature has become normal. Hence in a case of phthisis, in addition to the fever and the appetite, we must note the weight, for in a case where plenty of food is ingested but assimilation is defective, the patient’s weight is the sole measure of his progress. We must, too, pay attention to the condition of the bowels, for with much diarrhoea the patient quickly declines, even when the fever is but slight or has even ceased.

It may be said, perhaps, that the symptoms—the general weakness, the frequent, feeble pulse, the loss of appetite, and the delirium, are due to the elevation of the temperature; and this remark no doubt is true, for by treatment which tends to reduce the temperature to the normal standard we can abate or remove all these symptoms; and the abnormal elevation of temperature not only immediately depresses and weakens all the bodily functions, but in proportion to the height and duration of the fever it likewise produces degeneration of all the organs, and this degeneration greatly weakens the activity of the organs. If the symptoms are all referable to the direct depressing effect of the fever temperature, and indirectly through the degeneration it produces, it would seem a plausible supposition that the height of the temperature should be an exact measure of the patient’s danger. A little reflection will soon show that this is but partially true, for though, no doubt, most of the symptoms arise from the high temperature, it must be recollected that its depressing effect must greatly depend on the previous condition of an invaded organ; thus, if previous illness, excesses of any kind, or unhygienic conditions have already depressed the organs, high temperature will inflict on them much graver mischief. If, for example, rheumatic fever has slightly damaged the heart, a febrile attack will considerably increase the dangers to the patient through failure by the heart. If intemperance has injured the nervous system a febrile disease will intensify the danger of delirium and depression of the nervous system. We estimate the resistive power of each organ by the severity of its symptoms in comparison with the height of the fever. Thus, if delirium is excessive, whilst the temperature is but slightly elevated, it shows that the nervous system has but little power to resist; and if the pulse becomes very frequent, small, and compressible, it shows
that the heart’s resistance is but slight. If, on the other hand, with the fever severe nervous symptoms are slight, and the pulse, not very frequent, is full, and not very compressible, then we conclude that the condition of the nervous centres and the heart is satisfactory and our prognosis is good.

Therefore, in estimating the dangers of a febrile attack, we must regard not only the intensity of the disease but the resisting forces of the body. The temperature measures the intensity, but the power to resist fever is estimated only by careful attention to the condition of the different organs, especially the heart, the brain, and the stomach.

Does the course the temperature runs give evidence of the nature of the disease? Whilst, on the whole, this question must be answered in the negative, still it must be remembered that certain diseases generally have a somewhat characteristic temperature; indeed in many cases of ague and pyæmia the temperature itself is diagnostic.

The thermometer assists us in diagnosis in cases of the following kind.—A patient becomes ill, and the temperature is found raised above the healthy standard. This fact, especially if the temperature is high, makes it incumbent on the doctor to search carefully to discover its cause. To narrow the range of our instances let us restrict our attention to the commoner causes of fever. The fever may be due only to the acute contagious diseases, acute inflammation of some organ, rheumatism, gout, or to the diseases causing chronic fever. The doctor, we will suppose, has been called in on the first day of the attack, and his duty is carefully to investigate whether the fever is due to inflammation of any organ. In most instances the symptoms and physical signs will enable him to arrive at a diagnosis, an attack of rheumatism or gout being so characteristic that he will detect either at once. If the fever cannot be thus accounted for, then he probably has to deal with one of the acute specific diseases; its nature, however, cannot ordinarily be diagnosed with certainty till the characteristic rash appears. Still, even before the advent of the rash he may give a shrewd guess as to the nature of the illness. Thus, the patient may have been in the company of an infected person, or an acute contagious disease may prevail. Moreover, even before the appearance of the characteristic rash, the symptoms may suggest one of the acute specific diseases. Thus, sore throat would point to scarlet fever; severe backache, headache, and sore throat to small-pox; coryza with cough to measles. Very severe headache, ushered in by a
TEMPERATURE OF FEVER.

severe rigor, with severe backache, and pains in the limbs, would suggest typhus; whilst dull frontal headache with diarrhea, would strongly point to typhoid fever. The mode of onset of the fever, that is the more or less rapidity with which the temperature mounts, and the more or less elevation it reaches, also assists the diagnosis; but this point will be more dwelt on presently. Having then in many cases a strong suspicion as to the nature of the attack, he must wait for the rash to confirm or to correct his impression. If the second day passes without the occurrence of a rash, the case in all probability is not one of scarlet fever; for the rash of this disease appears on the second day. being very rarely delayed longer, more frequently, indeed, occurring before the second day, sometimes even in twelve hours. If the third day lapses without a rash, he is not dealing with a case of small-pox, for this rash usually appears punctually on the third day. In measles, it is commonly said that the rash appears on the fourth day, but in many cases this statement is certainly erroneous, for the rash often appears on the first day of the fever, and I have seen it even precede the fever. In many instances, however, though there is no fever, the patient suffers from coryza and cough for three or four days: but these symptoms may not occur till the rash appears on the very day the temperature rises. This being so, it may, however, be fairly taken that if the fourth day passes without a rash, the case is not one of measles. If the fifth day passes without a rash, the case is not typhus, for typhus rash appears punctually on this day. The foregoing diseases being excluded, there is then left only typhoid fever, and one of the diseases producing chronic fever; and the diagnostic difficulty will lie between typhoid fever and acute tuberculosis, the other diseases causing chronic fever being, in many cases, easily detected.

As the eruption of typhoid throughout the attack may be either altogether absent or be manifested by only a very few spots, which may possibly escape detection, we must in some cases diagnose this disease irrespective of the rash. The rash, however, appears between the eighth and twelfth day which makes the diagnosis certain. If we are led to exclude typhoid, then, as I have just said, we have probably to deal with a disease which causes chronic fever. The diagnosis of the disease referable to this head will be treated of when we speak of chronic fevers.

I now give another instance of the diagnostic value of temperature. A patient is suddenly seized with severe pain on the side of the chest. The pain, shooting or stabbing in character, is inten-
sified on coughing or deep breathing. This is the characteristic pain of pleurisy and of pleurodynia;—one an inflammatory disease, the other a non-inflammatory disease—which is it? A physical examination, it may be said, will at once discriminate one from the other. But suppose the doctor has been summoned at the very onset of the attack, when the signs are undeveloped, the pain on moving the chest is a symptom common to both diseases; no doubt cough, present in pleurisy, may be absent in pleurodynia; but pleurodynia may occur in a patient with slight catarrh of the bronchial tubes, and one would not venture to base his distinction, between these diseases, simply on the presence or absence of cough. The thermometer alone solves the difficulty. If the attack is pleurisy, an inflammatory disease, there is fever (elevation of temperature), whereas if the attack is pleurodynia, a non-inflammatory disease, fever is absent.

In studying the temperature of fever, we must notice the mode of its rise (initial period), its character whilst at its height, and in a lesser degree, as of less importance, its declination to the standard of health. The character of the rise often helps us to form an opinion of the nature of the illness. In most febrile diseases the temperature rapidly rises, reaches its acme in twelve to twenty-four hours. This rapid rise occurs in the fever of most inflammations, and of typhus, scarlet fever, measles, erysipelas, &c. Where the rise is sudden and rapid, the onset of the symptoms is equally sudden and accentuated, and the rise in the temperature is generally accompanied by chills or rigors; or, as in typhus and pneumonia, by a single severe rigor. This sudden and rapid rise being common to so many attacks, is of little diagnostic use beyond serving to exclude those diseases in which the invasion is more gradual.

On the other hand, in some diseases, the temperature rises more gradually and takes three or more days before it attains its maximum. This happens in most cases of tuberculosis and in almost all cases of typhoid fever, and sometimes in rheumatism and pleurisy. This gradual rise of temperature is therefore suggestive of the invasion of these diseases, and if there is no joint pain, the case is likely to prove either typhoid fever or tuberculosis, diseases which often closely simulate each other, so closely at the commencement as to baffle the discrimination of the most experienced. As in diseases with slow invasion of the fever, the doctor is seldom summoned till the temperature has become well developed, he has not often the opportunity of ascertaining how it has comported itself at the beginning of the attack. Hence, at this stage, the
TEMPERATURE OF FEVER.

temperature is seldom a serviceable guide: the mode of its rise must be estimated from the slow or quick onset of the symptoms.

From the course the temperature runs during the time the fever is at its height, we learn much more than from the mode of its onset. At this juncture we must regard the height of the thermometer, the extent of the daily variations, and the duration of the fever. The height of the temperature with its daily variations measures the severity of the attack. The greater the daily variations, the more favourable the case. The high temperature, as we have seen, immediately and directly depresses all the functions; and further indirectly lowers them by producing degeneration of all the tissues; these effects of course being manifested in proportion to the height of the temperature. Hence they are far more marked in cases when the temperature all day keeps high, than in cases when, during many hours, the temperature is but little or not at all raised above the limits of health. A temperature of 105° always marks a severe attack of any disease, especially if the diurnal variation is very slight. A temperature above 105° threatens considerable danger; and from a temperature of 107° patients, unless treated by cold baths, very seldom recover. A temperature of 110° to 112, unless it yields to the application of cold, is very quickly fatal.

In the early days of the clinical thermometer it was taught that in some diseases, as in typhoid, the temperature always reached a characteristic height, so that in a given case, if by the fourth day the temperature failed to reach 103°5 Fahn the case was said to be not one of typhoid fever. This absolute rule a more extended experience has shown to be erroneous. Typhoid and other fevers may run their course with any temperature above the normal standard. Some writers, indeed, go so far as to maintain that typhoid fever may exist without any abnormal temperature, and if typhoid, they say, why not other "fevers?" Still it must be admitted that the temperature is a serviceable guide in the discrimination of diseases. For example, in the majority of cases of typhus and typhoid fever, measles and inflammations, the temperature reaches 103°, and certainly if the temperature never exceeds 101°, then probably the case is not typhoid, typhus, scarlet fever, measles, nor any important acute inflammation. Sometimes the thermometer greatly assists us in discriminating measles and scarlet fever from German measles (Rothen). Thus, in German measles, the patient often complains of sore throat, and sometimes its rash is so like the rash of scarlet fever, and sometimes so like
the rash of measles, that simply by the aspect it is difficult or impossible to distinguish them. In this dilemma the temperature, though not an absolute proof, affords strong presumptive evidence; thus in German measles the temperature generally is scarcely or very slightly raised, not higher than 100° or 101°, whilst in measles and in scarlet fever, in the great majority of cases, the temperature runs higher than this.

The course of the temperature when at its height indicates, as I have said, not only the severity of the attack but also helps us likewise to distinguish its duration. If the temperature is high, and the daily variations are slight or non-existent, a severe attack threatens, sure to persist longer than a case with considerable daily falls in the temperature. The information thus obtained is especially instructive in typhoid fever, for if during the second week there are daily great variations, we have reason to hope that the disease may terminate, possibly on the fifteenth, though more probably on the twentieth day; but if during the second week the daily variations are but slight, then the fever will probably last twenty-five or thirty days.

When the temperature has remained persistently high, the occurrence of morning falls shows the beginning of the decline of the disease.

The duration of the fever helps us to detect the nature of the disease; and indeed in obscure cases it often greatly aids the diagnosis. In most inflammations, in scarlet fever, in measles, the fever usually passes away by the fifth or tenth day, and in typhus on the fourteenth or fifteenth day. If the fever persists beyond this time it is fair to conclude that we have not to deal with one of these diseases; but as, in the majority of instances, they are easily diagnosed early in their course, it is evident that in such cases the duration of the fever is of little practical use; but by enabling us to discriminate between typhoid and tuberculosis and between the diseases causing chronic fever, the duration of the fever does give us very trustworthy and important evidence.

In some cases of typhoid fever, the symptoms are not sufficiently marked to enable the doctor to decide whether the case is one of typhoid fever, tuberculosis, or phthisis. If the fever goes on beyond thirty days then probably the patient suffers from consumption; and each additional day of fever strengthens this conclusion. In most cases of phthisis, before the thirtieth day, the lungs or other organs will, it is true, generally manifest the nature of the illness; but not unfrequently the fever of consumption may persist
TEMPERATURE OF FEVER.

thirty days or more without the concurrence of any characteristic physical signs or symptoms of its existence. When I come to speak of chronic fever I shall point out with more particularity that sometimes the thermometer will enable us to detect consumption earlier than by the combined aid of the symptoms and the physical signs.

Any sudden and considerable temperature variation generally forebodes some complication; and a sudden and considerable rise, always. A sudden and considerable fall may, of course, indicate the natural termination of the attack, for in many diseases, the temperature falls very rapidly; in pneumonia notably, it is not uncommon for the temperature in twelve hours to subside from 105° to the normal standard.

A sudden and marked rise in the course of a disease foretells the onset of some inflammatory complication. On the other hand, it is important to bear in mind that an inflammatory onset, interposed in the course of a febrile disease, may not heighten the existing temperature; hence the fact of the temperature running the ordinary course pertaining to the original attack, does not preclude the necessity for close watching, lest an inflammatory complication should supervene. Thus, an attack of pneumonia or of pleurisy may leave the temperature of pre-existing fever unaffected. It is important to recollect that, as a rule, the onset of pericarditis in acute rheumatism does not increase the fever. This is hardly to be wondered at, seeing that when a fresh joint becomes implicated the temperature does not alter, and inflammation of the pericardium may be regarded as analogous to inflammation of a joint.

A sudden and considerable fall, if not due to the natural termination of the illness, means sudden collapse. It is oftenest met with in typhoid fever, and it means hæmorrhage into the bowels, or perforation of the intestine. It must, however, be recollected, that each week in typhoid fever a great morning fall often occurs. A fall equal to that, due to hæmorrhage or perforation, may occur at any time, but the fall with these accidents is more persistent, and is always accompanied by the symptoms of collapse. A sudden great fall with collapse and without tenderness of the abdomen, is always very ominous of hæmorrhage into the bowel. This hæmorrhage, though considerable, may yet be retained for some hours in the intestines.
CHRONIC FEVER.

In some diseases fever may persist for weeks or months, and by its very duration help the diagnosis. It is true that in most cases, whilst the fever has lasted only a short time, perhaps only a few days, the other symptoms reveal the nature of the disease; but not unfrequently the nature of the malady remains for a long time obscure, and then the persistence of the fever is an important help to the diagnosis.

Between acute and chronic fever there is no sharp line of demarcation. Certain acute diseases, for instance, typhoid fever and pleurisy, may each run more than thirty days; whilst, on the other hand, febrile diseases, like deep-seated abscesses and consumption, which often continue several weeks or months, or even longer, may run a short course of only a fortnight or three weeks.

Since most acute illnesses, even typhoid fever and pleurisy, which persist longer than others, come to an end, in the great majority of cases, before the thirtieth day, we may take that as the limit of acute fever.

Chronic fever occurs in phthisis, abscess, syphilis, ague, rheumatism, in most cases of leucocytemia, and pernicious anaemia.

As in acute diseases, so in acute and subacute phthisis, the temperature is a measure of the activity of the attack, of the amount of tuberculization and of catarrhal pneumonia. In other words there occurs a daily elevation of temperature of the body, in all cases in which a deposition of tubercle is taking place in any of its organs, or in which catarrhal pneumonia is progressing in the lungs. This elevation is an index of the activity of the disease; the fluctuations of temperature indicating corresponding fluctuations in the rate of the disease.

One exception, however, I must mention to the above general rule. In tubercular meningitis, it is by no means uncommon, though it certainly is not the rule for the temperature to remain normal throughout the course of the attack; or at all events during most of its later stages. In some cases, for a short period, the temperature is slightly elevated, and then becomes natural, or falls even below the normal point. In by far the greater number of instances the temperature is elevated, sometimes, indeed, mounting to 105° to 108° Fah.

There are two feasible explanations of this phenomenon, either or both of which are tenable. We may suppose that in certain parts of the nervous system, as yet
unknown, the deposition of tubercle may prevent a rise of temperature; or that during the tubercular deposit, a rise of temperature occurred before timely observations were made, and that afterwards, no further deposition took place; the patient dying from the effect of the tubercle deposited before the temperature was noted. The former is probably the true interpretation, for in some cases, observed from nearly the commencement, the temperature at the moment remained normal throughout the attack. In these non-debatable cases of acute military tuberculosis, generally but little tubercle will, I believe, be found beyond the brain and its membranes.

It has been asserted that, during acute military tuberculosis of the lungs, the temperature, in rare instances, may remain normal. With regard to this statement, I believe that the deposit of tubercle has gone on by very slight and scarcely appreciable increments; or has become obsolescent at the time the temperature was first taken, so that the fever stage was overlooked. It must be admitted that, in some very chronic cases, either of tuberculosis or of catarhal pneumonia, the disease advances too slowly, and the deposit, at any one time, is too slight to be adequate to elevate the temperature unless to a very small extent.

Thus, we meet with cases in which, some time before death, the temperature was always natural, yet the post-mortem examination reveals much fibroid degeneration from old standing tubercle or catarhal pneumonia; and adjacent to the fibroid portions, in the otherwise healthy lung tissue, we see a few recent military tubercles easily counted, or a few small patches of recent catarhal pneumonia. Indeed, in these diseases, we meet with every degree of activity to which the temperature corresponds. In some cases, the disease advances so slowly that the temperature is scarcely raised, and we should naturally expect so very slight an amount of morbid action would be insufficient to raise the temperature appreciably. Where there is no elevation of the temperature, we may conclude that the progress of the disease is almost insignificant; although the patient is exposed to the lurking danger that from some slight cause, this comparatively harmless condition may be aggravated into a severe and dangerous attack.

The apparent exceptions to this statement can, I think, be explained in this way:—

With phthisis, as with other causes of chronic fever where the disease goes on but slowly, it must be borne in mind that the fever may last only a few hours in the day, sometimes not more than three or four, sometimes only in the middle of the day, so that a morning and evening observation may miss the fever, and may lead to the erroneous conclusion that the patient was fever-free.
Another source of error arises from the mode of taking the temperature. Phtisical patients are often very thin, and hence the bulb of the thermometer, when placed in the axilla, instead of being embraced all round by the tissues, lies half-exposed in a hollow cavity, and never acquires the temperature of the body. This source of error is, moreover, often coupled with another. When the patient is perhaps dressed, or has had his arms out of bed, and his axilla has become cooled, it would take half an hour or an hour before the skin of the exposed parts would recover its lost heat so as to mark the temperature of the body. Over and over again, in hospital practice, I have been told that the temperature was normal, or even below normal, but on taking the temperature under the tongue, or in the rectum, have found the patient suffering from several degrees of fever.

In some cases, it must be admitted, there appears to be a disproportion between the progress of the disease and the temperature. This disproportion occurs, I believe, only in cases of long standing, and when the disease has lasted a considerable time, perhaps it produces less elevation than at first, the patient becoming accustomed to the disease, and, as in the case of medicines, it produces less constitutional effect. As the result of my experience, I am inclined to think that the same amount of disease in middle-aged and in elderly people, produces less fever than in the young, and that less fever is produced towards the end of the disease, when the patient’s powers are greatly depressed.

The temperature is a more accurate indication of the activity of tuberculosis or of catarrhal pneumonia, than either the physical signs or the symptoms. Thus, only a considerable increase in the amount of disease can be detected by physical signs; and in disseminated tuberculosis, where the granulations are pretty equally scattered throughout the lungs, and indeed, often through most of the organs of the body, there may be entire absence of physical signs. Thus, it is apparent that the physical signs, even in very acute cases, only give us evidence of the continuance of the disease after the lapse of a considerable interval; whilst it has been shown that in almost all cases, there is an elevation of temperature during the deposition of tubercle or the continuance of catarrhal pneumonia, and that this elevation being proportionate to the activity of the disease, the thermometer will, unerringly at any time, point out continuance and the amount of disease, except indeed, in those very chronic cases, where the amount of tuberculization or of catarrhal pneumonia, is slight and almost insignificant. When
it is thus borne in mind, that only considerable deposits in the lungs can be detected by physical signs, while even a small amount will raise the temperature ever considerably for some time, it becomes evident that the thermometer will give a far better estimate of the amount of mischief than the physical signs. Moreover, after the cessation of tuberculosis or catarrhal pneumonia, consolidation from the fibroid lung remains, and from the physical signs it is impossible to tell the condition of such a lung, to tell whether disease is progressing or not: the temperature will answer the question for us. If the temperature is natural at all periods of the day, we may safely conclude after a few days that active disease has very nearly or entirely ceased.

It must be recollected that the fever is a measure of the increase of the tuberculatization, or of the catarrhal pneumonia, not of the damage already done. Thus the disease may cease to extend and the temperature become normal; but the extensive consolidation of the lung may begin, and continue to soften and lead to cavities. Hence, because the fever ceases, and the formation of fresh tubercle of catarrhal pneumonia ceases, we must not conclude that the patient is free from danger, for the softening and suppuration may lead to fatal exhaustion.

Observation of the temperature often saves us from error and enables us to form a correct judgment of the true condition of the patient. A patient with only a moderate amount of fever, say 100° to 103°, lasting only a part of the day, has been losing weight and growing weaker. She goes to the country, her appetite and assimilative powers increase, she grows much heavier and stronger, and regains much of her lost colour. On a physical examination of the chest, we detect no increase in the physical signs, but during the whole time, the temperature has risen to its accustomed height, 102° to 103°, showing that the disease still progresses but that the improved appetite has more than obviated the waste from the fever. In other words, nutrition is in excess of waste.

On the other hand, we must be careful not to pay too much heed to the temperature, nor to build our prognosis entirely on it. For it often happens, that there is a marked disproportion between the general symptoms, and the degree of tuberculatization, or the rate of formation of the products of catarrhal pneumonia. A patient with very slow progressive phthisis and moderate fever, associated with the very slight physical signs which develop slowly, has a flagging appetite, and he quickly wastes; or sometimes a good appetite, but assimilation is at fault, and so, in spite of plenty of
nourishment, he progressively grows thinner and thinner. Therefore, we must regard not only the temperature as a measure of the progress of the tuberculization and the inroad of catarrhal pneumonia, but must likewise take into consideration the patient's appetite and weight, the occurrence of complication, as diarrhoea from ulceration of the intestines, the presence of albumen in the urine from fatty kidney, and whether albuminoid degeneration has implicated the liver, spleen, or kidneys.

To what is the fever due in acute miliary tuberculosis? To the formation of the tubercle, or to the catarrhal pneumonia which accompanies it. The answer is clinically of small importance. Authorities are now pretty well agreed that in tuberculosis there is fever. Some maintain, however, that the formation of tubercle does not cause the fever, but that the fever is due to the coincident pneumonia, and to the suppuration from softening tubercle. Assuming this view to be correct, then as the pneumonia is due to, and proportionate to, the amount of the deposition of tubercle, it is obvious that the fever being proportionate to the catarrhal pneumonia, is likewise proportionate to the amount of tubercle formed.

Dr. Theodore Williams teaches that a subnormal temperature accompanies the deposition of tubercle, and that in some instances a stage of depressed temperature precedes the fever stage. Such cases I have never seen.

Fibroid phthisis remains now to be considered. Catarrhal pneumonia, or tubercle, behaving as an irritant, induces increase of the connective tissue with formation of fibroid bands, which cause the lung to become tough and fibrous. This condition of lung often co-exists with an extension of the catarrhal pneumonia, or progressive formation of tubercle. When the further progress of these two diseases is stayed, this fibroid condition is left. This is the most common cause of a fibroid lung, but it may originate in a different way. The temperature in fibroid phthisis varies. In some cases it is quite natural, or if the health is much depressed, it is even below normal. In those cases which go on to cure it is natural. The walls of the cavities become dry, ronchus and expectoration cease, the cavities slowly contract, and the patient recovers health and strength; but the induration, very obvious on a physical examination, still remains. Now in a case like this, the temperature often becomes of the greatest importance. A patient presents himself with a history of a previous attack of phthisis. We find marked evidences of consolidation of the apices of the lungs. The patient's health is good, his appetite and digestion vigorous. Are these physical signs simply due to his previous illness, or is the phthisis progressing? If his temperature remains for several days quite normal, we may conclude either that there is no progressive tuberculization, nor catarrhal pneumonia, or that
it is very small in amount; for, as we shall shortly see, there may be probably a slight amount of catarrhal pneumonia, without a rise of temperature.

In other cases of fibroid phthisis, even when the formation of tubercle has ceased, we may have a slight daily rise in the temperature to 100° or even 101° due to the suppuration in the cavities. This suppuration can of course raise the temperature just like suppuration in an open discharging psoas, or other discharging abscess.

The persistence of a slight amount of fever does not, therefore, conclusively prove the continuance of the tuberculization of catarrhal pneumonia. Nor, on the other hand, I think, can we possibly say that whilst the temperature is normal, the tuberculization and catarrhal pneumonia may not be in a very slow degree extending. Clinical experience shows us that a very small formation of tubercle or of catarrhal pneumonia may occur without a rise of temperature.

We very often meet with mixed cases, where the upper part of the lung has become fibroid, whilst active disease goes on in the lower part. In cases like this, the temperature is raised in proportion to the activity of the acute disease. If the disease progresses slowly, and raises the temperature to only 100° to 101° Fah., it is difficult to determine whether the fever indicates an extension of the tuberculization, or of catarrhal pneumonia, or is due to suppuration in the cavities.

As in acute phthisis, so in chronic, with fibroid lung, we must be careful not to pay sole regard to the temperature. Thus the formation of tubercle or the extension of catarrhal pneumonia ceases, and the temperature becomes normal, but before this comes to pass the health may become damaged beyond recovery, or the kidneys may become seriously implicated, or through lack of appetite and digestive power the patient may waste away and die; or the uncertain weather incidental to this country, may irritate the cavities and keep up continuous suppuration which drains away, exhausts the strength, and destroys the patient by producing wide-spread albuminoïd degeneration.

Therefore, in a case of fever-free phthisis, we must take into consideration the general condition as well as the temperature. When appetite, digestion, and assimilation are good, then the patient quickly regains strength and health. Therefore, in forming an opinion of a case, we must regard the temperature, the appetite, and the weight.
The temperature in phthisis affords us still further guidance. A patient throws up a large quantity of blood from the lungs, and the grave questions arise,—is the hæmorrhage due to the congestion which accompanies acute phthisis? or is it independent of phthisis?—will the hæmorrhage in its turn excite phthisis? If the temperature is normal we may at once exclude acute phthisis; and if the temperature remains normal we conclude that the hæmoptysis has not excited catarhal pneumonia. Again, a patient having recovered from a previous attack of phthisis, which has left well-marked physical signs, spits a little blood. Does this show that he is again the subject of progressive phthisis, or is the bleeding due to ulceration of the walls of an old cavity? Here the temperature, if normal, and continuing normal, enables us to conclude that the hæmoptysis does not depend on another attack of phthisis.

The thermometer in many cases is of still more signal service in giving early and significant warning. By its aid we can often diagnose tuberculosis or catarhal pneumonia, before we can detect any physical signs, and at a period when symptoms themselves are insufficient to justify a grave diagnosis. A patient suffers from chronic fever. What is the cause of it? So far as we at present know chronic fever occurs only in tuberculosis, catarhal pneumonia, large abscesses, rheumatism, ague, occasionally in syphilis, in some cases of leucocytæmia, in lymphadenoma, and in pernicious anaemia. The diagnosis of ague and rheumatism is rarely difficult, the characteristic symptoms in most cases rendering their identification quite easy. Large superficial abscesses present no difficulty, but it may not be so easy to detect deep-seated abscesses; and in some cases the diagnosis is for a considerable time impossible. As a rule, however, they give more or less pain, often to a considerable degree, in the neighbourhood of the abscess or over the spine; moreover, a tumour is generally detectible, after the fever, if at all high, has lasted a few weeks. Local symptoms, too, as pain on movement, stiffness, lameness, etc., will, in most cases, point out the nature of the disease. Sometimes, however, deep-seated abdominal abscesses run a much more chronic course, the temperature then assuming the character so common in fibroid lung; thus the temperature rises 101°, even perhaps to 102°, and daily mounts to this height for a few days, then becomes natural for a variable time, but some cause, as over-exercise, once more excites the fever, and the temperature again stands high for a week, a fortnight, or longer. It is often very
difficult to determine the nature of the disease, and to exclude tubercle or catarrhal pneumonia. True, there are no pulmonary physical signs, but these may be absent in phthisis, while the local symptoms may be too few to justify the diagnosis of abscess. Having but a limited experience of deep-seated subacute abscesses, I would wish the following remarks to be accepted with caution. In general there is pain in the abdomen, not constant but brought on by slight walking; sometimes there are marked dyspeptic symptoms, amongst which flatulence predominates. A slight daily rise of temperature continued for a considerable time, or running the irregular course just described, if accompanied by deep pain and tenderness in the abdomen, the lungs being free from evidences of disease, will, I am inclined to believe, justify the suspicion of a deep-seated subacute abscess. These rules at all events have enabled me to diagnose doubtful abscesses, when, unaided by the thermometer, their detection seemed impossible. I lean to the belief that, with these abdominal abscesses, the fever-free periods not unusually persist longer than in subacute phthisis; moreover, the rise can sometimes be traced distinctly and repeatedly to exercise, a bout of fever, accompanied by an increase in the other symptoms, occurring after each undue exertion. If an abdominal tumour is detectable by the hand, or if there are evidences of diseased spine, then, of course, the diagnosis is far more easy.

Again, a large discharging sore, or a discharging psoas, or iliac abscess, frequently produces a course of fever like that described under subacute and chronic phthisis. In some cases there is a slight daily elevation lasting for months, in other cases the abnormal temperature continues for only a few days, or lasts one or two weeks, and then for a short time falls again, and this alteration may be repeated for a considerable time. Here the diagnosis is easy, for there is a discharging sore with absence of pectoral physical signs or symptoms.

In cases of constitutional syphilis with chronic fever, the diagnosis in many cases is more difficult, and unfortunately, little of this subject is known at present. The temperature may be high, rising to 103° and 104° Fah. daily; the morning remissions are usually great, the temperature often falling to 98°. In these respects, syphilitic fever corresponds to moderately severe cases of phthisical fever, but generally distinct and easily recognisable constitutional symptoms set in concurrently with the fever. The disease may assume the rheumatic form; and thus the diagnostic difficulty
will be, not between phthisis and syphilis, but between simple acute rheumatism and syphilis. In some cases the diagnosis has seemed impossible until, on the administration of iodide of potassium, the temperature at once became normal, or declined gradually, reaching the temperature of health in one or two weeks. Very large doses may be required.

Assuming the exclusion of the foregoing causes of fever, the question arises—How long must the elevation of temperature persist before we can with probability suspect tuberculosis or catarrhal pneumonia, in cases free from physical signs or characteristic symptoms, as, for instance, hæmoptysis? From ten to twenty days, I think, each day facilitating and strengthening the diagnosis. In the first few days the diagnosis is well-nigh impossible, but each successive day serves to exclude sources of error. Thus, on the second day, if the rise is due to scarlet fever, its characteristic rash ought to appear; if due to small-pox, the rash should appear on the third day; if in measles, about the fourth; and in typhus, on the fifth day. Before this time, if the rise is due to acute inflammation of the brain, lungs, kidneys, etc., characteristic symptoms and physical signs will have set in. In most cases of typhoid fever the rose spots will appear between the eighth and tenth day; and at this stage we may exclude most cases of simple inflammation, which usually decline before the tenth day, when the fever ceases. Thus, on the tenth day, or thereabouts, assuming, as we have said, the exclusion of the other causes of chronic fever, the diagnosis lies between tuberculosis and typhoid fever. In the early stages the discrimination of one from the other is difficult, and may indeed be impossible. Each begins gradually, and is not usually ushered in with chills, convulsions, or rigors; nor have we ordinarily to assist our judgment, distinctive symptoms, like the back and headache of small-pox, the sore throat of scarlet fever, the coryza and cough in measles, before the advent of the characteristic rashes. It is true that in the beginning of many cases of typhoid fever, before the appearance of the rash, there is diarrhœa and headache; but though these symptoms point strongly to typhoid fever, yet they may be present at the commencement of acute tuberculosis or catarrhal pneumonia. Moreover, diarrhœa and even headache may be absent in typhoid fever. But by the tenth or the fifteenth day, the diagnosis in most cases becomes easy; still it must be admitted, that now and then we encounter perplexing cases of typhoid fever, which render the diagnosis between it and tuberculosis or catarrhal pneumonia, doubtful for a much longer time;
CHRONIC FEVER.

the thirtieth day once passed, should the disease have remained so long undetermined, it is in all probability not typhoid fever, for this usually ceases either before or at this time. Yet it is well known that typhoid fever occasionally lasts six weeks, or longer. In children, the diagnosis between typhoid fever and acute miliary tuberculosis, is often extremely difficult, the symptoms of typhoid being in some cases so ill-defined, that many good observers refuse to consider them to denote typhoid fever, and call them simple continued fever of children. Many of these cases are probably acute tuberculosis, the deposit ceasing, and the tubercles becoming obsolescent and harmless. Of course the diagnosis is difficult only when, in acute miliary tuberculosis and catarhal pneumonia, there are neither physical signs nor characteristic symptoms.

Again, after typhoid fever, a period of fever may set in lasting six weeks or two months, the temperature becoming almost natural then daily rising higher and higher to 101°, 102°, even 103°, and after about four or five days again gradually falling; this course being often repeated. Occurring after typhoid fever, such a temperature does not show lung disease. This condition may co-exist with a clean tongue, increase of appetite and weight, and a steady amendment of the health.

It thus appears that the temperature alone may enable us to diagnose tubercle or catarhal pneumonia, in cases where the physical signs and symptoms are absent, or are too indefinite to assist the diagnosis.

The following typical instances illustrate the usefulness of the thermometer in doubtful cases of phthisis:—

A patient is taken rather suddenly ill. His face is flushed, eyes bright, pulse quick. The temperature is very high. There is no headache, no delirium, no diarrhœa. So weak is he that he stays in bed. At the end of ten or fifteen days he remains much in the same plight, but has grown weaker. His tongue has become dry. There are no typhoid spots, no diarrhœa, and the stomach is not distended. He has neither cough nor expectoration, and there are no physical signs in the chest. For a month or five weeks he continues in the same state, when distinct physical signs at the apices of the lungs appear, accompanied by expectoration, and possibly slight haemoptysis. Soon he begins to improve, the fever grows daily less severe, his tongue becomes clean, appetite slowly returns, cough diminishes, and at last both cough and expectoration cease. All moist chest sounds disappear, and at the expiration of
about two months the temperature becomes natural, strength returns, his weight increases, although he will always carry evidences of consolidation at the apices of his lungs.

A woman, between 30 and 35 years of age, fails slightly in health, complains of slight weakness, is soon tired, but is never ill enough to be confined to bed. Her appetite is rather bad. There is a trifling cough, and perhaps on one or two occasions the expectoration of a slight streak of bright-coloured blood, so slight and so seldom repeated, that it is hoped the blood may have come from the mouth or throat. There may be a strong family predisposition to phthisis. No physical signs are apparent; yet the temperature, rising nightly to 101° or 102° Fah., declares the true nature of the disease, which perhaps, in the course of some months, decided physical signs render too evident. How important is it to detect this early and slight stage of the disease!

By means of the temperature we can diagnose tuberculosis, even when during the whole course of the disease, there are no physical signs indicative of tubercular deposit in any of the organs of the body, and when the symptoms are quite inadequate to enable us to form such a diagnosis. Thus, we commonly meet with cases of acute miliary tuberculosis in children, where, throughout the whole course of the disease, the only guiding symptom is preternatural heat of the body, except, perhaps, a small amount of sonorous or sub-mucous rhonchus, and yet after death most of the organs of the body are found studded with miliary tubercles. Again, we occasionally meet with patients, generally among children ten or twelve years old, who complain of pain in the head, and whose manner is peculiar, being semi-idiotic, in whom the temperature daily rises considerably for weeks or months, and after death small masses of yellow tubercle, the size of a large pea or bean, are found imbedded in the substance of the brain, with sometimes miliary tubercles scattered through the thoracic and abdominal organs.

ON DROPSY.

In health, nutritive plasma escapes from the blood-vessels into the adjacent tissues, and is afterwards absorbed by the lymphatics and possibly by the blood-vessels. This transfusion and absorption counter-balance each other, and hence only a moderate amount
of fluid is found in the parenchymatous tissue. But if a disturbance arises in the balance between these two processes, the parenchymatous fluid increases, producing edema or ascites, a condition due either to the leakage of fluid occurring through the blood-vessels, or to deficient absorption. Inasmuch as plasma passes from the blood-vessels by filtration, diffusion or secretive attraction of the tissues for the fluid, in the state of edema or ascites, dropy never probably happens through increased absorption of the tissues for the plasma, but generally in filtration. The amount of fluid escaping from the tissues by filtration depends on the difference between the pressure of fluid in the blood-vessels and in the parenchymatous tissues. In healthy persons, the pressure of the fluid in the blood-vessels is higher than that in the fluid within the capillaries, and hence a constant current of nutritive plasma flows through the blood-vessels to the tissues outside them.

Most cases of general dropy depend on symptoms, and are produced by diminished action of the kidneys, whereby the urine is greatly diminished in quantity, whilst the patient yields the same quantity of liquid into the system; hence the excess of ingestion over that eliminated through the kidneys accumulates in the body and produces hydrametria, and as far as this point goes, the amount of dropy is for the most part in proportion to the diminution of urine. This formation of the urines may be produced in three ways—by disease of the kidneys, as Bright's disease, especially the acute and fatty kinds, by diminished arterial pressure in the glomeruli from general diminution of arterial pressure depending on heart disease, and on weakening of the walls of the blood-vessels through the kidneys from venous congestion due to mitral regurgitation.

In those forms of Bright's disease the heart is the culprits or the glomeruli where the quantity of urine is normal or even excessive, there is no dropy, whilst in the acutely inflamed or fatty kidney, in both of which diseases the quantity of urine is often greatly increased, the dropy is often marked, and almost always occurs when the quantity of urine is notably diminished, whilst in cases of those kinds where the secretion of urine is free.

In all valvular affections of the heart, and in all cases in which the heartless blood is propelled into the arterial system, and consequently arterial tension is lowered. This is the result of emphysema which hinders the passage of blood through the lungs. In the result of mitral and of aortic affections. To overcome the production the heart undergoes compensatory hypertrophy and if not so
perfect then arterial tension is kept up, but if this is imperfect, or if the left ventricle after hypertrophy undergoes degeneration, then arterial tension immediately falls in the glomeruli as well as in the body generally. Now the amount of water that filters through the walls of the vessels in the glomeruli, depends on the difference of lateral pressure inside and outside the blood-vessels. If arterial tension is much reduced, then less water filters through the vessels, and the water accumulates in the blood.

But the quantity of urine depends not only on the degree of arterial tension in the vessels of the glomeruli, but also on the rapidity of the circulation through the kidneys. If arterial tension is lowered then the rate of circulation is reduced. But general venous congestion from tricuspid regurgitation also lessens the rate of the circulation, hence tricuspid regurgitation in this way tends to lessen the secretion of urine and so to produce hydremia. How does hydremia produce dropsy? The question cannot at present be satisfactorily answered, but it is often assumed that the volume of the blood being increased arterial pressure is augmented, hence more serous fluid filters into the parenchyma, and filtration is easier from watery than normal blood.

Dropsy is in proportion then to the amount of hydremia, and the amount of water in the blood is generally dependent on the action of the kidneys. We meet, however, with cases that at first sight appear exceptions to this statement, for we see patients troubled with extensive and progressive dropsy, who pass two, three, or even four pints of urine daily, but it will generally be found that these patients are troubled with great thirst, and drink far more than they void through the kidneys or skin, and the excess of their drink over the quantity of urine accumulates in the blood, causing hydremia and dropsy.

Are we right, however, in asserting with some writers that mere venous obstruction cannot cause dropsy though it may favour it, but that without some affection of the nervous system dropsy will not occur? Thus, the ascending vena cava in dogs has been tied without producing dropsy of the posterior limbs, but on cutting the nerves of the sciatic plexus, dropsy came on immediately; and as the divisions of the nerves inside the spinal canal (that is before the vaso-motor nerves join them) does not produce dropsy, it is concluded that paralysis of the vaso-motor nerves is the cause of dropsy. Clinical facts, however, certainly prove that mere venous obstruction will cause dropsy. Cirrhosis of the liver, or a tumour pressing on the vena portae, or coagulation in the vein as it enters
the liver, will produce ascites. Are we to conclude that these
diseases paralyze the vaso-motor nerves of the abdominal blood-
vessels? Again, tricuspid regurgitation produces general ana-
sara, (though it must be admitted, not in proportion to the
amount of obstruction, judging by the lividity and the fulness
of the jugular veins); is it feasible to infer that this condition
paralyses the vaso-motor nerves? In venous obstruction, more-
over, dropsy always shows first and most markedly in the most
dependent parts, where the lateral pressure on the vessels is
greatest, and are we to suppose that the vaso-motor paralysis
attacks these parts first, and then gradually ascends the lower
limbs?

Is the venous congestion consequent on tricuspid regurgitation
sufficient to cause dropsy, or is the dropsy chiefly due to hydramia? Chieflly to hydramia, for we meet with cases of extreme
tricuspid regurgitation, with full pulsating jugulars, much lividity
and dyspnecia, and yet no dropsy, and it is found these patients pass
a normal quantity of urine, but when the urine diminishes, dropsy
sets in, and in proportion to the scantiness of the urine. Still, no
doubt venous congestion from tricuspid regurgitation favours dropsy
in other ways than by causing hydramia, for distension of the right
side of the heart, with general venous obstruction, must lessen ab-
sorption by the veins and lymphatics, and in this way cause the
parenchymatous fluid to accumulate.

Remedies may remove dropsy:—(i.) By diminishing lateral pres-
sure on the walls of the blood-vessels, and so lessening transfusion
from the blood-vessels. (ii.) Increasing absorption. (iii.) Both
ways combined. (iv.) By increasing the lateral pressure in the
blood-vessels of the glomeruli, and so increasing the quantity of
urine. (v.) By removing those diseased conditions of the kidneys
which hinder their secretion.

Digitalis is a good example of a remedy acting through several
of the above methods. By its action on the diseased heart, it pre-
vents in many cases mitral regurgitation, hence all the blood of
the left ventricle is sent into the aorta, instead of a part being sent
back into the auricle. Arterial pressure is thus raised in all the
organs, and amongst other parts in the glomeruli of the kidneys,
and hence more urine is secreted, the blood is purged of its excess
of water, and the dropsy is thus absorbed into the circulation, and
quickly eliminated through the kidneys. But it also acts in other
ways. By obviating tricuspid regurgitation, through its influence
on the left side of the heart, digitalis lessens or removes passive
congestion, diminishes blood-pressure, and consequently filtration, reduces the amount of transfusion from the blood-vessels, and prevents further development of the dropsy. By obviating venous obstruction, it removes lymphatic obstruction, and thus favours absorption by the lymphatics; hence the excess of parenchymatous fluid is taken up by these vessels. Moreover, if there is much dropsy, on removing the congestion, the pressure of the fluids outside the blood-vessels very probably becomes greater than that in the vessels, and hence the fluids will flow into the blood-vessels. The water in the tissues is then brought back into the circulation, and eliminated by the kidneys. But digitalis also by its indirect influence acts on the kidneys. During tricuspid regurgitation the kidneys become congested, hampered, and inactive. Removing general congestion by its effects on the heart, digitalis relieves the kidneys, and allows them to return to their natural state, and hence they quickly eliminate the excess of water in the blood, due to the absorption of the dropsical fluid. When all the water has been absorbed from the tissues into the blood, and eliminated by the kidneys, digitalis no longer causes an excessive flow of urine, as would happen if it acted directly on the kidneys.

It may be urged that we have regarded the dropsy of tricuspid regurgitation, as in part due to heightened vascular tension through the great venous congestion, and that if digitalis increases arterial tension, it should increase rather than diminish the dropsy; but it must be borne in mind, that digitalis removes the tricuspid regurgitation and venous congestion, by the same means that it causes more blood to be sent into the arterial system, and so heightens arterial tension.

There is another form of dropsy needing description, that due to anæmia. After severe loss of blood, or exhausting drains of albuminous fluid, as in diarrhoea or chronic dysentery, a patient often becomes very dropsical. A small amount of dropsy at the ankles also is common in other forms of anæmia, as in chlorosis. How is this dropsy produced? It cannot be explained satisfactorily by ascribing it to hydremia; for though the water is relatively increased to the amount of albumen and corpuscles, the total volume of the blood is diminished by hæmorrhage, and there cannot, therefore, occur increased lateral pressure from increased volume of the blood, as occurs when water is retained in the system from diminished excretion from the kidneys; an increased pressure leading to increased transfusion through the capillaries into the parenchyma.
EFFECTS OF COLD ON THE BODY.

If not due, then, to an absolute excess of water increasing the total amount of blood, how is the dropsy explained? Is it due to the deficiency of red corpuscles or of albumen? It is not due to deficiency of the red corpuscles; for in chlorosis, where the red corpuscles are greatly diminished whilst the amount of albumen remains much the same, very little or no dropsy occurs, and it is only in those cases when the blood is greatly drained of albumen, that extensive dropsy ensues. The dropsy, then, is due to the want of albumen, and it is known that albumen has an affinity for water; and it is concluded that, being diminished in quantity, the blood has less affinity for the fluids in the parenchyma, and hence this accumulates and produces dropsy. If this explanation is correct, we have here a dropsy due simply to diminished absorption of the parenchymatous fluids.

THE EFFECTS OF COLD ON THE BODY.

Before treating separately of the various kinds of cold baths, I think it will save repetition, and prove otherwise useful, to make some preliminary remarks on the effects of cold on the human body. These effects are various; according to the way cold is employed, it is a refrigerator, an anaesthetic, a tonic, an excitant, or a depressant.

The application of cold withdraws heat from the body, and cools both the superficial and deep parts. The general cold bath will produce a very considerable reduction of the heat of the surface to the extent even of 10° Fah. in the trunk, and even considerably lower in the extremities. The general cold bath might be supposed capable of reducing the heat of the body's surface for a considerable time; this, however, is not the case, for the skin of the trunk speedily becomes warm again, although for some hours afterwards the extremities may remain cold, and the temperature in the axilla almost recovers itself in a few minutes, although the bather may have been immersed half an hour, or longer, in water at a temperature of 60°.

Of course, it is not here maintained that heat is not abstracted from the body; but, as will be shown in another place, the loss is so rapidly restored, that the cold bath will not depress the skin's temperature in a healthy person for any notable time.
Cold sponging, so often employed in fevers with such evident relief, exerts a very slight and transient influence on the heat of the body, as may be ascertained by aid of the thermometer; hence the sense of comfort derived from the sponging cannot be described wholly, or hardly in part, to its refrigerating influence. This relief may be due to the removal of impurities which perhaps irritate the skin, or annoy by their odour, and by mitigating the parched condition of the surface; for a skin both hot and dry is a source of much greater discomfort than a moist though even hotter skin. Sponging with tepid water, so as to restore moisture to the parched skin, gives marked comfort to the patient.

The foregoing remarks apply only to the surface of the body; but the general cold bath will likewise reduce the temperature of the internal organs. This reduction, never very great, is restored to the deep even more quickly than to the superficial parts; so that, as might be inferred, the general cold bath is still less efficient as a refrigerator of the internal, than of the superficial organs. In fever-free persons, therefore, the general cold bath must rank very low as a refrigerator.

It is, however, otherwise with the body of a patient whose temperature is unnaturally raised with fever. The immersion of fever-stricken patients in the cold bath, or packing them with the cold sheet, will produce a considerable and durable lowering of the temperature. Whether this reduction is effected by abstraction of heat, or by preventing its unnatural formation, it is impossible at present to decide.

Cold, when judiciously employed, is well known to be a powerful tonic. A cold climate and cold bathing are tonic and bracing. The theory of the tonic action of cold may perhaps be stated thus:—During exposure to cold, the body's loss of heat, as tested by the thermometer, is by no means a measure of the quantity withdrawn. Many observers have shown that at such times increased combustion occurs, whereby much of the lost heat is compensated, and the temperature is maintained or soon restored. This increased oxidation of the tissues is demonstrated by the greatly increased quantity of carbonic acid thrown off by the lungs on exposure to cold. Now the most vigorous health is maintained by a rapid construction and destruction of tissues, within certain bounds, provided these two processes are fairly balanced. On exposure to cold, the lungs absorb more oxygen, the tissues are more rapidly and freely oxidised, and thus the processes of destruction and reparation go on in larger measure. How is this effected?
COLD BATH.

In the process of nutrition, apart from the nerves, we have three factors, the nutritive plasma, the tissues, and oxygen. When food is taken, digested, and introduced into the blood, both formation and destruction of the nitrogenous tissues begin, formation being limited by destruction; and when the destruction of tissues ceases, the further assimilation of the nutritive materials of the blood comes likewise to an end. These destructive changes take place in proportion to the amount of oxygen absorbed, and when this gas is exhausted, many products of destruction remain only partially oxidised, further tissue disintegration ceases, and assimilation is suspended. (Parkes.)

Under exposure to cold, oxygen being abundantly absorbed, the effete products in the blood are first consumed, thus purifying the blood, and rendering it fit to nourish the body; next, by its consuming action on the tissues, oxygen promotes the cycle of changes just described, food is taken and assimilated, and the destruction and construction of the tissues rapidly go on, so creating great physical vigour. Thus it is that cold climates are invigorating.

Applied locally, cold may act as a tonic (see Douche); but if too long continued, or excessive, it depresses; for, by contracting the vessels too sharply or too continuously, it lessens the supply of blood to the tissues, and thereby diminishes in them cell-growth and tissue change. Intense cold, applied for some minutes, will abolish sensation, and in this way becomes an anaesthetic; and, if the cold is too long continued, the part will die and become gangrenous.

The sudden partial application of cold may act as an excitant.—A cold hand applied to the abdomen excites contractions in the parturient womb. Cold water smartly sprinkled on the face of a swooning person is a familiar way of restoring consciousness. The same treatment will help to establish breathing in weak or apparently still-born children, or to recover persons over-dosed with chloroform, or narcotized with opium or tipple.

THE COLD BATH, INCLUDING SEA-BATHING.

Cold water may be applied for the sake of its moisture, its temperature, or both conjoined. If we require merely moisture, and temperature is of no consequence, tepid or warm water is both
preferable and more agreeable. Cold water is generally employed to abstract heat from either the whole surface of the body, or from some particular part of it, or to induce general or local excitement and shock.

Since the skin absorbs neither the water of the bath, whether it be warm or cold, nor any substances, soluble or insoluble, which may be added to the water, it follows that whatever may be the effect of baths, it must be explained by their direct action on the skin. Dr. Stille, indeed, asserts that some absorption takes place with respect to substances dissolved in the cold bath though not in the hot bath; and Dr. Amory confirms this statement concerning bromides, for in a cold bath, he says, a "small amount may be absorbed," but in a hot one of 96° to 106° Fah. none. The quantity absorbed, however, is far too small to invalidate the foregoing general statement.

In speaking of the general cold bath, we shall speak mainly of cold sea-bathing, this being a far more powerful medicinal agent than the simple cold bath, although, indeed, their action is identical, the difference in their effects being one merely of degree; and, as we proceed, we shall point out how these differences affect the body.

On entering a cold sea-bath, there is at first a sensation of depression, great or little, according to the coldness of the water. The skin becomes pale and shrivelled, and presents the familiar appearance called "goose-skin," a condition produced by the contraction of the skin, and the consequent protrusion of the hair-roots and follicles. There is a general shivering, some blueness of the lips, nose, and extremities, considerable reduction of the temperature of the skin, quickened pulse, convulsive and sobbing breathing as the water rises to the chest, especially when the bath is entered slowly. The system soon becoming roused to meet and to resist the depressing effects of cold, in a few seconds a sensation of general exhilaration ensues. The skin becomes ruddy and glowing; the breathing full and easy; the pulse rather quick and strong; the spirits exalted, and the bather feels increased vigour, both of mind and body. If he quits the bath now, or before the period of exhilaration ceases, the buoyant condition endures more or less for the rest of the day, showing that the bath thus acts as a tonic to the system.

On the other hand, if the bath is prolonged, depression again comes on. The bather feels cold, shivers, becomes blue and numb in the more exposed and smaller parts, whence, on account of their
COLD BATH

the Warfare is more readily withdrawn, and he is seized with a
sense of depression and unhealthiness. Baths administered in the
injurious extent often produce damaging results which may con-
tinue for hours, and even days, sometimes, without inflicting serious
injury on the health; especially in a weak or growing person. For
many hours after the bath he complains of general languor with a
repeugiance to exercise, whether of body or mind. This renders a weak
and morose, the circulation feeble and languid, with swelling at
the epigastrium, loss of appetite, chilliness of the surface, and cool
extremities. It need scarcely be said that consequences like these
are to be carefully avoided; yet these risks will often be encountered,
unless the doctor gives specific and minute directions. As great is the prevailing ignorance and error on the subject of bathing.

If the exposure in the cold bath is continued beyond this point, or
if the cold is severe, its effects become more manifest: great de-
pression and a sensation of utter misery are in followed shortly by
heaviness and drowsiness, which deepen sometimes into coma, till
a kind of apoplectic state is reached, then asphyxia and death from
paralysis of the muscles of respiration.

Baths then, on the one hand, judiciously employed, are very
powerful tonics, while on the other, if unnecessarily used, they induce
great depression of the bodily powers and produce serious mishap.
The superiority of sea-baths has been pointed out above without
surprise: for direct experiment has established the fact that a sea-
bath acts far more powerfully on tissue metamorphosis than the
simple water-bath. While the sea-bath increases the process both
of destruction and of construction of tissue, yet that of construc-
tion is in excess of that of destruction, with the effect of increasing not
only increased vigour of the functions of the body but an actual
augmentation of its weight. Sea-air is the same in the same way, so that it is difficult to determine in what extent improved
health results from sea climate or sea-baths.

The cold bath is almost universally employed for its tonic virtue.
To obtain this wished-for result the bath should be discontinued at
the time it causes general exhilaration, for the system then appears to
be roused into action to resist the depressing influence of cold, and
if at this point the bath is discontinued the general beneficial circula-
tion persists; for, whilst taking the bath and probably for some
time afterwards, oxidation of the tissues is increased, the blood is
purified of effete products, and the process of construction and de-
struction of tissue, on which vigour of both mind and body depend,
are intensified.
Bathing therefore increases appetite, improves digestion and the assimilation of food. The bath, then, is a tonic in the strictest sense of the word.

Used in accordance with the rules to be immediately laid down, the good effect of the bath soon becomes apparent, and the patient gains in weight, his complexion becomes ruddy and clearer, his muscles, especially if he conjoins exercise with the baths, acquire firmness and strength, the mental debility arising from deficient nutrition of the nervous system speedily passes away, and he soon recovers mental and bodily vigour.

The important question arises—How can we best obtain these invigorating effects?

Our object clearly is to secure the greatest possible amount of stimulation, and to ensure as long as possible the persistence of the increased vigour of nutrition. To obtain the greatest degree of stimulation we must duly apportion the temperature and duration of the bath to the patient's strength; and to ensure the continuance of nutritive vigour as long as possible, the patient should leave the bath at the climax of general exhilaration and stimulation, avoiding carefully the onset of the next stage, that of depression.

The bather, if very weak, manifests but little functional energy to resist the depression from the cold. Indeed, if this is intense, the stage of stimulation may not come on at all, but, depressed from the first, the patient may so remain for a long time. Injudicious bathing often seriously injures, and even endangers the lives of weakly persons.

The depressing effects of a cold bath are proportioned to its coldness and duration. The colder the water, the greater the depression it occasions—greater, too, when the water is in motion than when at rest. Moreover, the longer the period of immersion the greater is the degree of depression.

When the patient is weak and prostrated by illness, the bath must not be too cold, nor continued too long, and the water should be at rest. Thus, we must have regard to the strength of the patient, the temperature of the water, and the duration of the bath.

Here it will be convenient to consider in what respect sea-baths differ from simple water-baths, and to explain the tonic superiority of sea-baths.

1st. In sea-water various ingredients are held in solution.

2nd. The variations in temperature of sea-water, in the varying seasons of the year, are much less than those of river-water.

3rd. While the sea is always more or less in motion, river-water is comparatively at rest.
COLD BATH.

The salts in solution are supposed to act as invigorating stimulants to the skin, so that a patient unable to bathe in simple water without suffering great depression, can bathe in sea-water with great benefit. Moreover, as the sea's temperature never falls very low in winter, sea-bathing may often be continued late in the autumn, or even into the early winter months.

The motion of the waves increases the depressing effects of the bath, but if the bather is strong enough, it also increases the ensuing reaction; and thus the commotion of the waves, while more bracing to the strong, is at the same time highly exhilarating.

These guiding principles borne in mind, we shall be able under all circumstances to give correct answers to the various questions patients may put to us concerning bathing. One most frequently asked is—How long shall the bath be continued?

Our answer must be regulated by the strength of the patient and the coldness of the water. If the water is cold, or the patient is very weak, we must at first forbid out-door sea-bathing and substitute a tepid bath, the temperature of which should be slowly reduced until that of the sea is reached. Then, if the day is fine and the sea calm, the bath may be taken in the open air. Though it may be considered safe to let the patient bathe in the sea, yet if he is very weak and unaccustomed to bathing, his stay there must be very brief; it will often suffice to allow two or three waves to pass completely over him, when he should at once come ashore and wipe himself thoroughly dry using plenty of friction to the skin, for which purpose Cash's towels are well adapted. With increasing strength, and becoming accustomed to the effects of the water, he may continue the bath for a longer time, but it is seldom advisable for a convalescent to bathe longer than from five to ten minutes. Some patients, nay, even some healthy persons, can bear a sea-bath only every other day.

Then as to the time of day best suited for bathing the greatest ignorance pervails, before breakfast being currently believed to be the best time; yet this practice is not without risk even for the robust, who are often made ailing and fatigued by it for the rest of the day.

Our object in using the bath, as we have before said, is to obtain prolonged and energetic stimulation. We must therefore choose that time when the body is most refreshed, invigorated, and nourished. These conditions, it might be supposed, would co-exist in the early morning after a sound and refreshing sleep. It must be borne in mind, however, that before breakfast the body has under-
gone a fast of several hours, and is in want of food, without which the bodily functions may very readily become depressed. In fact only a robust person is able to bear a sea-bath before breakfast.

Thus theory and practice are both opposed to this period for bathing, both pointing to a time between breakfast and dinner as the most appropriate.

This leads us to the consideration of another question; namely, after a meal, how long a time should pass before a bath may be taken; and, after a bath, what time should pass before taking food? Now cold bathing produces a great shock to the skin and system generally; and any powerful mental or bodily impression will check or even arrest for a time many of the functions, even if in active operation. This is the case with digestion. Any great excitement, it is well known, can stay this process more or less completely, and the cold bath is generally sufficient entirely to arrest it; therefore, before the bath, an adequate time should elapse, so as to permit the almost complete digestion of the breakfast, that is, an interval of about three hours. Nor, for the reasons just pointed out, should the bath be taken immediately before a meal; otherwise, little or no gastric juice is secreted, and food lies half-digested in the stomach.

And for a reason somewhat similar, the bather should not go into the water whilst under the influence of any great emotional excitement. The nervous force (on which there appears to be set a limit) being directed strongly in one channel, the bath will not produce nervous stimulation, so that the patient will feel languid, cold, shivering, and depressed. Obviously, for the same reason, children must be coaxed, not dragged into the water against their will. In early life there is often much terror of bathing; and if, in spite of this, the child, while screaming with fright, is forcibly dragged into the sea, very ill effects may follow; for, missing the stage of stimulation, the child may remain, often for days, depressed and ill.

Is there any age rendering sea-bathing dangerous, and to be prohibited?

It is generally accepted that young children,—say under two years of age,—being very impressionable, ought not to undergo the shock of a cold sea-bath. At the other extreme of life, when the enfeebled powers of the body are incapable of strong reaction, sea-bathing is inadmissible, for it is as well known that in old people the heat-forming force is much reduced. Moreover, undue vascular excitement may prove dangerous; the vessels in the aged, often brittle through degeneration, are in danger of giving way, and thus under any unusual strain causing apoplexy.
COLD BATH.

The foregoing remarks imply that fatigue is a condition strongly adverse to cold bathing. Even if other conditions are favourable, it is seldom advisable for weakly persons to take a bath on the day following their arrival at the sea-side. They should wait till all fatigue has passed away.

Does pregnancy forbid sea-bathing?

If a woman has miscarried or aborted, or if of an excitable temperament, baths may be expected to do harm; and in far advanced pregnancy a sea-bath may perhaps produce abortion. But under other circumstances, and with due regard to the conditions previously laid down, bathing will benefit both mother and child. Nor, if accustomed to the practice, need a woman discontinue bathing at the menstrual period, although it is always inadvisable to begin at such a time, since the shock may check or arrest the secretion, and thus induce perhaps many months of amenorrhoea.

In the choice of coast, and the time of year, we must have regard to the condition of the patient. If not very weak, with the health only a little undermined, then a rugged coast, where the sea is rough and boisterous, should be recommended. However, should the health be much broken, then a smooth sea is preferable, and, in a cold climate, the summer is the only suitable time.

Exercise taken while bathing soon induces fatigue and even exhaustion; whereas weakly patients must be cautioned to be moderate in this respect. Another evil should be guarded against: on leaving the bath, a patient invigorated by it is in danger of taking too much exercise, fatiguing himself, and so counteracting the bath’s good effect. The amount of exertion permitted must be strictly in accordance with the patient’s condition, who, if very weak, should take only horse or carriage exercise.

A course of sea-bathing sometimes causes the hair to fall off abundantly, naturally exciting much anxiety, especially in women. Their fears, however, may be quieted by the assurance of a rapid new growth. Other troubles may arise. Bathing sometimes induces constipation, more or less obstinate; but this need not lead to the discontinuance of the bath. The constipation should be removed by exercise, regulated diet, or, these failing, by purgatives. Dyspepsia and diarrhoea also sometimes occur during sea-bathing. The bather should be discreet as to the hour of the bath, the time spent therein, and if, notwithstanding every care, dyspepsia or diarrhoea continues, the bath must be temporarily or permanently discontinued. In fact, sea-air alone will, in some constitutions, induce these disorders.
Restlessness at night is sometimes attributed to sea-bathing. Many people, no doubt, find that living too near the sea-shore often produces broken and sleepless nights. On the shores of the Mediterranean, especially along the Riviera, this is notably the case. On removal inland, a mile or thereabouts, this restlessness vanishes; for instance, sleep unattainable at Cannes itself is secured at Cannet a mile or so inland. Broken rest may often be traced to dietetic irregularities, or to late hours. A late and heavy meal will sometimes cause restlessness, whilst a good night will follow an early, light, and digestible repast. Some patients mar their rest by taking stimulants shortly before bedtime, while, on the other hand, others cannot sleep without a "nightcap."

A bather should plunge into the waves at once, and on no account stand undressed and hesitating till he becomes cold and shivers. It is a common and pernicious error to suppose that it is necessary to be well cooled down before plunging into the bath. If needful, a short, brisk walk should be taken just before the bath, to warm the surface and extremities.

The effect of cold is, in proportion to its degree, to lessen the perspiration. A cold bath at first checks perspiration, but soon afterwards this secretion becomes considerably augmented, and in a greater degree after sea than after simple water-bathing. Driven from the skin, the blood flows into and fills the internal organs, and the kidneys partaking of this congested state, probably explains the frequent and transitory occurrence of a small quantity of albumen in the urine, during the bath.

The effects of cold baths on tissue change have already been pointed out, and the observations on this subject will be supplemented and confirmed in those we have now to make relating to the influence of sea-baths on the constituents of the urine. Baths augment the quantity of urea or sulphuric acid of the urine. Whether this increase exceeds the limits of the natural healthy variations, and whether the experiments are sufficiently numerous to prove it, has been called in question. It is not to be expected that the tissue change would at once be greatly augmented nor that the increase at any time would exceed the maximum amount of health; consequently the increase of urea in its turn would not exceed the maximum quantity excreted in health. But surely, if for some time the excretion of urea is maintained at its maximum, this single fact would alone establish the influence of baths, so far as they could be expected to operate, and would show that sea-bathing increases disintegration of the nitrogenous tissues.
The effect of the observed factor on the outcome can be determined
by calculating the percentage change in the outcome for a one-unit
change in the factor.

The observed factor has a significant impact on the outcome, as
demonstrated by the high correlation coefficient. However, the
magnitude of the effect is relatively small, as indicated by the low
coefficient of determination. Therefore, the observed factor may not
be a strong predictor of the outcome.

Despite the observed trend, it is important to consider other
variables that may also influence the outcome. These variables
should be controlled or accounted for in future studies to
avoid confounding the results.

To summarize, the results indicate that the observed factor
has a modest impact on the outcome. Further research is
needed to explore the potential mechanisms and consider
other variables that may influence the outcome.
ON PACKING WITH THE WET SHEET.

Packing with the cold wet sheet, although at present but seldom employed outside hydroopathic establishments, is undoubtedly, in many diseases, a very efficacious treatment.

Dr. Johnson, in his work on hydropathy, directs the patient to be placed on a mattress with a pillow to support his head; then, "upon the mattress, and extending over the pillow, two blankets are spread, and over this a sheet wrung out as dry as possible with cold water. The patient lies down on his back, perfectly unclothed, with his head comfortably placed on the pillow; an attendant now approaches, say on the patient's left, and first puckering the blanket from the back of the head down to the back of the neck, reaches across his chest, seizes the right upper corners of the blanket, and brings them tightly across under the chin to his own side (the left), and tucks them well and evenly under the left shoulder, where it joins the root of the neck, and under the point of the same shoulder. He now reaches across the body again, and brings over all the rest of the right sides of the blankets to the left side of the patient, and then proceeds to tuck them well and evenly under the left side, beginning where he left off, at the point of the shoulder, and proceeding quite down to the heels. The patient is now entirely enveloped in one half of the blankets, and the attendant finishes the operation by passing over to the right side of the patient, and then proceeding to tuck the left sides of the blanket under the right side precisely in the same manner, as we have seen him tuck the right sides of the blanket under the left side of the patient. The attendant, standing on the right side of the patient's legs, finally insinuates his left hand under the backs of the ankles, lifts them up, and then with his right hand turns back the lower ends of the blankets under the heels." The wet sheet should reach to the ankles, and "be wide enough to overlap in front of the body about eight or twelve inches; over the whole four or five blankets placed, and pressed down close to the sides."

This pack is useful in specific fevers and acute inflammatory diseases. It has long been employed in scarlet fever, and should be used from the beginning and throughout its course. In moderate attacks, it is sufficient to pack the patient from thirty to fifty minutes; but if the fever is very high, if the rash comes out slowly, imperfectly, and of a dull colour, if the patient is restless and wan-
ON PACKING WITH THE WET SHEET.

dering, the packing must be continued an hour or longer, and be repeated three or four times a day. This treatment develops the rash, greatly reduces the fever, quiets the pulse, renders the skin moist and comfortable, and abates the restlessness and wandering. A short time after the application of the wet sheet, a patient, previously restless and wandering, commonly falls into a quiet refreshing sleep, and awakes calm and free from delirium. Its influence on the pulse and temperature is striking; the pulse in a few hours falling fifteen to twenty beats in the minute; a repetition of the packing greatly reduces the fever. The packing is especially indicated on suppression or recession of the rash, when serious symptoms are apt to arise; the cold sheet will then bring out a brilliant rash, followed, generally, by immediate improvement in the patient's condition. It has been recommended to dash two or three pailfuls of cold water over the patient after each packing. During the whole course of the fever, a cold wet compress, renewed every three hours, should be worn round the throat; and if, on the decline of the fever, the tonsils remain large, or there is chronic inflammation of the fauces or larynx, this application, renewed less frequently, or applied only at night, should be continued till these morbid conditions cease. The compress should be composed of linen several times folded, and fastened round the throat by another piece of folded dry linen. Cold packing is beneficially employed in other fevers, and in acute inflammations, as measles, small-pox, pneumonia, pleurisy, rheumatism, and gout.

In acute rheumatism, when the pain forbids the patient to be moved, the front of the body only should be packed, and a wet cold compress, renewed every two or three hours, should be wrapped round each of the painful joints. If the prejudices of the patient's friends prevent the use of the cold sheet, the body should be sponged with tepid or cold water several times a day, and if the perspiration is abundant and foul, soap should be used. In addition to sponging, the wet cold compress, as previously described, should be applied to the painful joints. There can be no question of the superiority of this treatment over that of swathing the patient in flannel clothes, and covering him in blankets to make him sweat. To avoid the supposed danger of catching cold, these woollen clothes are worn day after day, till, saturated with putrefying perspiration, the stench sickens and de-appetizes the patient, and a crop of irritating miliary vesicles is engendered, which breaks the patient's sleep.
In pneumonia some pack the chest only, and renew the cold applications hourly, or even oftener; a mode of treatment which is said to remove the pain, quiet the pulse, calm the breathing, and reduce the fever.

When, as often happens, the patient's friends object to the cold packing through fear of "inflammation," or of "turning the disease inwards," the sheet may be wrung out in tepid water, and by the time it is spread for the reception of the patient, it will be sufficiently cooled to answer the purpose.

A pedestrian, after great exertion, will find it an agreeable restorative, preventing stiffness and aching of the muscles, to strip and wrap himself in a dripping wet cold sheet, well rubbing himself afterwards; but if stiffness still remains, a few drops of tincture of arnica taken internally will remove it.

Cold or tepid packing is useful in the summer diarrhoea of children.

THE INFLUENCE OF COLD BATHS IN FEVERS.

The elaborate investigations regarding the action of cold applications in fevers, made during the last fifteen years in Germany, induce me to devote a separate chapter to this important subject.

These investigations confirm the conclusions of Currie and Jackson, and give precision to our knowledge concerning the employment and effects of cold to the surface. This treatment has been employed in typhus, typhoid, and scarlet fevers, measles, and other febrile diseases. More recently, Dr. Wilson Fox and others have cured patients suffering from the hyperpyrexia occasionally observed in rheumatic fever, a condition, owing to its sudden onset and rapid course, hitherto regarded as almost necessarily fatal.

Many of the symptoms, and therefore the dangers, of fevers, depend in great measure on the elevation of the temperature. The effects of fever, whether specific or inflammatory, are due either to elevation of the temperature, to the specific cause of the fever, or to the inflammation. The symptoms common to all fevers are due simply to the elevated temperature of the body, whilst the characteristic symptoms are due either to the specific poison, or to the inflammation. This increase of temperature affects the organs in a twofold manner; in the first place, it perverts, depresses, or, if the rise is very high, abolishes function; and, in the second place,
COLD BATHS IN FEVERS.

produces fatty degeneration, or, as it is termed, parenchymatous degeneration of all the tissues.

That the common symptoms of fever, as headache, delirium, quick pulse, dry skin, and general weakness, are due to the heightened temperature, is well shown by the effects of a treatment which will reduce this abnormal temperature; that is, by the aid of the cold bath or quinia, we lower the temperature to the normal standard, and then these pyrexial symptoms at once disappear.

Fatty degeneration of the tissues sets in during the progress of a fever, especially when prolonged. This degeneration has been observed more particularly and fully in the liver, kidneys, heart, blood-vessels, and voluntary muscles. This fatty degeneration is in all probability due to the fever, for the degree and extent of the changes correspond in amount to the degree and duration of the elevation of temperature; and similar changes occur when the temperature of an animal is raised by keeping it in a warm chamber. The cells of the liver and kidneys become cloudy, then granular, till the nucleus becomes obscured, and the entire cell distended with granules, and, in the case of the liver, the cells contain an excess of fat, and ultimately many cells burst and perish. The muscular tissue of the heart and of the voluntary muscles becomes granular, then fatty, and in severe cases their fibres undergo extensive destruction.

These effects of high temperature, the symptoms and the deteriorating changes, can obviously be combated only by means which either lower or prevent the undue development of body-heat. Foremost amongst these means must rank cold baths. Employed early enough, they obviate the immediate depressing effect of the temperature on the tissues, and prevent the oncoming of parenchymatous degeneration. Thus they reduce the frequency of the pulse, strengthen the heart, and so avert danger from failure of the heart, and from hyostatic congestion. They tend likewise to prevent delirium, and to produce sound and refreshing sleep; to improve digestion and assimilation, and to promote the general nutrition of the body, and thus to ward off or to lessen the risk of bed-sores and exhausting suppuration. The period of convalescence, though some deny this, is shortened by promoting assimilation, and thus preventing parenchymatous degeneration. It is true that the specific poison of some fevers, as typhoid or typhus, will itself probably in some degree affect the heart, brain, and functions generally; but that the depression of the heart and brain is
mainly due to the elevated temperature, is shown by the great abatement of the symptoms referable to these organs when the temperature is reduced; though, indeed, it may be plausibly urged that without elevation of temperature, the specific poison cannot be formed, and hence, anti-pyretic treatment will likewise obviate its depressing effects.

Cold bathing is applied in various ways, by means of the general cold bath, affusion, packing, sponging, and by the use of ice. Brand, to whom the revival of this hydropathic treatment is chiefly due, has employed it largely in typhoid fever. In mild cases he uses cold wet compresses, or frequent washing with cold water, or repeated packings in a cold wet sheet, or a warm bath gradually cooled. In severe cases he recommends affusion, the shower-bath, or the general cold bath. He generally places the patient in a sitz bath, and pours water of 50° to 55° Fah. over his head and shoulders, for ten or fifteen minutes, wraps him afterwards unwiped in a sheet, and covers him over with a coverlet, and to his chest and stomach applies compresses wrung out of iced water; but if the patient complains of the cold he covers the feet more warmly or applies hot bottles to them.

Hagenbach employs a general cold bath of 68° to 77° Fah. for ten or twenty minutes, and if there is much delirium, or coma, he at the same time pours cold water over the patient’s head. He disapproves the frequent cold washings and packings, asserting that they abstract but little heat and that they fatigue the patient.

The method employed by Ziemssen and Immerman is the most agreeable to the patient, and being equally efficient, it is the treatment most likely to be generally adopted. They immerse a patient in a bath of 95°, and in the course of twenty to thirty minutes gradually cool it to 60° Fah. by the addition of cold water. This bath is agreeable to fever patients. These observers do not employ affusion, since the patient much dislikes it, nor cold compresses, since these do not affect the rectal temperature. Cold packings they find, however, do reduce the temperature of the rectum. For young children and old persons, the severity of the application must be apportioned to the strength of the patient. Brand wraps a child in a wet sheet, and placing it on a table pours cold water over its head. For children, and the aged, Hagenbach employs for half an hour a warm bath, gradually cooled by the addition of cold water to 86° or 75° Fah. Weakly patients should be well rubbed on leaving the bath. Hagenbach adopts this treatment whenever the temperature rises above 102° Fah., while Brand recommends it whenever the temperature mounts above 103° Fah.
In private practice, I find the assiduous application of cold cloths wrung out of ice-cold water more convenient than the use of the general cold bath. This plan, if effectually carried out, promptly reduces the temperature. Thus, by the method I am about to describe, I have seen the temperature in hyperpyrexia reduced in two or three hours from 109° to 101°, or even lower.

Dip four napkins, or small towels into iced water, and wring them nearly dry, so that they may not drip and wet the bed, then apply them one below the other from the chest downwards. As soon as the four cloths are disposed over the chest and abdomen, re-dip and re-wring the uppermost, then the second, third, and fourth, seriatim, then the first again, and so on continuously. Supplementary napkins to the head, thighs, and arms, will of course still more quickly lower the temperature; and, indeed, should be employed to a big and stout patient, since large quantities of heat have to be withdrawn through the bad conducting fatty layer beneath the skin. If the napkins are incessantly changed, this method is most efficacious, and is often highly agreeable to the patient, being in this respect superior to the general cold bath, which is usually very disagreeable.

The repetition of the processes must be regulated by the subsequent course of the fever. If in three or four hours the temperature again rises to 103°, Brand repeats the affusion. In most cases he finds that six affusions are enough, and afterwards he applies cold cloths wrung out of water at 60° Fah. two or three times a day; these applications, provided the temperature does not rise higher than 100° Fah., being made smaller and applied less frequently as the case progresses. In very severe cases the affusion must be employed every two hours. When the patient is comatose and the foregoing treatment fails to restore consciousness, Brand applies a cold affusion of 45° Fah. to the head every half hour.

Dr. Stöhr recommends the continuance of this treatment in typhoid fever to the middle of the third week; but it may be required longer, and here the thermometer is the test.

Ziemssen and Immerman find that with their plan four or five baths are necessary the first day, and that subsequently two or three daily will suffice, the repetition, however, being regulated by the information afforded by the thermometer. They prescribe the bath at 6 A.M., and 1 to 3 P.M., and at 7 P.M. Ziemssen and Immerman found, as might be expected, that in typhoid the degree of cooling and its duration differed according to the patient's age, and the severity of the case. Thus they find the usual reduction
COLD BATHS IN FEVERS.

is 3°6° Fah. in children, and 2°5° Fah. in adults. In severe adult cases, however, the temperature falls only 1°8° Fah., and the effect of the bath is least evident in cases where the morning remission is slight. In severe infantile cases they found that the temperature recovers its former height in six hours, in adult cases of moderate severity in seven hours, and in severe adult cases in six hours and a half, and in cases with slight morning remissions in three hours.

A single bath often effects a considerable reduction of the febrile temperature. Thus Mosler reduces the temperature in a case of typhoid to 7° Fah., and Dr. Wilson Fox, in one of his interesting cases of rheumatic hyperpyrexia, 12°4° Fah.

Dr. Wilson Fox's exact and continuous observations on some cases of rheumatic hyperpyrexia, add precision to our knowledge of the effects of cold baths. He has shown that the fall of temperature continues every six or more degrees, forty or fifty minutes after the discontinuance of the bath. It is important, therefore, to observe the temperature in the rectum while the patient is in the bath, and to remove him before the heat is too far reduced, lest too great a withdrawal of it might lead to collapse. This indeed appears sometimes to occur, for we read of cases becoming cyanotic, although German observers aver that this is not important, and advise in such a case the application of warm bottles to the extremities. Still I am convinced that it is important to avoid depressing to this hazardous extent, as I have seen a child, suffering from scarlet fever, killed by an over-energetic employment of cold.

German observers show conclusively that this treatment greatly reduces the mortality of typhus and typhoid fever. Thus Brand treated 170 cases of typhus, and Bartels treated thirty cases of typhoid without a single death. The mortality of Hagenbach's typhus patients was five per cent., provided the cases were treated early, and Dr. Stöhr reduced the mortality of his patients from thirty to six per cent., and the results he thinks would have been still more favourable could he have treated some of his cases earlier. Liebermeister lessened his mortality from twenty-seven to eight per cent.

Notwithstanding the enthusiastic laudation of the cold-bath treatment of fevers by German writers, this plan has found but scant favour in this country. If there is reason to hesitate whether we should treat the acute specific fevers or inflammatory fever by this heroic method, there can be no question respecting its great value in the treatment of hyperpyrexia. This most dangerous condition
generally arises from rheumatic fever, and to it no doubt, most of
the fatal cases of rheumatism are attributable. It may occur, how-
ever, in the course of any fever; and may, indeed, seize a person
apparently in perfect health. The first case of hyperpyrexia ever
recorded occurred whilst I was resident officer at University Col-
lege Hospital, and this was an instance of a sudden attack in a
woman who had recovered from rheumatic fever, and was on the
point of leaving the hospital apparently in fair health. On being
called to her assistance I was surprised at the pungent burning
heat of her skin, and to my astonishment found her temperature
to be 110°, and a little later 111°. She died in eight hours. This
phenomenon, so startling then when hyperpyrexia was unheard of
has been noticed in hundreds of cases. Hyperpyrexia not un-
commonly attacks children just previously in apparent good health.
I have often seen children in severe convulsions, and have found
their rectal temperature 107° and 108° Fah. The hyperpyrexia
may have been due to the onset of an acute specific fever or of an
acute inflammation, but as these children all died it was impossible
to ascertain the cause of the onset of the fatal hyperpyrexia.
Ordinarily, no doubt, hyperpyrexia occurs in the course of a fever,
and generally, perhaps, when the temperature runs very high, but
this by no means rarely comes on in rheumatic fever when the
fever is moderate and the symptoms mild. In a typical case of
hyperpyrexia the temperature rapidly rises, reaching in the course
of a few hours 110°, 112°, or even higher. This severe fever per-
turb...
we mainly use the general cold bath, but in private practice the application of iced cold cloths in the way previously described will, I believe, prove more convenient, pleasant, and safe. Several cold baths are usually necessary, for after the reduction of the temperature, and consequent removal of the symptoms, the temperature generally rises again. It is interesting to note the passing away of the deadly symptoms as the temperature falls. The patient wakes out of his coma, and next his mind becomes quite clear; his pulse falls and becomes stronger, and he passes quickly from most imminent peril, from the very shadow of death, to his condition previous to the onslaught of the hyperpyrexia. Though I have said several cold baths are generally needed completely to subdue the hyperpyrexia, yet in three cases after the first reduction of the temperature the hyperpyrexia did not return, but the patients forthwith passed at once from a condition of urgent danger into convalescence, without undergoing a single unfavourable symptom.

This treatment not only reduces the excessive heat of fever, but it allays the nervous symptoms, limits the wasting, and Brand says it also prevents meteorism, bleeding, and lessens diarrhoea in typhoid. On the other hand, Hagenbach and Jurgensen assert that this treatment fails to lessen the meteorism and diarrhoea in typhoid fever, and to reduce the size of the spleen and the decrissm of the pulse. All observers agree that cold baths do not shorten the course of typhoid, typhus, and other acute specific fevers, but Brand asserts, while Hagenbach denies that they shorten the stage of convalescence.

This treatment, it is said, rarely, if ever, induces either bronchitis or pneumonia, and the co-existence of either with a fever does not contra-indicate the use of cold baths. Liebermeister even says that hypostatic congestion or pneumonia afford no reason for suspending the baths—that, indeed, under their use, hypostatic pneumonia sometimes disappears. I have several times seen all the signs of double pneumonia arise after the bath; for instance, dulness, tubular breathing, bronchophony, and yet these patients have done well.

Ludwig and Schröder find that this treatment of fevers greatly reduces the quantity of carbonic acid exhaled by the lungs, and the solid constituents of the urine, and thus lessens the tissue change; a very singular fact, since cold baths, in health, have the very opposite effect. Dr. Fox observes that sometimes the rectal temperature rises a little directly the patient is placed in the bath; and Dr. Fiedler and Hartenstein point out that immediately after the
THE WAMP BATH AND THE BIP BATH

In the story of 'The Wamp Bath and the Bip Bath' by Peter Pan, the Wamp Bath and the Bip Bath are two magical baths that are used by the fairies to create the necessary elements for the fairies' daily life. The Wamp Bath is used to create water, which is essential for the fairies' daily activities, while the Bip Bath is used to create air, which is necessary for the fairies to breathe. The story describes how the fairies use these baths to maintain their magical world.
weakness. In my experience baths are greatly inferior to the plan of making incisions over each external malleolus in the way described in the section on acupuncture. This treatment reduces the dropsy much more speedily, and far more certainly. Moreover, the urea dissolved in the dropical effusion draws away instead of being reabsorbed into the circulation.

The hot bath is also used in uræmia with the view of eliminating the urea through the skin. There can be little doubt that this treatment is serviceable in removing many of the cerebral manifestations of uræmia; but it is very questionable whether the baths so act by eliminating urea. It is, at best, doubtful whether the uræmic symptoms depend on the retention of urea in the blood; moreover, it is uncertain to what extent, if any, the bath can eliminate nitrogenous products through the skin. It is certain that in health very little, if any, urea escapes by the skin, though it is probable that in some cases of Bright’s disease urea is actually separated with the perspiration. Bartels records cases where crystals of urea covered the face, and by their accumulation on the beard gave it a frosted appearance.

The general warm bath is of signal service either in simple or inflammatory fever of children. If a child is not very weak, a bath night and morning, for a time varying from five to ten minutes, soothes and quiets, and often brings on refreshing sleep. In the febrile diseases of grown-up people, it is generally difficult to employ the general warm bath, but, in its stead, sponging with hot water often induces perspiration, calming at the same time the restlessness of the patient, and favouring sleep. The same means will soothe the restlessness of convalescence and induce sleep.

The warm bath mitigates or removes the pain of colic, renal, biliary, or otherwise. Whether its effects in relaxing spasm are induced through its soothing influence on the skin, or from weakness caused by the bath, is difficult to say; the bath certainly seems to ease the pain before any noticeable weakness is produced. In skin diseases of various kinds the general warm bath is invaluable. In psoriasis, eczema, ichthyosis, urticaria, lichen, prurigo, and scabies, it may generally be employed with benefit. It is especially useful in the acute state of eczema and psoriasis. Rain or boiled water should be used; but if these are not available, the water should be made more soothing by the addition of small pieces of common washing soda, gelatin, bran, or potato-starch. These baths allay inflammation and itching. The body must be dabbed dry with soft towels. If there is much itching, flannel should not be worn, and scratching should be prohibited.
WARM BATH AND THE HOT BATH.

It has been recommended to keep quiet a patient with severe burns immersed for days in the warm bath: this treatment is said to ease pain, diminish suppuration, promote the healing process, and to lessen the contraction of the cicatrix.

Lagenbeck asserts, that continuous immersion of the stump in warm water after an amputation will avert pyæmia.

As a means of obviating the various symptoms occurring at the change of life, Dr. Tilt recommends the general warm bath of 90° to 95° Fah. for an hour once a week, so as to promote free perspiration.

The local warm bath is used for a variety of purposes. It is hardly necessary to refer to the common household practice of putting the feet into hot water just before going to bed, to induce general perspiration, and so relieve catarrh. The hot foot-bath, or the sitz-bath, is of great service when the menstrual flow is either deficient or absent. To this bath, mustard may be added with advantage: but, as the late Dr. Graves insisted, this stimulating bath should be used only at the menstrual period. Employed nightly, or night and morning, for six days, commencing one or two days before the period begins, this mustard bath is a very useful auxiliary to other treatment, and often succeeds in establishing menstruation. The sitz-bath is often effectual when, through exposure to cold, or from other circumstance, the menstrual flow is suddenly stopped, to the patient’s great annoyance and suffering. Immersion in water as hot as can be borne is said to be very useful for sprains, in their earliest stage.

Dr. Druitt points out that sponging the body with very hot water will for some hours diminish the excessive perspiration of phthisis.

Hot water for the legs and feet sometimes removes headache, and according to Dr. Graves relieves distressing palpitation.

Sponging the face, temples, and neck with water, as hot as can be borne, often relieves the headache of influenza, catarrh, and other diseases.

The hot-air bath very generally succeeds in promoting free perspiration. If it is difficult thus to establish a free flow of perspiration, the hot-air bath may be preceded by the general warm bath.

Vapour-baths are used for the same purpose, and are less depressing than the general warm bath. They produce much less elevation of the temperature of the body, a circumstance which probably explains their difference in this respect.
SHOWER, DOUCHE, AND SPONGE BATHS.

The forcible impact of water upon the body, and the impression it makes on the nerves, or, to use the general expression, the shock it produces, is sometimes very great, sufficient sometimes, even with strong and healthy persons, to produce considerable depression and languor, lasting hours and occasionally days.

The shower-bath is a remedy not much used, patients, ordinarily manifesting great repugnance to it. The sponge-bath, or the local douche, may usefully supply its place.

In the sponge-bath we have all the conditions of the common bath. Both are cleansing, bracing and invigorating; and the action of each is identical.

The sponge-bath is often employed, not merely for its tonic effects, but on account of the shock it causes to the nervous system.

In the treatment of laryngismus stridulus, cold sponging is more successful than anything else. The practice of confining little children thus affected in a warm close room soosing them in warm baths several times a day, is positively injurious, and inevitably aggravates the severity and frequency of the crowing breathing. Cold sponging twice or thrice daily, according to the severity of the case, will scarcely ever fail to modify the disease, however severe the attack. So prompt is the relief of cold sponging that a child subject to hourly attacks during the day, and to ceaseless attacks at night, is frequently instantaneously delivered from them. At all events a decided improvement always occurs, and the intervals between the attacks are much prolonged; it rarely happens that the strident crowing resists this treatment more than two or three days. The mother should be directed to keep the child out of doors the greater part of the day, no matter how cold the weather—indeed the colder the better. Laryngismus seldom attacks children more than a year old. At so tender an age it might be feared that they would run great danger of catching cold from the sponging treatment; but no such fears need be entertained. With the necessary precautions, even the youngest child may be sponged with perfect safety several times a day. Nor does a child catch cold even in the coldest weather when carried out of doors; but one prone to bronchitis had better be kept indoors when the weather is very severe, and should undergo the cold-water sponging only. After a very extensive experience
of this treatment I have rarely found that children suffering from laryngismus catch cold, and in such exceptional cases the catarrhal symptoms have been insignificant. This treatment frequently saves life, and averts not only the crowing breathing, but dangerous symptoms, such as partial convulsions in the form of carpopedal contractions and squinting, for laryngismus, when fatal, generally destroys by exciting an attack of general convulsions. Laryngismus stridulus is sometimes accompanied, and is indeed apparently induced, by laryngitis, indicated by the peculiar hoarse voice. In such cases cold sponging must be cautiously used, for it often, though by no means invariably, increases the laryngitis, and therefore the laryngismus. Among the poorer classes, at certain seasons of the year, laryngismus is one of the most common causes of convulsions, which tend so often to a fatal issue.

The surest and speediest way of arresting a paroxysm of crowing breathing is to dash cold water over the child. At the onset of a paroxysm cold water should be dashed on the child's face; and if this does not at once arrest the attack, water should be applied to the whole body. Laryngismus fortunately prevails in the early spring, when the cold weather itself is a ready source of cure.

Since by this treatment laryngismus is usually cured at once, or rarely lasts more than a few days, it is obvious that cold water does not act as a mere tonic, although in this respect it is very useful, because laryngismus generally attacks weakly, sickly and rickety children.

Any irritation aggravates laryngismus, and impedes its cure. Hence, if the relief from cold sponging is less marked than might be expected, some other source of irritation should be sought for and removed. The gums if swollen, red and hot, must be freely lanced and the cut maintained open, for if they close the irritation recurs; thus it is necessary to lance the gums every few days. Worms must be removed, and the faulty state of the mucous membrane favouring their production treated. At the cutting of each tooth, laryngismus is apt to recur, in spite of cold sponging but the relapse is seldom severe. When the tension of the gums is removed, and the tooth set free, the fit ceases. Irregularities of the bowels, diarrhœa, constipation, flatulence, &c., tend to increase the frequency of crowing, and to render the case less amenable to cold sponging.

It may here be useful to advert to a condition, not uncommon in infants. An infant in poor health frequently wakes up at night from "a catch in the breath." From some unexplained reason, it
cannot for a time get its breath, and wakes up with a loud snore.
This condition is altogether different from that of laryngismus
stridulus, and the fault appears to lie in the soft palate, not in the
larynx; moreover it is not due to enlarged tonsils, as this "cach
in the breath" occurs in children of tender age, long before the
morbid condition of the tonsils takes place. Cold sponging, night
and morning, will improve or even cure this curious complaint.

Cold sponging, several times a day, holds also deservedly a very
high place in the treatment of chorea. It is at present impossible
to decide whether its efficacy is due solely to its tonic properties, or
whether the shock plays any part in promoting the cure. Of the
value of this treatment there is no question, yet circumspection
must be exercised or the patient may be made worse. It must
be avoided if there is any rheumatism, which is generally made
worse by cold sponging, thus inducing an increase of choreac
movements. If there is no fever, and no pain in any of the joints,
then cold sponging may be reasonably expected to yield most
satisfactory results.

In the treatment of rickets, cold sponging, by virtue of its tonic
properties, holds a very high place. Here, again, care must be
observed, or much harm may be done. We must remember that a
rickety child is often not only very weak, but, on account of its
tender years, very impressionable, and for these reasons it is
important to adapt the application of the cold sponging to the
patient's condition. If the child is old enough to stand, he should
be placed up to the ankles in warm water before a good fire, and
then, except the head and face, be sponged all over with cold water
from two to five minutes; he should then be carefully wiped dry,
and well rubbed with a soft towel. If weakly, the child may be
replaced for a short time in a warm bed, to encourage reaction.
The sponging should be administered as soon as the child leaves
his bed; but if very weak or unaccustomed to sponging, it is ad-
visable to give a light and early breakfast about an hour before-
hand. There is another excellent method of administering cold
sponging to weak persons or to timid children, and therefore a
plan to be adopted when this agent is used in the treatment chorea.
The water at first tepid, should be gradually reduced in tempera-
ture by drawing off the warm water and substituting cold. The
shock is thus avoided, whilst the tonic virtue of the bath is obtained.
This latter method succeeds admirably with timid children, who,
often much frightened by the bathing, sometimes scream so vio-
lently as to lead their friends to fear an attack of convulsions.
SHOWER, DOUCHE, AND SPOTICE BATH.

Cold sponging is very invigorating for a fever in its acute stage; it is useful also in ardent fevers from any cause, as in scarlet fever, and in those low nervous states induced by winter in some ill-ventilated rooms.

In cold weather, the water at first should be made a little warm; afterwards the temperature should be gradually increased. The stimulating effects on the weak may generally be strengthened by a little food taken about an hour before the bath, and after it completed by a return to bed, for as long as there is irritation of the skin and extremities.

Afghan and the Brazier.—Cold water must always amongst the body with considerable force, and the returning cold sensation is correspondingly considerable. Water is directed upon the body in a full stream, and is applied sometimes to the part of the surface in succession. The temperature of the body is great to admit of its frequent employment in general practice, and the cold affronted body to which it is directed is felt over the surface of the body. This affronted commences in the sunstroke when a patient is struck with heat and returns dangerous. Many years ago cold affronted was practised in the treatment of the acute specific fevers and was much recommended in scarlet fever.—An affronted mode of treatment is, in fact, sanctioned by the authority of many of the last generation. Yet it is incredible it should have in an energetic treatment, or great that it should, it is rarely adopted. Fears are entertained lest the patient should succumb, but if the idea of its danger is removed, apprehensions must be entertained by the patient. Hence, and Jackson abundantly teaches, it must be administered in the early days of the fever, when the heat is strong, and the colour red.

Curtis and Jackson recommended that water be poured down the patient, stripped, and that he or she should be laid in the water and the heat of the surface directed on the patient. When the fever is strong, and sometimes it is moved to a more elevated place.

Though a pure drug of the air be not the only consideration. It is the property at the time of the substance in the air, with the power of the drug. But as the word is not one, and...
whilst that of small-pox appears on the third, and that of typhus on the fifth day; the rash of measles is very uncertain, appearing sometimes on the first, second, third, or fourth day, or even later. I had lately abundant opportunity of testing the earliest appearance of the rash in an epidemic of measles, at a large public school for boys under twelve. In every case during this epidemic the rash appeared on the first day, the cases being severe, though of short duration, the temperature rising to 103° and often to 104° Fah. In some instances indeed the rash preceded the fever; thus several of the boys feeling poorly, their temperature was carefully taken night and morning under the tongue, and in several cases the rash appeared in the morning about the face and collar bones, whilst the temperature remained normal and did not rise till the evening, when it ran up to 101°, 103°, and even higher.

The opportunity of ascertaining the incubation period of acute specific disease being somewhat infrequent, I am induced to publish the following notes of several cases of measles:

Miss D. joined her family at Ramsgate on April 17th; on the evening of the 18th she felt poorly, and on the 19th a well-marked measles rash appeared. Her brothers and sisters who did not see her on the 19th were immediately sent to their London home. A brother returned to school on May 3rd, and remained quite well till at 1 P.M. on May the 6th a suspicious rash was noticed, though he did not feel at all ill. He was at once sent to the Sanatorium, a mile distant from the school. In the evening a well-marked measles rash appeared on the face and body, the temperature being 103°.

April 18th to May 6th inclusive—29 days.

Miss M., her sister, felt poorly May 4th. Rash appeared May 5th—17 days.

Miss Mary, another sister, felt poorly May 9th. Rash appeared 19th June. April 18th to May 9th inclusive—22 days.

At the same school Mr. M. felt poorly May 20th, and rash appeared 21st, the temperature being 104°. May 6th to 20th inclusive—15 days.

I give the notes of another case. Ernest R., ten years old, on October 24th visited his cousin and was with him half an hour. The cousin had a bad cold, but next day the rash of measles appeared. Ernest R. went to school and continued well till November 3rd, that is 11 days from the time of his exposure to the infection (including the 24th and 3rd). He was not very ill on the 3rd, and ate his dinner as usual; next day, the 4th, the rash of measles appeared. When a month old measles prevailed in the house, and he was attacked with an illness declared by Dr. West to be measles.

This case shows that the period of incubation may last only 11 days, and that the pre-eruptive period is contagious. It is interesting, as the boy had two attacks, the first occurring when he was only a month old.

H., aged 12, was first taken ill on February 21st, and went to bed.

February 22nd.—In bed all day with headache and cough. Temperature in morning 99°8.

February 23rd.—Temperature in the morning 99°8. Cough troublesome. In bed all day.

February 24th.—Better. At 11.15 went downstairs to lessons. Temperature in morning 98°6. At 3 P.M. went to bed again, his temperature being 100°.

February 25th.—8 A.M. 100°. The rash of measles had appeared. Whilst in bed he was quite isolated from all the other boys of the school. On the 24th, during the few hours he was up, he mixed with the boys of his class, but was separate
SHOWER, DOUCHE, AND SPONGE BATHS.

from the rest of the school. On returning to bed at 7 p.m. on the 26th, he was completely isolated from the other boys, being placed in a wing of the building communicating with the rest of the house by only one door. The isolation was complete.

On March 28th, i.e., 13th day after exposure to H., eight boys of his school class (being all the boys who had not previously had measles) showed the rash, none of them complaining of any illness till the day of the rash except one boy, who on March 27th, complained of cough and had a temperature of 100.6°.

The following case will assist towards determining the incubation period of chicken-pox:

Two boys, I. and O., displayed the rash of chicken-pox on October 29th. On the same day both were removed to the Sanatorium, a mile from the school, and no communication was permitted between the two houses.

On November 9th the rash appeared on another boy of the same form, i.e., an interval of 10 days, inclusive of those on which the rash appeared in both cases. The rash appeared on another boy on the 10th, in two others on the 11th, and three on the 12th, and in two on the 13th.

During the following month 63 additional cases occurred.

The following case will assist towards ascertaining the incubation period of chicken-pox:

Mrs. M., went on January 7th with her children to stay with a friend in the country. The friend’s children became sick on the 7th, and the rash of chicken-pox appeared on the 9th. Mrs. M. immediately left with her children; but, nevertheless, one of her children became ill on January 24th, and chicken-pox rash appeared on that day.

Another child became ill on January 26th, on which day a copious crop of chicken-pox rash appeared. Here the incubation period must have been from 16 to 18, and 20 to 20 days respectively.

I will digress still further from the text, and introduce here some short notes of rather singular cases of mumps. A boy had mumps in one parotid only. When quite recovered he went home from school to regain his lost strength; he remained there quite well ten days, and returned to school in perfect health; but next day mumps attacked the other parotid and ran its usual though mild course. Two other cases occurred in the same school in whom the disease subsided after one parotid only had been attacked. The boys remained quite well for a week, and then the other parotid gland became affected, and the disease again ran its usual course.

The following is an instance of the presence of chicken-pox and measles at the same time:

D., aged 12.

March 21st.—4.30 p.m., temperature 98.4°. Went to bed complaining of sickness. 6 p.m. 98.4°. 8 p.m. 99°.

March 22nd.—9 a.m. 99°. 5 p.m. 99°.

March 23rd.—Chicken-pox eruption appeared this morning. 9 a.m. 99°. 9 p.m. 99.4°. All day the boy felt quite well. The rash was well-marked.

March 24th.—9 a.m. 98.4°. Blotchy appearance on the face and behind ears. 11 a.m. rash plainer. 8 p.m. undoubtedly measles.

March 26th.—A.M. 100°. P.M. 102°. Rash of measles progressing.

SHOWER, DOUCHE, AND SPONGE BATHS.

March 28th.—A.M. 98°6°. From this time the temperature continued normal.

The following is an instance of the appearance of chicken-pox rash a few days after the disappearance of measles:—

P., 11 years old, sickened March 17th.

<table>
<thead>
<tr>
<th>March 20th.—A.M. 101°2°.</th>
<th>P.M. 103°4°.</th>
</tr>
</thead>
<tbody>
<tr>
<td>21st.—</td>
<td>103°4°.</td>
</tr>
<tr>
<td>22nd.—</td>
<td>99°8°.</td>
</tr>
<tr>
<td>23rd.—</td>
<td>99°6°.</td>
</tr>
<tr>
<td>24th.—</td>
<td>99°2°.</td>
</tr>
<tr>
<td>25th.—</td>
<td>99°4°.</td>
</tr>
<tr>
<td>26th.—</td>
<td>99°.</td>
</tr>
<tr>
<td>27th.—</td>
<td>98°6°.</td>
</tr>
<tr>
<td>28th.—</td>
<td>98°8°.</td>
</tr>
<tr>
<td>29th.—</td>
<td>98°6°.</td>
</tr>
</tbody>
</table>

Chicken-pox appeared in the afternoon.

30th.—	99°.
31st.—	99°4°.
April 1st.—	99°8°.

A boil formed.

| 2nd.— | 99°. |

The following is an instance of two attacks of measles occurring in the same year in the same boy:—

D., 11 years old, had a sharp attack of measles in May, 1878, and again in March, 1879. Neither attack was severe.

The douche and affusion are generally employed for their local effects. They are of the greatest service to rouse a patient from the stupor of drunkenness, or from that of opium poisoning; when a certain stage of the poisoning has been reached no other treatment is so efficacious. Excessive tippling or an overdose of opium induces stupor more or less profound, when the movements of respiration, at first languidly performed, soon stop, and death by asphyxia results. At this most critical stage, cold affusion, or the cold douche, applied freely to the head, is generally sufficient to remove the conditions within the skull on which the stupor depends. Consciousness is restored, the breathing simultaneously again becomes natural, and for a time, at least, the fear of a speedily fatal termination is set at rest. The water should be poured on the head from a good height, so as to secure as great a shock as possible. The vigor of the application must be regulated by the pulse and general state of the patient. The breathing becomes deeper and more frequent, the livid, bloated aspect of the face soon disappears, while the pulse grows in strength. It often happens that relapses occur, when the affusion must be again and again employed, so as to sustain life long enough to admit of the elimina-
tion of the poison. If promptly and efficiently applied, life may be saved even in the most unpromising cases. It is all-important to apply the water abundantly for some time, and from a good height. Some time may elapse before any good effects become visible, but if the pulse and breathing improve, or become no worse than before the douche was tried, its application should be continued, and perseverance will often be rewarded by success.

Many cases of furious maniacal delirium may be quieted by the cold douche. It must be borne in mind that the douche is a powerful remedy, which makes it necessary to carefully watch its effect on the patient's strength. To obviate excessive depression, it is an excellent method to place the patient in a warm bath, and to apply cold to the head in the manner just described.

Severe pain in the head, met with in acute specific fevers, or resulting from gastric disturbance, may be relieved very gratefully and effectually in the way recommended by Dr. Hughes Bennett: "a wash-hand-basin should be placed under the ear, and the head allowed to fall over the vessel, by bending the neck over the edge; then a stream of cold water should be poured from an ewer gently over the forehead, and so directed that it may be collected in the basin. It should be continued as long as agreeable, and be repeated frequently. The hair, if long, should be allowed to fall into the cold water, and to draw it up by capillary attraction." The ice-bag may be conveniently substituted for this application. Dr. Hughes Bennett agrees with Graves, that in some cases very hot water acts more successfully than cold.

The cold douche is also an excellent local tonic to individual parts of the body. It may be employed to remove that stiffness in joints remaining after slight injuries, or resulting from rheumatism or gout, and salt may advantageously be added to the water. The force of the douche's impact on the affected part, with the duration of its application, must be regulated by the condition of the tissues. If very weak, it is better at first to play the water in the neighbourhood of the injured or weakened joint. Much good may be effected in spermatorrhœa by the free application of cold water to the perineum and buttocks several times a day, and by the suspension of the testicles in cold water for a few minutes night and morning. The same treatment is useful in varicocele. Dr. Fuller recommends the cold douche to be played for one or two minutes upon joints affected with rheumatic arthritis; or the water may be slightly warmed in winter, and then the parts rubbed till they are warm and dry.
Vaginal injections of cold water, about 60°, night and morning, are sometimes useful to prevent the recurrence of leucorrhœa after it has been checked by appropriate treatment; though it must be borne in mind that some women are intolerant of cold vaginal injections. A cold-water injection of about half a pint every morning before going to stool relieves or cures piles in many cases, and is always a useful addition to other treatment. Many persons, especially women, are troubled with cold feet, particularly at night, so cold, indeed, as to effectually prevent sleep for hours. This condition, which may rank as a distinct ailment, is best treated by immersing the feet nightly for a few minutes in cold water, rubbing them, whilst in the foot-bath, diligently until they become warm and glowing, and then, after thorough drying, clothing them in thick overlarge woollen or "fleecy hosiery" socks.

THE TURKISH BATH.

This bracing and depurifying bath combines many of the properties of the hot and cold bath. The body, subjected to great heat, is made to perspire copiously. If the bath ended here, more or less weakness would ensue; but at this stage the free application of cold water stimulates and braces the body, and produces the tonic effects of the cold bath. At each stage of the process, the Turkish bath cleanses the system; the perspiration carrying off, and the cold consuming, by increased oxydation, effete and noxious substances in the blood.

The Turkish bath, like sea air and sea bathing, is a true tonic. By a tonic, I understand, any means which will increase both the destruction and the construction of tissue, provided the constructive remains in excess of the destructive process, and by promoting the nutrition of the muscular, nervous, and other systems, tonics increase the potential force of the bodily organs; in other words tonics increase the capacity for function. By increasing tissue change, tonics promote appetite and digestion, (see Cold.

The baths, says Dr. Goolden, are useful in gout, rheumatism, sciatica, Bright's disease, eczema, and psoriasis; they benefit bronchitis, the cough of phthisis, the aching of muscles from unusual exertion, pains in the seat of old wounds, colds in the head, quinsies, and common winter coughs.

It is not amiss here to caution persons prone to colds, that the
habit of over-clothing increases this liability. This cold-catching tendency may be obviated by using a moderate amount of clothing, taking a cold sponge-bath every morning, and occasional wet-sheet packing, or the Turkish bath once or twice a week.

On catching cold, a patient with lungs previously healthy becomes troubled for some time with chronic catarrh, accompanied by considerable expectoration and some shortness and oppression of breathing. In such a case, the Turkish bath generally affords prompt and great relief, checking the expectoration and easing the breathing. In bronchial asthma and emphysematous asthma, a course of Turkish baths, say one every second or third day, is very useful; this subdues chronic bronchitis and renders the patient less liable to catch cold. A large chamois leather waistcoat reaching down the body and arms, and worn over the flannel, affords great relief in bronchial asthma and emphysematous bronchitis. This jacket is extremely warm, and protects the chest against the vicissitudes of weather. It is a nasty practice to wear it next the skin.

At the commencement of a feverish cold, a Turkish bath will cut the attack short, remove the aching pains, and relieve or cure the hoarseness at once. The bath will still prove very useful for a cold of several days' standing, though its good effects are less striking. The Turkish bath will relieve or carry off the remains of a general severe cold, as hoarseness, cough with expectoration, and lassitude. Whilst in the hot chamber the voice generally becomes quite clear and natural, though the hoarseness may afterwards return in a slight degree; but it usually continues to improve, becoming natural in a day or two, a repetition of the bath aiding complete recovery. In more obstinate cases several baths may be required. Great improvement of the voice in the hot chamber may be taken as a proof that the bath will benefit even though after the bath, the hoarseness returns to a great extent.

The Turkish bath is serviceable to persons who after taking cold not wisely but too well, suffer next day from nausea and slight indigestion. A course of Turkish baths is very beneficial to town-dwellers leading a sedentary life, who, especially if they live freely, are apt to become stout with soft and flabby skin and easily tired, suffer from lack of energy and some mental depression. Under the influence of the bath, their muscles become firmer, the fatness decreases, and they acquire more spirit and energy.

A course of Turkish baths is useful to patients whose heart was
broken down by residence in a tropical climate, who suffer from
general debility, enfeeblement of mind, dull aching pains in the
head, and broken sleep. I have heard the Turkish bath, even its
daily use, recommended highly for convalescents from acute dis-
seases, to promote assimilation, digestion, and appetite. Patients
suffering from jaundice, acquired in a tropical climate, or from
malaria, have often testified to the beneficial effects of Turkish
baths; but it is necessary, as indeed it is with all persons with
shattered health, to caution them against the too vigorous and
unrestrained use of the bath. The patient should leave the hot
chamber as soon as free perspiration occurs, and should not
plunge into the cold bath, but take a douche with slightly tepid
water, especially in cold weather.

Many dread the Turkish bath lest they should catch a cold, and
one often hears complaints of a cold coming on after a bath. So
far from tending to give cold, these baths, as we have said, obviate
the tendency to catarrh, and fortify delicate persons against a
cold-catching tendency. If ever the bath is answerable for a cold,
it is almost always owing to the bather leaving the bath-house too
soon, perhaps in inclement weather, whilst his skin is still perspir-
ing freely, or his hair is soaking wet.

Again, it is not unusual to hear complaints that the bath has
induced considerable depression, or even exhaustion, lasting per-
haps, several days; but here again the fault rests with the bather.
The bath must be adapted to the strength of the patient, and it is
always prudent to take the first bath circumspectly, the bather not
staying too long in the hot chamber, and undergoing the bracing
application only a few seconds, with water not very cold. It is
difficult to point out the precise time a bather ought to remain in
the hot chamber. If delicate, and it is his first bath, he should not
enter a chamber hotter than 130° to 140° Fah., and should stay
there only twenty minutes or half an hour, or less, should he feel
faint or tired. The patient’s sensations are the best guide; some-
times, especially if suffering from pain, the bath soothes and eases,
and then he can remain in the hot chamber an hour, the first bath;
but, I repeat, he should at once leave when he feels faint or tired.
At first, the patient, not seldom, on commencing the bath, fails to
perspire; in this case, he should be removed from the chamber in
ten minutes, have warm water poured over him, and be well sham-
pood, and, unless he is tired and faint, should then return to the
hot chamber. It is a rule in these establishments to advise even
an old bather not to enter the hotter chamber of 180° to 220° Fah.,
THE TURKISH BATH.

Till the skin has become moist with perspiration; though many disregard this injunction with apparent impunity. Even if the first bath causes some depression, this need not happen afterwards, partly because the bather will have become accustomed to the process, and partly because he will know how to adapt it to his strength. Yet it must be admitted that some persons, even with every precaution, cannot take a Turkish bath without experiencing much depression.

Acute rheumatism and acute gout have been treated with these baths; but, as in most instances, the severity of the pain renders it impracticable to take patients thus affected to a Turkish bath, a modified substitute for it, shortly to be described, may be taken at home. The acute pain of gout, it is said, disappears in the hot chamber, to return soon afterwards in a diminished degree.

The Turkish bath is particularly valuable in subacute and chronic gout, but, as might be expected, it is not in all cases equally serviceable. In long-standing cases in which the attacks have occurred so frequently as to distort the joints by deposits, and patients are, perhaps, liable to repeated relapses, and are scarcely ever free from pain, the efficacy of the bath, though striking, is less apparent than in milder and more tractable forms; yet even in these severe cases, the bath affords considerable relief by diminishing the frequency and severity of the relapses, and by removing the pervading sensation of invalidism. The Turkish bath is, perhaps, more efficacious than other remedies in a case of the following kind:—A patient inclined to stoutness complains of slight and fugitive pains; the joints, but little swollen, are merely stiff and a little red and hot. The gout affects many parts, often in succession—the joints, the head, the back, and perhaps some of the internal organs, as the bladder, etc. During an attack the patient complains of malaise, and his complexion often becomes dullish. The tissues are often soft and flabby, and, in spite of judicious diet and abundant exercise, the patient may be seldom free from some evidence of gout, sufficient to annoy but not to disable him for work. After one or two baths the pains, the swelling, and the malaise disappear, the joints become supple, and after a time, the baths being continued, the complexion loses its sallowness, the tissues become firm, and the undue stoutness undergoes diminution. On discontinuing the baths, the gouty symptoms will often recur, again to disappear on the resumption of the treatment. A gouty patient may advantageously supplement the action of the Turkish bath by drinking certain suitable natural mineral waters.
The Turkish bath is useful in the various kinds of chronic rheumatism.

A patient who, in damp weather, or during an east or north-east wind, suffers from stiffness and pains in several joints, will derive much benefit from a Turkish bath. The shoulder joint is often affected, the pain and tenderness being frequently limited to a small spot.

Again, a patient without any previous history of rheumatism finds his shoulder set fast, is unable to move it except to a limited extent, without great pain. Here, again, the pain and tenderness may be very circumscribed. In such a case a Turkish bath generally affords great relief. Galvanism, too, even one application, will often entirely remove or greatly lessen the pains and stiffness. Again, the Turkish bath gives much relief in mild and chronic rheumatoid arthritis, and often retards the march of this disease. The bath often relieves lumbago.

Mr. Milton finds the bath useful in allaying the tormenting itching of prurigo unconnected with lice.

Should it happen that the regular Turkish bath is not available, then one or other of the following modifications of it may be substituted:—The patient, quite naked, seated on a wicker chair, with his feet on a low stool, is enveloped in two or three blankets, the head alone being exposed, and a spirit lamp with a large wick is placed under the chair. In about a quarter of an hour perspiration streams down the body, and this secretion may be increased by drinking plentifully of water, and by placing a pan of water over the lamp. When the patient has perspired sufficiently, the blankets are quickly removed, and one or two pailfuls of cold water are poured over him; or, if this effusion is too heroic, he may step into a general bath at 80°, or, better still, a few degrees lower. Dr. Taylor, of Nottingham, finds this treatment useful in obstinate skin affections, rheumatism, catarrh, syphilis, and in reducing stoutness arising from an inactive life. The instrument makers now supply convenient forms of the domestic Turkish bath. It is far better, however, when practicable, to employ the Turkish bath itself.

Dr. Nevin highly recommends the following handy steam-bath in the treatment of acute rheumatism, available when the patient is lying helpless and irremovable in bed:—A couple of common red bricks are placed in an oven hot enough for baking bread, and in half an hour or a little more, they are sufficiently heated for the purpose. The patient's body linen having been previously removed these two bricks are folded in a piece of common thick flannel
POULTICES AND FOMENTATIONS.

thoroughly soaked in vinegar, and laid on two plates; one is to be placed about a foot distant from one shoulder, and the other about equally distant from the opposite leg, and the bed-clothes are then to cover the bricks and the patient closely round the neck. A most refreshing acid steam-bath is thus obtained; and the supply of steam may be kept up, if necessary, by removing one brick and replacing it by another hot one kept in reserve. When the patient has been in the bath for fifteen or twenty minutes, the bed-clothes and plates should be removed, and the patient instantly mopped all over, very rapidly, with a towel wrung out in cold water, and then quickly rubbed dry. Dry warm linen must be put on at once, and dry bed-clothes must replace those which were on the bed previously. The under-sheet can be removed, and a dry one substituted by fastening the corners of the dry sheet to those of the damp one; generally very little difficulty is met with in simply drawing the old sheet from under the patient, when the dry one follows it, and is left in its place. The patient ordinarily experiences great and speedy relief from this bath. The exhausting sweats are usually diminished, and the necessity of opium much lessened. The change of the body linen can be easily accomplished by tearing the nightshirt open from top to bottom down the back. The steam-bath and subsequent cold douche should be continued after the patient is able to walk about, as they contribute to the healthy action of the skin and promote free mobility of the joints. After the patient is able to get out of bed, the bath may be administered in the manner previously described. The steam-bath, according to Dr. Sieveking, relieves the pain and checks the perspiration in acute rheumatism to a degree he has failed to attain by any other treatment.

POULTICES AND FOMENTATIONS.

Poultices and fomentations, in such common use, are simply local baths applied to the skin. When its surface, or the structures beneath it are inflamed, poultices and fomentations are a convenient and efficacious means of utilizing warmth and moisture in the treatment of diseased parts. The warmth and moisture relax the tissues, and in some degree abate the tension due to inflammation, and so relieve pain. Applied at the very beginning to inflamed tissues, to abscess, inflamed pimples, and the like, poultices often
POULTICES AND FOMENTATIONS.

summarily check the inflammation, and prevent the formation of pus. Fomentations with water as hot as can be endured also arrest inflammation and check the formation of matter, and should be generally employed as adjuncts to poultices. Hot fomentations will often disperse or restrict the development of acne indurata, herpes labialis, and similar inflamed pimpls apt to appear on the face.

These applications are of further use when suppuration has set in and matter requires to be expelled. Poultices greatly facilitate the passage of the matter to the surface and further its expulsion, while, at the same time, they limit considerably the spread of inflammation in all directions. Here, again, very hot fomentations, often repeated, continued for some time, are a useful supplement to poultices.

It should be remembered that much depends on the heat of the application. Poultices should be always applied as hot as they can be borne, and should be frequently changed, lest they become cold and hard. Indeed, they can scarcely be changed too often; in hospital practice it is difficult to constantly renew poultices; yet even in such institutions, where the supply of nurses is limited, poultices should be changed at least every two or three hours.

When applied to disperse inflammation, or to hasten the maturation of abscesses, the poultice should be large, reaching beyond the limit of the inflamed tissues; but as soon as the abscess or boil has matured and burst, the poultice should be very little larger than the opening in the skin through which the matter escapes. A large poultice, applied over-long, soddens and irritates the skin, and is very liable to produce an eruption of eczema, or to develop fresh boils around the base of the original one.

In the treatment of boils, carbuncles, abscesses, and inflamed lymphatics, it is an excellent plan to smear over the inflamed tissues a compound of equal parts of extract of belladonna and glycerine, and on this dressing, to superimpose a poultice. The belladonna eases pain and reduces inflammation. (See Sulphides).

In order to protect the adjacent tissues from the undue action of the poultice, so as to check the production of fresh boils, it is a good plan to place over the boil a piece of opium plaster with a circular hole, and to apply the poultice only over the plaster. Another protective plan is to smear the contiguous surface with zinc ointment.

It is far better to treat a fully developed abscess, ready to be opened, by Lister's carbolic acid method than by poultices.
POULTICES AND FOMENTATIONS.

Poultices moderate the inflammation and alleviate the pain in skin diseases, as eczema, &c., when the skin is highly inflamed, painful, red, and swollen.

Poultices are not only soothing when in direct contact with inflamed tissues, but they appear to act in the same manner on deep-seated parts. Large poultices applied very hot and removed as soon as they become cool, are of great service in pneumonia, pleurisy, bronchitis, pericarditis, peritonitis, &c. To avoid exposure of the warm moist skin, the old poultice should not be removed till the new one is ready to replace it.

These applications are extremely useful to children attacked with bronchitis, broncho-pneumonia, or lobular pneumonia. As young children are apt to be restless, and to toss about in bed, the entire chest should be enclosed in a jacket-poultice. The ordinary poultice soon becomes rucked up, and converted into a narrow band encircling only a very limited portion of the chest, whilst the uncovered part of the chest is exposed to cold. The jacket-poultice should be constructed with a piece of linen sufficiently large to go quite round the chest, and tapes should be sewn to it in such a manner that they can be tied in front, and over each shoulder. It is as well to have three pairs of tapes, so as to admit of three fastenings down the front of the chest.

To enable a poultice to retain its heat, it should be spread an inch or more thick, or it may be made thinner, and externally coated with a layer of cotton-wool. The cotton-wool being light, it does not hamper the breathing—a matter of importance, especially with children.

In inflammation of deep-seated organs, the same methods, modified to suit the part, should be adopted. In peritonitis it is of great importance to spread the poultice thin and cover it with a layer of cotton-wool; if heavy it aggravates the pain.

Poultices are useful in acute rheumatism, lumbago, sciatica, pleurodynia, myalgia, and in those so-called rheumatic pains, which often attack limited parts of the body, as one arm, &c. They are soothing and pleasant to the inflamed joints in rheumatic fever, although cotton-wool is often preferred. In acute lumbago, poulticing often brings speedy relief, the severest cases being

* Galvanism is highly useful in some forms of these complaints, especially in lumbago. In sciatica it gives at least temporary relief, and in some cases a few applications effect a cure. Sciatica and deep-seated pains about the shafts of the long bones, even the dull aching pain in the joints, which not unfrequently remains after an attack of acute rheumatism, will often yield to galvanism.
greatly benefitted in a few hours, and generally cured in one or
two days. The poultice must be very hot, and large enough to
cover the whole loins or part affected, and thick enough to remain
quite hot for half an hour, when it must be changed. If the pain
is persistent this treatment should be continued for three hours, or
longer; the skin must then be covered with a piece of flannel, and
the flannel covered with oil-silk; this after-treatment promotes
what is most desirable, free perspiration.

When electricity, the needle, or poultices, fail to give more than
slight temporary relief, it will often be found that the lumbago is
accompanied with high fever, being sometimes the first symptom
of an attack of rheumatic fever.

Sciatica may be treated in the same way, but the result is not
often so satisfactory. (Vide Ether).

Poultices applied in the same way as for lumbago, and followed
by the application of lint and oilskin, are often useful in severe
forms of pleurodynia and myalgia. Belladonna liniment is usually
sufficient, and even to be preferred in pleurodynia; and sometimes
ether spray at once and permanently removes the pain of this an-
noying affection.

As we have said, poultices may be made of various substances,
linseed-meal, oatmeal, bread, or starch. Each has its peculiar
character. Linseed-meal and oatmeal poultices have most pro-
erties in common; they make compact and only slightly porous
poultices, retaining heat and moisture longer than other kinds, and
are consequently often to be preferred to bread or starch. But
linseed contains an inconsiderable quantity of acrid matter which
sometimes irritates, especially if the skin is of a fine and delicate
texture, or if it is inflamed by some eruption, in which case oat-
meal or bread must be substituted. Bread poultices are more
porous and blander than those of linseed-meal, but the porosity
depends very greatly on the way of making them. Bread poult-
ices cool more quickly, and give less moisture to the skin, than
those made of linseed-meal. Starch poultices retain their heat
for a considerable time, and are very bland, unirritating applica-
tions.

It is as well to mention that linseed-meal poultices are more
tenacious than those made of bread, and are therefore less liable
to break up and fall about the bed and clothes of the patient, ren-
dering him uncomfortable.

In making a poultice, care should be taken that the water boils,
and that all the materials, linseed-meal, linen, strappings, ban-
POULTICES AND FOMENTATIONS.

Dages or tapes, wool and oil-silk, are close at hand ready for use, and placed before a good fire to be thoroughly warmed. To manufacture a linseed poultice, sufficient boiling water should be poured into a heated bowl, and the meal must be quickly sprinkled into the bowl with one hand, while with the other the mixture must be constantly stirred with a knife or spatula, till sufficient meal has been added to make a thin and smooth dough. The mixture should be compounded as rapidly as possible, otherwise the poultice when made will be almost cold. Only an experienced hand can make a model poultice. By adding the meal to the water, with constant stirring, instead of the water to the meal, a thorough blending of the two ingredients is ensured, not a knotty, lumpy, uncomfortable mass, too often vexing instead of soothing the patient. The dough must then be spread quickly and evenly on the warm linen, already cut of proper size and shape, the edges of the linen turned a little way over the meal to prevent any portion escaping beyond the linen, and to protect the patient's clothes.

There are two methods of making bread poultices. One way is to cut the bread in thickish slices, put it into a basin, pour boiling water over it, and place the soaking mass by the fire for five minutes; then pour off the water, add fresh boiling water, and place by the fire; afterwards draining the bread, beat up with a fork, and spread the poultice. The other plan is to cut stale bread into thick slices into a saucepan and pour enough boiling water over it to cover it; place the whole by the fire, and allow it to simmer for a short time, then strain and prepare the poultice. The first plan makes a porous poultice, the second a more compact poultice, sharing the character of linseed-meal. As we shall see, each poultice has its fitting application.

Bran poultices are useful on account of their lightness.

Starch poultices are entirely unirritating and retain their heat for a considerable time. The way to proceed is to add a little cold water to the starch, and to blend the two into a pap; then add sufficient boiling water to make a poultice of the required consistence, which must be spread on linen in the manner already described. Starch poultices soothe open cancers, and allay skin eruptions, when there is much inflammation, heat, and pain.

There are several ways of employing charcoal as a poultice. It is used to prevent disagreeable odours from foul sores, and it is thought also to promote a healthy condition of the tissues. When employed for this double purpose, charcoal is added to the poultice. As a porous poultice is here required, bread is better for the pur-
pose than linseed-meal. A portion of the charcoal should be uniformly mixed with the bread, but the greater part should be sprinkled over the surface of the poultice. It is doubtful whether a charcoal poultice is greatly superior to a simple bread poultice; for the charcoal must soon cease to absorb gases, and thus lose its deodorizing property. It may, perhaps promote a healthier condition in the sore. If the object is merely to prevent disagreeable smells and to keep the air of the room pure, the plan pointed out in the section on charcoal is to be preferred.

It is a good practice to sprinkle foul, sloughing; putrid sores with dry charcoal, and over the charcoal to place a simple poultice, or to make the poultice of well-toasted or of burnt bread. This treatment appears to hasten the separation of the sloughs, and to promote a healthier state of the tissues, and may be applied to a boil when the core is separating, or to a bed-sore while the black slough still adheres to the living tissues.

Some maintain that a yeast poultice is useful in sloughing sores, and that it prevents destruction of the tissues, and promotes the separation of sloughs. Yeast poultices are made in two ways. Yeast and water may be added to flour till ordinary dough is made, and the dough is applied while fermentation is going on. In this case it is simply an application of "rising dough." The other way is to smear warmed yeast over the surface of a simple bread poultice.

A carrot poultice, which is supposed to make wounds cleaner and healthier, is made by boiling carrots till they become quite soft, mashing them with a fork, and spreading the pulp on the linen in the ordinary way.

Laudanum is sometimes added to poultices to ease pain; and it is especially effectual when the skin is broken.

Solutions of chloride of lime or of soda may be added to poultices to destroy offensive gases given off from unhealthy sores.

In eczema, with much inflammation and sensation of heat, Dr. McCall Anderson recommends a cold potatoe poultice sprinkled with a small quantity of absorbent powder, containing camphor. The powder, a useful dusting powder without the poultice, is composed of half a drachm of camphor, reduced to powder, with rectified spirit and three drachms each of powdered talc and oxide of zinc.

Professor Marshall employs an iodide of starch poultice to clean sloughing sores. A jelly is made with two ounces of starch mixed with six ounces of boiling water, to which before it cools should be
POULTICES AND FOMENTATIONS.

Added half an ounce of liquor iodi. The mixture is spread on lint, and applied cold.

Fomentations by means of flannel wrung out of boiling water are employed for similar purposes as poultices. They are used for the sake of their moisture, but especially for their warmth, and they differ from poultices in being less weighty, and therefore less likely to increase the pain of very tender parts. The flannel is wrung out by means of a wringer made of stout towelling attached to two rods. The boiling wet flannel is placed in the wringer, which is then twisted round the flannel very strongly, till the water is thoroughly squeezed out. As the flannel when first taken from the boiling water is too hot to be held in the hands, the wringer is useful. In the absence of a wringer an ordinary towel will answer fairly well. Wring as dry as possible, these fomentations may be used very hot without fear of scalding or blistering the skin. The fomentation should be covered outside with a piece of macintosh, and tied on with bandages. As hot fomentations quickly cool, and being chiefly used for the sake of heat, they must be frequently renewed; when finally removed, the skin must be carefully wiped dry, and covered with flannel or cotton-wool to prevent catching cold.

Fomentations, in a less degree poultices, relax spasm in the internal organs, as in intestinal, renal and biliary colic. In very extensive inflammation fomentations are preferable as a large poultice is heavy and uncomfortable. Thus fomentations are employed when a limb is extensively affected with erysipelas, or when the tissues have been widely contused and have become inflamed.

Sponging the face with water as hot as can be borne, is a very useful application in acne indurata; it will disperse the incipient spots, and limit the size and hasten the maturation of the more matured ones, and at the same time greatly lessen for some hours the redness of the eruption.

Twenty or thirty drops of turpentine sprinkled on a hot fomentation of the above description makes a good counter-irritant, useful when it is needful to combine a stimulating with a warm, soothing action.

Sometimes it is desirable to apply heat to a part of the surface of the body, when at the same time it is important to avoid relaxation of the tissues which moisture would produce. In such cases various dry, strongly-heated applications are used. Flannel, almost scorched before the fire, or in an oven, is sometimes employed, but it speedily loses heat. Sand or chamomile flowers retain heat
far better; they may be strongly heated over the fire or an iron pan, and then be run into a heated linen bag made for the purpose, of such shape and construction that the contents shall form a thickish and even layer. Each substance possesses its respective advantages; sand, though heavy, retains heat; chamomile flowers, though light soon lose their warmth. A thin piece of flat tile heated in the oven, and wrapped in flannel, is lighter than sand, retains its heat for a considerable time, and is easily procured. These applications are of great service in relieving the pain of spasms.

THE USES OF ICE AND THE SPINAL ICE-BAG.

Ice is frequently used to abstract heat, to check bleeding, to allay inflammation, and to destroy sensation. Ice broken up with the help of a large needle into small fragments, may be enclosed in a bladder or thin india-rubber bag, first squeezing the air out of the bag. After filling the bag about one-third of its capacity, its mouth should be tied on a cork so as to afford a purchase for the twine. The ice-bag may then be adapted to almost any shape, and fitted to the inequalities of the body and if required, may be fashioned into a sort of cap for the head.

This cap is often applied to the head in tubercular and simple meningitis, and it may be employed to allay the severe headache of the early stages of acute fevers. Sometimes the ice-bag is laid on the epigastrium to ease the severe pain and vomiting of chronic ulcer, or of cancer of the stomach. It may be applied in prurigo of the vulvæ; other treatment, however, is generally to be preferred.

A lump of ice is sometimes inserted into the uterus, or pushed into the rectum, to arrest uterine hæmorrhage after delivery.

Ice is used internally for a variety of purposes. Sucking ice allays thirst, and is very grateful to fever patients. It is likewise sucked to check bleeding from the mouth or throat, stomach or lungs. To check bleeding from the stomach small pieces should be swallowed.

The constant sucking of ice is most efficacious in combating acute inflammation of the tonsils or throat; it also is very beneficial in tonsillitis, the sore throat of scarlet fever, and other acute specific throat diseases, and even in diphtheria. It often proves most soothing, allays the heat and pain, and checks the abundant
secretion of mucus, which is so harassing from the constant hawking and deglutition it occasions. In diphtheria, and indeed in all inflammations of the throat, the good effects of ice, especially when used at the very beginning of the attack, are most marked. The ice should be sucked as constantly as possible, and be continued till the disease has fairly declined.

In the same way ice is employed to allay the nausea, sickness, and pain of disease of the stomach.

Ice may be applied to an inflamed and prolapsed rectum or uterus, to reduce inflammation and swelling, so as to enable these parts to be returned to their proper place.

Some apply ice to the head in delirium tremens and in the convulsions of children.

The application of a small bladder or india-rubber bag of ice will dull or even neutralize pain after an operation for piles or fissure of the anus.

M. Diday strongly recommends the local applications of ice in such painful affections of the testis as neuralgia and blenorrhagic orchitis. Two pigs' bladders partially filled with ice are applied one under, the other over the testis, the neighbouring parts being protected with napkins. The pain in orchitis is at first rather increased, but soon declines and in a few minutes altogether ceases. The continuous application of ice-bladders for twenty-four to forty-eight hours permanently removes the pain in many cases. If on pressure any tenderness remains, the pain will return, and the ice must be continued three, or four, and even five, days, according to circumstances. On discontinuing the ice, wet cold cloths should be used, to permit the tissues to return gradually to their normal temperature.

Two parts of finely-pounded ice with one part of common salt produces cold sufficient to freeze the tissues, and to deprive them of sensibility. This mixture, largely used by Dr. Arnott, is confined in a gauze-bag; and placed in contact with the skin till sensation is abolished, and the skin has a leathery feel, and assumes a shrunken tallowy appearance. If applied too long, this mixture may vesicate; but this will not occur under five or six minutes. This application is employed to prevent the pain of minor operations, as extraction of the toe-nail, and the opening of abscesses. Dr. Arnott recommends it in chronic rheumatism, in erysipelas, lumbago, and in wounds. In chronic rheumatism, it should be applied to the diseased joints for six minutes; it should then be replaced for a short time by pounded ice, to prevent the occur-
rence of inflammation from too rapid a return of heat to the tissues. An attack of lumbago may be often cured by freezing the skin over the painful part. Dr. Arnott asserts that when applied to wounds this mixture prevents inflammation without hindering union by the first intention.

Applied for some hours, this mixture destroys sensibility to such a degree, that chloride of zinc paste may be used in sufficient quantity to destroy the tissues to a considerable depth, without inducing pain or inflammation. But ether spray, so conveniently and rapidly used in the manner introduced by Dr. Richardson, is now generally preferred for the purpose of freezing the tissues.

A single application of ether spray will often remove lumbago; ether spray sometimes relieves sciatica, and those frontal headaches commonly called nervous, arising from either mental or bodily fatigue. Frontal headache, dull and uniform in character, lasting many days, occurring not uncommonly after excitement or an acute illness, such as erysipelas, a severe cold, or a sore throat—often succumbs to ether spray; but it is generally requisite to freeze the skin of the forehead.

ON THE SPINAL ICE-BAG AND THE SPINAL HOT-WATER BAG.

The profession is indebted to Dr. Chapman for the introduction of these applications, and for a rational explanation of their action.

Concerning the spinal ice-bag, Dr. Chapman says, "I have proved by numerous experiments that cold applied to the back exerts not only a sedative influence on the spinal cord, but also on those nervous centres which preside over the blood-vessels in all parts of the body. The modus operandi of this influence on those centres, and its effects, may be thus stated: 1st. It partially paralyses them. 2nd. By means of the partial paralysis thus effected it lessens the nervous currents in the vaso-motor nerves emerging from

* The pain and stiffness of the muscles of the back in lumbago may often be instantaneously removed by running a needle an inch or more into the painful part; when the lumbago is double, this almost painless operation should be performed on both sides of the loins. Inserted along the course of the sciatic nerve, the needle sometimes affords instant and marked relief even in very chronic cases of sciatica. This treatment indeed, sometimes, as if by magic, cures severe and long-standing cases. The passage of an interrupted galvanic current will speedily relieve lumbago.
s acted upon, it enables the blood which flows in the direc-
least resistance, to enter them in greater volume, and with
force than before.'"

effects are analogous to those obtained by Claude Bernard.

iding the sympathetic nerve, he found that the vessels of
arts supplied with this nerve became dilated and received
reased supply of blood, with a proportionate augmenta-
the vital properties. Chapman avers that, "Those phe-
a which Professor C. Bernard produced in the head of an
by section of the cervical sympathetic, I have induced in
thorax, abdomen, pelvis, and four extremities of man, by
lication of ice to the different parts of the back."

upply an increased afflux of blood to any part of the body,
apman applies the ice-bag to various parts of the spine; to
and between the shoulders, when more blood is needed
head; to the upper part of the back, for the chest and
to the lower part of the back, for the abdomen, pelvis, and
Dr. Chapman says:

Muscular tension is diminished by the application of ice along the

In support of this statement he asserts that the ice-bag will
the cramps of diarrhoea and cholera, and is useful in laryn-
stridulus, chorea, tetanus, infantile convulsions and epilepsy,
prolonged muscular rigidity due to acute or chronic dis-
the nervous centres."

Sensibility is lessened by the application of cold along the spine.

seemed conclusively by my experiments which have been car-
increased by ice applied along the spine." He narrates the following singular cases in confirmation of this proposition: "A woman, aged sixty, who for more than twenty years had always been cold to the touch, even over her shoulders and bosom, though she was warmly clothed; and her feet were habitually and extremely cold. After using ice during three weeks, several hours a day, the whole surface of the body, including her feet became wonderfully warm. She was extremely astonished by the increase of the temperature of her body, as well as by the subsidence of every symptom from which she had suffered for so many years; and when she called upon me a week after the treatment had ceased, her newly-acquired increase of general circulation, denoted by her increased warmth, still continued. Case 2 of this series affords a remarkable proof of the proposition in question: The patient, a man, aged fifty-six, who seemed nearly seventy, suffering from paralysis, epilepsy and other grave troubles, complained that he was always 'cold all over'; that he suffered especially from coldness of the feet, even in the hottest weather, and was obliged, as his wife said, 'to sit near the fire in summer.' Within one week after the treatment, which was continued three months, this patient had become warm all over—especially the feet. Within a month he said, 'I feel as well as possible; but very hot, very hot.' In this case, after the ice had been left off for some days, the patient became cold again.'

Dr. Chapman asserts that ice applied along the lower dorsal and lumbar vertebrae, by increasing the amount of blood supplied to the pelvic organs, promotes menstruation, and will even restore the suppressed monthly flux. The ice-bag, by increasing the flow of blood to the legs, proves very comfortable to persons harassed with cold feet; and I have often seen the feet becoming comfortably warm a few minutes after the application of the ice.

Dr. Chapman asserts that ice applied along the spine is extremely useful in cholera and tetanus, in sea-sickness, and the vomiting of pregnancy.

THE SPINAL HOT-WATER BAG.

The physiological effects produced by heat to the spine are, as might be inferred, the opposite of those induced by cold. Dr. Chapman says that, '1st. The temperature of the sympathetic
INTERNAL USE OF WATER.

guglia being raised, the flow of blood in them becomes more copious, and the functions consequently become more energetic than before. 2nd. Their nervous influence passes in fuller and more powerful streams along the nerves emerging from them, and ramifying over the blood-vessels which they control. 3rd. The muscular bands surrounding those vessels, stimulated by the increased nervous afflux to contract with more than their usual force, diminish proportionably the diameter of the vessels themselves. 4th. The diameter of the vessels being thus lessened, the blood flows through them in less volume and with less rapidity than before: indeed, it is probable that while the nervous ganglia in question are made to emit their maximum of energy, many of the terminal branches of the blood-vessels acted upon become completely closed." The temperature of the ice-bag should not exceed 120°.

Dr. Chapman employs heat along the spine to contract the blood-vessels, and states that, if properly applied, it will not very seldom but will arrest the menstrual flow. He asserts, as the result of his experience, that it will arrest menorrhagia and bleeding from the nose and lungs. In bleeding from the nose or lungs, the ice-cold bag must be applied along the cervical and upper dorsal vertebrae, in menorrhagia, along the lower dorsal and lumbar vertebrae.

THE INTERNAL USE OF WATER.

A few remarks may be made here conveniently on the means best suited to fever patients. The importance and frequency of the often causes much restlessness and irritability, while these, in turn often increase the fever. Therefore, the urgent thirst must be allayed: but if left to himself, a patient is sooner or later will always drink to excess, which is very liable to disorder the stomach, impair digestion, produce flatulency, and even diarrhoea. Theory and experience both show that drink made a gargle, rather and somewhat acid slake thirst most effectually. A mixture of cascarilla or orange-peel, acidulated slightly with a little lemon acid, was, with Graves of Dublin, a favourite "medicine" for fever patients. Raspberry vinegar is a true friend to hot weather, and ice is very grateful. Sweet fruits, although at first agreeable and refreshing, must be taken with care and moderation, for they often give rise to a disagreeable taste, and are apt to produce flatulence.
or diarrhoea. There is no advantage in "curtailing beyond a moderate degree the amount of water drunk by diabetic patients. The urine and sugar may by this means be lessened, but the general distress increased" (Roberts). In the thirst of diabetes Prout recommends tepid drinks.

Rinsing the mouth with water as hot as can be borne will often relieve and indeed sometimes subdue toothache, though occasionally cold water answers better.

Water is necessary both for the digestion and solution of food, but an insufficient as well as an excessive quantity are alike harmful. The character of the fermentations, it is well known, depends on the amount of water present; for instance, with sugar, if there is but little water present, no fermentation will take place; while, on the other hand, with excess of water, acetoous, instead of vinous fermentation, will be set up. It is more than probable that the quantity of water taken with the food may, in a similar way, affect the changes which it undergoes in the stomach. This much is certain, that the drinking habitually an excess of water with the meals often aggravates dyspepsia, and, on the other hand, indigestion appears in some cases to be connected with an insufficient quantity of fluid. Flatulent dyspepsia is often traceable to excess of drinking at meal-times.

Too much water taken with the food impairs digestion, simply by diluting the gastric juice, and so weakening its solvent power. The popular idea proves to be correct, that drink should be taken chiefly at the end of the meal, when it serves many useful purposes; it then aids the passage of the peptones from the intestines to the blood, and so favours the continuance of digestion, since it is held that these peptones hinder that process until they pass from the canal. Moreover, indigestible substances, only partially dissolved are carried by the fluid through the pylorus into the intestines, and there subjected to further digestion or are eliminated with the motions, thus removing a source of irritation from the stomach and intestines. The prevailing, perverse modern fashion of tea-drinking a short time before dinner cannot be too strongly condemned; the early tea, if permissible at all, should be taken at least two hours before dinner.

In our desire to avoid the ingestion of too much drink, we must be careful not to err on the side of undue abstinence, for it has been shown that a proper amount of water favours the secretion of the gastric juice, and promotes the passage of the peptones into the blood. Iced drinks at meal-time are often harmful by constring-
Tag the vessels, and preventing the secretion of the due quantity of gastric juice.

Chomel described, and Dr. Thorowgood recently narrated, some cases of a form of dyspepsia, called by him "indigestion of fluids," characterized by uneasiness after drinking, and a splashing noise heard on percussing the stomach or shaking the body, even when the patient has taken no drink for some hours. The best treatment for this curious indigestion is not to drink till sometime after a meal and as little as is compatible with comfort.

After taking an emetic, warm water, or various infusions, as chamomile tea and mucilaginous drinks, are employed to promote vomiting. For this purpose, the quantity of fluid taken should not be too large, otherwise it distends the stomach, paralyzes its muscular walls, and impedes, instead of promotes, vomiting. Half a pint to a pint is sufficient.

The action of water in the intestines is similar to that in the stomach, and its presence is necessary for the absorption of the digested substances in this part of the canal.

A glass of cold water taken early in the morning is to some persons a purgative. The cankery taste, hot sensation in the mouth and lack of appetite for breakfast experienced by many persons on waking, is generally removable by drinking half a tumbler of pure cold water half an hour before that meal. A too free indulgence in fluids often increases or keeps up diarrhoea.

After free water-drinking the water, but not the solids, of the faces is increased. Water, tepid or cold, is employed for evacuant injections into the rectum.

Water passes readily into the blood, but with certain limitations. When the system has undergone great loss of water, this fluid is absorbed with much avidity, and its rapid passage into the circulation may materially affect the blood; indeed this sudden and copious influx of water is said sometimes to destroy cattle by the rapid destruction of the blood corpuscles by osmosis. But when the amount of water in the blood is already ample, the absorption of a further quantity from the stomach and intestines is much diminished.

Excess of water is eliminated in various ways. Some, as we have said, passes off by the intestines; some is thrown off by the skin and lungs; but most is excreted by the kidneys. In six hours the chief part is eliminated, though after strong exercise much water is retained in the muscles considerably longer.

Copious drinking exerts a further action on the urine than that
just mentioned; for not only does it increase the urinary water, but it also augments the other constituents as urea, phosphoric and sulphuric acid, and chloride of sodium. The augmentation of these constituents, with the exception of the chloride of sodium, is permanent, but with respect to this salt the increase is only temporary, for after a while its amount falls below the quantity excreted in health, and thus the previous increase is balanced and water must, therefore, in regard to common salt, be considered merely a temporary eliminator. The case is different, however, with urea, phosphoric and sulphuric acid; for water-drinking induces a fixed increase of these substances, giving rise not only to their increased elimination, but to their increased formation in the stomachs which can happen only from augmented disintegration of substances containing nitrogen and sulphur. Did water-drinking exert solely a disintegrating influence, it would lead merely to loss of weight; but simultaneously with this rapid disintegration there is a corresponding increase of assimilation takes place in the same tissues; whence it happens that water, taken under certain precautions, may increase both construction and destruction of tissue, and so act as a true tonic, improving the vigour of body and mind. These considerations suggest an explanation of the benefit often derived from the “water treatment” in hydropathic institutions.

The effects of water-drinking vary in different persons. The disintegration is greatest in weakly persons, on whom this process may produce almost a febrile state. Disintegration is greater in children than in adults, and greater, perhaps, in women than men. A high temperature of the water, or of the external air, increases disintegration. Bodily exercise produces the same effect (Parkes on Urine).

ON ENEMATA.

Injections are used for a variety of purposes; to procure evacuations of the bowels, to restrain diarrhoea, to ease pain about the region of the pelvis, to destroy worms, to introduce medicines into the general system, and lastly to pass nutritive substances into the rectum, in cases where food cannot be taken by the stomach.

For each of these purposes certain points must be attended to in the administration of enemata.
ON ENEMATA

First, concerning injections used to relieve the bowels. It must be clearly understood that an enema seldom acts by merely washing away the faces; for it acts efficiently when the faecal matter is lodged high up the intestines; even in the transverse colon or cecum. They probably stimulate the whole intestinal tract to more vigorous peristaltic action, by which means the contents are propelled along the canal, and finally expelled, the injected fluid distending the lower part of the large gut, and so exciting the vermicular action of the intestines far beyond the point reached by the injection. The object, therefore, is to distend the rectum and the adjoining part of the intestine, but an enema constantly fails because not enough fluid is introduced to excite contraction. It is necessary to introduce a considerable quantity of fluid, as much as two, three, or even four pints. Any one who, for the first time, without due observance of certain conditions, attempts to introduce a copious injection into the rectum, will in all probability fail.

When a copious injection is to be given, the patient should be placed on his left side, and the fluid must be slowly pumped into the rectum; after a variable, but usually a short, time, the patient complains of inability to retain more, and suffers from colicky pain in the belly, and an urgent desire to empty the bowels. The pumping must now be intermitted for a while, and the patient directed to prevent the escape of the fluid; but if he is unable to control the sphincter, the administrator must help him. This can be done in several ways, each having for its object the strengthening the contraction of the sphincter. The simplest, but not always the most successful plan, is to firmly support the perineum and structures around the anus, either with the bare hand or with the aid of a folded towel. Should this support prove ineffectual, which is often the case after a considerable quantity of fluid has been introduced, further assistance is afforded by passing into the rectum, alongside the nozzle of the enema-pipe, one, two, or even three fingers, as circumstances may require, and pressing them with the nozzle strongly upward. Stimulated in this way, the sphincter firmly grasps the fingers, and effectually prevents the escape of the fluid; indeed, with these precautions, almost any amount of fluid may be pumped into the intestines. From time to time the patient will complain of griping pains and an oppressive desire to go to stool, when the pumping should be stayed awhile, and recommenced as soon as these symptoms pass away. The operation over, the patient must be directed to lie quite quiet on the left side, and, if possible, to retain the fluid for ten minutes or
just mentioned; for not only does it also augments the other consti-
tuents of sulphuric acid, and chloride of these constituents, with the excep-
tion of water, are mere-ly a temporary elimina-
tor, for after a while its intensity of action excreted in health, and thus the aura-
and water must, therefore, in regal in their action on the body, which can happen only from substances containing nitrogen and phosphoric acid, exert solely a disintegrating influence, and loss of weight; but simultaneously corresponding increase of assimilation in the tissues; whence it happens that by the increased elimination, both the tissue, and so act as a true tonic, in mind. These considerations sugges-
tions, often derived from the “water treat-
ments.

The effects of water-drinking on disintegration is greatest in weak
men, may produce almost a febrile state of children than in adults, and great
men. A high temperature of the body increases disintegration. Bodily

(Parke's on Urine).

ON ENEMAS

Injectionso are used for a variety of purposes, and are used for a variety of purposes, to restrain disintegration of the bowels, to restrain diarrhea, to destroy worms in the general system, and Lastly to treat the rectum, in cases where food cannot be administered.

For each of these purposes certi-
more, so as to ensure a more active and thorough contraction of the bowels.

It need scarcely be mentioned that if the rectum or lower part of the large intestines is the seat of cancer, or is diseased in other ways copious injections, and the introduction of a long tube, are attended with danger.

Sometimes the rectum and lower part of the gut are blocked by distension with faeces, against which the injected fluid impinges, and finding no passage, it of necessity flows back through the sphincter as fast as it is pumped in. One or two ways may be adopted to force such a blockade. A hollow tube of some inches in length is passed through the impacted faeces, till its free extremity reaches the sigmoid flexure, or even higher. If the tube is passed through the accumulation in the intestine, the injection can easily proceed. Should this manoeuvre fail, and the need is urgent to obtain an evacuation, then two or three fingers, according to the yielding of the sphincter, are to be introduced in the rectum to withdraw the faeces. This can be easily accomplished if the faeces are hard and firm. Obstinate constipation of this character occurs most commonly in diabetes. The hard and almost stone-like faeces can easily be withdrawn by the fingers in the manner described; and much more may be withdrawn than is contained in the rectum, for although the intestines may be unable to force the hardened faeces through the sphincter, they are quite capable of propelling them into the rectum; consequently as fast as the faeces are withdrawn, fresh supplies are propelled downwards within easy reach of the fingers.

Various fluids are employed as enemata. Sometimes simple warm water or gruel; at other times, to one or other of these is added soap, turpentine, or castor-oil. When castor-oil or turpentine is added to the injection, soap and gruel are generally employed to help to suspend these substances. It must be recollected that castor-oil and turpentine are lighter than water, and will float on its surface, so that if the oil or turpentine is added to the fluid to be injected, although the whole may be well stirred, yet, as the injection proceeds, the oil rises to the surface. As the tube of the syringe lies at the bottom of the vessel, the lower stratum of the liquid is first injected, and much of the oil or turpentine either floats on the surface, or sticks to the sides of the vessel, while the small portion ultimately injected operates only upon the rectum and the neighbouring intestines. The object should be to make the oil or the turpentine, as the case may be, rise as high up the canal as
possible, so as to bathe and influence the mucous lining of the intestines. The oil or turpentine, well beaten up with three or four ounces of gruel, or soap and water, should be first injected, and then the water is to be pumped in, so as to force the oil far up the intestinal canal.

What should be the temperature of an injection? Tepid fluid is generally used, but some consider that an injection differing in temperature widely from that of the body, acts more energetically on the tissues, and excites the intestines to more vigorous action. Thus cold or hot water may be used, and very cold water may be injected without inconvenience, and without the patient's cognizance of its temperature.

It is unadvisable habitually to use warm evacuant enemata, lest a torpid condition of the intestines ensue, which will ultimately render the constipation worse.

As we have said, large quantities of water are employed to unload the bowels; but this is not the sole use of a free injection. If used comfortably warm, it is very soothing to the intestines and to the neighbouring organs. Thus, warm injections will often much mitigate the pain of cancer, either of the intestines or of the adjacent organs; injections, also, often greatly relieve the very distressing straining desire to evacuate, without any riddance of faeces, which occur in intestinal cancer. Warm injections soothe the pain of cystitis, prostatitis, abscess of the prostate, and pelvic and abdominal pains generally. (Vide Opium and Belladonna.)

In some instances of suppression of urine, copious injections appear to act beneficially.

Injections are often successful in restraining obstinate or dangerous diarrhoea. It is by no means necessary for the injection to reach that part of the intestines upon which the diarrhoea depends; for, whether the mischief is situated in the small or large intestines the injection is equally beneficial, owing, no doubt, to a close sympathy between the different parts of the intestines, so that an impression made on one part is communicated to another. In restraining diarrhoea, only a small quantity should be injected, otherwise the intestine is stimulated to contract and expel the enema, when it should be retained as long as possible, in order the more effectually to influence the bowels. An injection of an ounce, or at most two ounces, is sufficient for an adult; and it may be repeated several times a day according to the urgency of the diarrhoea.

The material used in such enemata is starch, boiled or raw, of
the consistence of cream, and at a temperature of 100°. An
injection simply composed of starch proves effectual; but its
astringent sedative action may be much heightened by the addition
of some drops of laudanum, graduated in quantity according to the
patient’s age and condition. The addition of some acetate of lead
or sulphate of copper renders this injection more astringent. These
injections are invaluable in cases where delay is death. They will
save many a life in the choleraic diarrhoea of children, which so
rapidly proves fatal unless speedily restrained. The diarrhoea of
typhoid fever, which, if excessive, adds extremely to the patient’s
danger, yields generally to these injections, so, usually, does the
diarrhoea of phthisis.

Injections are commonly used to destroy thread-worms, which
infest the rectum and the intestines in its immediate neighbourhood
but occur in no other part of the canal. As the object of the in-
jection is to destroy these entozoa, a sufficient quantity of fluid
should be employed so as to reach a little higher than the rectum.
For an adult half a pint is sufficient, and for a child, of course, less.
To the water injected various substances can be added, as common
salt, tincture of seschloride of iron, lime-water, quassia, and vari-
ous other similarly acting vermicides, with the object either of
directly poisoning the worms, or of destroying them by coagulating
the albuminous structures of their bodies. Injections are always
successful in removing worms, and thus affording temporary relief;
but it must always be recollected that the morbid state of the
mucous coat of the intestines, favouring the production of worms,
must be remedied if permanent relief is to be obtained. A tea-
spoonful of salt, or a drachm of the tincture of steel, to half a pint
of water, is sufficiently strong to effect the destruction of these
delicately-formed animals. Solutions too concentrated must not be
injected, otherwise inflammation may occur, perhaps severe enough
to cause sloughing in the rectum and margins of the anus.

Nutritive enemata are employed in stricture of the oesophagus,
or when tumours press upon this tube and render swallowing
impossible, in persistent vomiting, and in painful diseases of the
stomach, like chronic ulcer. A nutrient enema should not exceed
three or four ounces of bland, unirritating material, otherwise the
lining membrane of the rectum becomes irritated and inflamed, a
condition adverse to absorption. Mr. Marcus Beck advises the
addition to the injection of pepsine and dilute hydrochloric acid.
From experiments on dogs, M. Bauer finds that the large intestines
freely absorb peptones, but that pure soluble albumen is not ab-
ACUPUNCTURE.

Absorbed, though it is taken up readily on the addition of salt. Acid solutions of albumen, as meat dissolved in weak hydrochloric acid, are also freely absorbed. Fats and starches injected into the large intestine failed to support life for any considerable time. It sometimes happens that the rectum will not retain even four ounces, and this inability is more liable to occur after injections have been continued for some time. Before giving a nutritive injection, it must be ascertained that the rectum is not filled up with faeces.

Dr. W. O. Leube employs the pancreas of the ox or pig as a ferment; one part of finely-minced pancreas being mixed with three parts of scraped meat rubbed well together with warm water, so that the mixture is easily injected. Fat, not exceeding one-sixth part of the meat, may be added. This injection is retained from twelve to thirty-six hours, and the stools afterwards generally possess an ordinary faecal character. By experiments on dogs, Dr. Leube has proved that by means of injections, a considerable quantity of nitrogen can be taken up into the system.

Astringent and stimulating injections, composed of a pint of water, and containing ten to twenty grains of sulphate of copper, or corresponding quantities of nitrate of silver and sulphate of zinc, prove of great service in restraining the troublesome straining diarrhoea of chronic dysentery. In the earlier stages, also, of dysentery, large emollient enemata prove useful, especially by removing the fetid discharges, and soothing the inflamed mucous membrane. In other sections, whilst treating of individual drugs, various additional uses of enemata are pointed out.

ON ACUPUNCTURE.

Acupuncture is a very successful mode of treating lumbago. It will rarely fail to afford relief, and in the majority of cases it will cure at once, though the lumbago has lasted a week, or even three weeks. It succeeds best by far in typical cases of lumbago, when the loin muscles of both sides are affected, and the pain is most severe on a to-and-fro movement. I have treated a large number of such cases by acupuncture, and find that it gives almost instantaneous relief. It is generally sufficient to run the needle once deeply, say an inch into the muscles on each side of the spine, over the seat of greatest pain. Perhaps it may be better to leave the needles for a few minutes sticking in the back, but I have hitherto found this proceeding unnecessary.
Generally, when the needles are first withdrawn, the patient says the pain is slightly eased, but presently it decreases rapidly, and in three or four minutes it is entirely gone, perhaps a little stiffness only remaining; but even this may be absent. The patient, who just before could not bend in the slightest degree without the greatest pain, who could not possibly stoop to touch his toes, now bends backwards and forwards with the utmost ease, often with a look of astonishment mingled with incredulity, as if the cure were too wonderful to be true.

Faradization of the back is in my experience almost as successful as acupuncture, though the pain more frequently returns than after acupuncture. Under either treatment it sometimes happens that after several hours of relief, the pain returns, and a renewal of the treatment may either be almost without avail, or its influence may rapidly grow less and less. Freezing the back with ether spray or with Arnott’s ice mixture is also very successful. So also is the old-fashioned way of ironing the back with a common flat iron, as hot as can be fairly borne, passed over a piece of brown paper placed across the loins. The thermic hammer, too, often succeeds in subduing lumbago. These modes of treatment I have found not so successful in the less typical forms of lumbago; for instance, if the pain on movement is restricted to one side, or is felt only on twisting or turning the body, and not on bending to or fro.

Lumbago is not uncommonly associated with sciatica or shooting pains along some branches of the lumbar nerves, sometimes the pain shooting along the skin in the front of the body, and along the lumbar or sacral plexus, which then assumes a neuralgic character. When these two pains are associated I find that it is easy to cure the lumbago, but that the sciatica or other neuralgic complication, remaining unrelieved, is far more difficult to dispose of. Occasionally, after curing the back by galvanism or the needles, the neuralgic pains give way to be replaced by the lumbago; and when the lumbago is got rid of, the neuralgic pains recur. Let me repeat that these compound cases are generally obstinate, and the neuralgic the factor most so. Acupuncture will prove useless when lumbago is accompanied by high fever, or when it is the first symptom of acute rheumatism.

It is a good plan, when rid of the lumbago, to apply to the back a belladonna or a lead, or a Burgundy-pitch plaster spread on leather, both on account of the warmth and the support it affords. The Burgundy-pitch plaster sticks closest, but is very apt to irri-
tate delicate skins, especially in warm weather, and often indeed cannot be borne. Even lead or belladonna plaster may irritate the skin, bringing out a papular or eczematous eruption, due in part to the retention of perspiration, which, decomposing, irritates the skin. By removing the plaster every few days, wiping it, and washing the skin, and then re-applying the plaster, this irritation may often be prevented, or the plaster may be perforated after the manner of Alcock’s porous plaster.

I have found acupuncture far less successful in the treatment of sciatica; in a few cases it acts no doubt as speedily and as completely as in lumbago, but this prompt action is unfortunately the exception. Some hold that it is necessary to pierce the nerve, and the uncertain results of acupuncture in sciatica may possibly be due to the needle sometimes impaling the nerve, but more frequently missing it. This treatment generally gives some, though usually very transient, relief, lasting only from a few minutes to an hour or so. In cases due to diseased spine or pressure on the nerves from abdominal solid tumours, abscesses, or faecal accumulation, acupuncture is not appropriate. The needle must be thrust in deeply, even to the bone, in various places over the seat of pain in the course of the affected nerve. When only partially successful, this treatment removes the pain along the course of the sciatic nerve, but generally leaves unaffected the pain below the knee, especially outside the ankle. Indeed, I may add, that whilst all forms of sciatica are obstinate, those cases are most rebellious when the pain reaches below the knee, or when it is restricted to the region above the sciatic tuberosity.

Dr. Dumontpallier finds that acupuncture of a spot, not the painful part, but the corresponding spot on the opposite side of the body will relieve the pain of neuralgia, acute articular rheumatism, pleurodyinia, the relief being in some instances permanent. This “corresponding spot” is sometimes tender; acupuncture over or near the seat of pain also relieves it.

Acupuncture, or incisions, into the dropsical tissues of the feet and ankles, or lower part of the calf, is an old, but now too much neglected mode of treating both cardiac and renal dropsy. Acupuncture no doubt sometimes excites erythematous inflammation, sufficient to cause the dropsical, vitally depressed tissues, to slough extensively and progressively. In one instance, I have seen the muscles not only laid bare, but dissected out, over the lower part of the calf to the extent of eight square inches, yet in this case, after the dropsy had drained away, the tissues, recovering their
lost vitality, healed, and the man left the hospital greatly improved. It is better to make incisions instead of pricks with the acupuncture needle. The incisions should be from three-quarters to an inch long, and should reach well into the subcutaneous tissue, or three or four punctures should be made around each ankle with the ordinary exploring trocar, thrust up the leg in the subcutaneous tissues for an inch or a inch and an half. The legs should be kept dependent and be enveloped in hot fomentations. The feet and ankles should also be placed in hot water for an hour night and morning, to aid the escape of serum. As hot fomentations sometimes bring out a troublesome crop of eczema, it is well to keep over the incision a moist sponge wrung out in hot water, to soak up the discharge; but unless this is very frequently changed, the dropsical fluid will surcharge and run through the sponge, therefore, the bed should be protected by a large piece of macintosh. If hot fomentations are used, they should be made with a solution of boracic acid, which tends to keep the discharge sweet, and is less liable to bring out patches of erythema or a crop of eczema. Dr. Southey's now well-known plan, is highly useful in many cases.

As the discharge quickly decomposes, and becomes offensive, the clothes and sponges used should be washed in a solution of chlorinated soda, or moistened with a weak solution of carbolic acid. These free incisions allow the easy escape of the dropsical fluid, to the relief of the distended and depressed tissues in the neighbourhood of the incisions, thus lessening the likelihood of inflammation and sloughing, which are very apt to occur after mere pricks. One incision over each outer malleolus is generally sufficient.

With incisions, though, there is not much fear of sloughing, still, as this untoward event may occur, it is better not to incise, especially with very old or very weak patients, till other methods have been tried and have failed. The benefits are prompt and striking. Serum runs freely from the wounds; so that in a few hours pints may be discharged. As the fluid runs away, of course the dropsy grows less, first in the upper parts of the body, of the the pleura, and the abdomen; hence the dyspnoea, due to hydrothorax, disappears, and the tightness over the upper part of the abdomen ceases. At last the fluid drains out of the legs, and all the dropsy is removed, and without producing depression, for the dropsical fluid from the cellular tissues, unlike inflammatory exudations, contains very little albumen; so little that it only becomes opalescent on boiling, and on adding nitric acid.
If the subcutaneous tissue is hard and bristly and will not only imperfectly, then neither incisions nor Soutey's cones will drain off any fluid. An incision, or one of Soutey's cones, often sets up irritations in the neighborhood, so that a fresh incision, or the introduction of a fresh tube, draws off no serum, but the uterus becomes blocked with a pinkish jelly-like substance suggesting the idea that the previous operations have excited inflammation which has filled the intercellular spaces with this jelly-like substance.

In cardiac dropsy it appears to me that this treatment is more beneficial when due to aortic than to tricuspid disease. In dropsy due to aortic regurgitant disease, there is a greater tendency to effusion into the pleural and abdominal cavities than when due to tricuspid disease, and the dropsy increases more rapidly. Thus, when dropsy invades the feet, it usually spreads quickly up the legs, and before the legs are extensively swollen symmetrical signs set in, embarrassing the already depressed breathing in that a heart disease, and especially in the aortic regurgitant form. In addition to the paroxysmal passing dyspnea due to the heart mischief, we have the constant dyspnea or orthopnea of hyposthenia—the orthopnea greatly predominating over the dyspnea directly dependent on the heart. The incisions into the leg drain off the fluid from the upper parts of the body, thus employing therefore the pleural cavities, and promptly removing the greater part of the dyspnea. This treatment is also useful in the dropsy of Bright's disease.

How long will it be before the fluid re-accumulates and the advantage thus gained is lost? In tricuspid dropsy as long as the valvular incompetency continues, the dropsy will recur and the rapidity of its recurrence will of course depend on the degree of regurgitation. In aortic dropsy, and the dropsy from Bright's disease, success is often much greater. In some cases, indeed, the operation often dissipates the fluid, never to re-accumulate, through more often two or even more operations at varying intervals being necessary, the fluid, each time returning less and less rapidly. In cases of very extensive dropsy, strange to say, I have known the fluid not to return, although the disease of the heart or kidneys has remained unaffected. Thus, the amount of albumen, and the quantity of urine, has remained just the same in cases of Bright's disease, and yet after draining away the fluid it has never returned. I have seen this excellent result in a case where the tissues were shiny with distension; the abdomen largely distended with fluid,
and the albumen on boiling occupying half the test-tube, yet, after draining away the dropsy by incisions, the fluid never re-accumulated, though the proportion of albumen continued the same. This patient remained free from dropsy more than six months after the operation.

“COUNTER-IRRITATION” OR THE INFLUENCE OF “LOCAL” AGENTS ON DISEASE.

That local applications are capable of external topical controlling disease, I believe few practical men will be inclined to deny, though from time to time on this point some scepticism finds expression.

The influence of local applications is transmitted in three different ways.

1. By mere contact.
2. The active principle of the topical agent may pass deeply into the tissues and affect the deep parts.
3. The influence may travel through the nervous system along afferent nerves to the nerve centres and be thence reflected to distant parts.

The spread of disease by mere contact is evidenced in that form of ulcerative stomatitis affecting the edges of the gums, when the cheek and tongue opposed to the inflamed and ulcerated surface become inflamed and ulcerated; and similar extension of inflammation and ulceration by mere contact is witnessed in the spread of non-specific, as well as specific, sores from the glans to the prepuce, or vice versa; and likewise when we find a group of tubercles on the pulmonary pleura, formed also on the opposite costal pleura, the morbid process having extended from one surface to the other, without the intervention of adhesions between the pulmonary and parietal membranes.

The second means of extension by the passage of the active principle of the local application to deep parts is probably sometimes exemplified in the case of blisters, &c., for Dr. Inman and others have shown that blisters, and other counter-irritants, applied to the chest or abdomen, will in some instances excite inflammation of the corresponding part of the pleura or peritoneum; again, an irritant, applied to a knee distended by synovitis or rheumatism, increases the distension for a day or two.

By the third means pointed out we affect distant parts not textur-
ally connected with the tissues to which the topical agent is applied, except through the nervous or vascular system. In this way we can influence distant parts both in health and in disease. If in a state of health, as Brown-Séquard points out, we irritate the skin over the kidneys, the renal arteries will contract; and cold applied to a part of a bat’s wing will cause contraction of the vessels of the corresponding part of the opposite wing. Irritants like snuff applied to the nose excite sneezing, and ipecacuanha by its effect on the terminations of the nerves of the stomach excites nausea, a complex act, involving not only an elaborate co-ordinated muscular movement, but also increased secretion of the salivary glands and of the mucous membrane of the bronchial tubes. There are many other well-known physiological instances of the production of distant effects by means of a topical application.

The remote effect of a topical agent is made manifest in disease in a twofold manner:—(1), by the irritation produced by a given pathological condition; (2), by a medicinal application. The effect of a pathological topical irritant is shown in the following examples:

The influence of a local irritation in the production of neuralgic pains at a distance from the starting point is well exemplified in neuralgia of the various branches of the fifth nerve from a diseased tooth. Cases are on record where irritation of one nerve has excited neuralgia in another nerve anatomically unrelated to it; for instance, injury to the ulnar nerve has produced neuralgia of the fifth. Various serious nutritive changes may take place over the secondary seat of pain, the implicated tissues becoming red, swollen, very tender, and even indurated, and neuralgia of the temple often turns the hair of that part rapidly grey, whilst neuralgia of the eye leads to serious inflammation, sometimes even to ulceration of that organ. Secretion, too, may become modified; thus each paroxysm of pain may increase, diminish, or alter the salivary or lachrymal secretions.

The effects of a medicinal application in disease is well exemplified in the following instances:

The application of aconite ointment over a painful neuralgic nerve often relieves distant neuralgia, and sometimes sickness. (See Aconite). For instance, we often find a case of neuralgia of the ophthalmic branch of the fifth nerve followed in some hours by neuralgia of the auricular or occipital nerve. Here the ointment, by relieving the supra-orbital pain, will prevent the neuralgia of the other nerves. Again, in neuralgic sick headache, this ointment, by abolishing the supra-orbital pain, which often radiates far above the brow, will prevent the consequent sickness.

The influence of a topical remedy travelling through the nervous system will affect distant diseased parts in two ways:—1. It may act through a healthy nervous system; 2. It may modify or remove
disease of the central nervous system, and so remove or lessen the
effects of that disease manifested on a distant part.

I have already exemplified the first means of reaching disease
through the healthy nervous system, and will attempt to show that
it is probable, or at least feasible, to infer that in various ways we
can modify nutrition, secretion, &c., according to the nature of the
application, and that we may hope in time to apply our local reme-
dies with far greater precision than heretofore so as to increase,
check, or alter nutrition or secretion and to control diseased
changes.

I will first consider the influence of topical applications on dis-
tant parts through the healthy nervous system, starting with the
general proposition—that by means of local agents we can induce
in the central nervous system a measureless variety of changes.
First I draw attention to the fact that sensory nerves can convey a
great variety of impressions, and must produce a corresponding
variety of impressions on their nervous centres. Trophic nerves,
or if there be no trophic nerves, then some other nerves minister-
ing to nutrition and secretion modify these processes in manifold
ways, and so must be capable of transmitting various impressions.
These varied influences on nutrition depend, of course, on the con-
dition of the nervous centres; and if we are able variously, and in
different degrees to influence these nervous centres, we may fairly
expect, in many modes and in different proportions, to modify nutri-
tion and secretion in distant parts supplied by the trophic nerves.

The nerves of sense will amply illustrate the numberless inde-
pendent impressions transmissible by the nerves.

(a). Smell. The odour of two kinds of flowers is never alike, and we can detect
one kind of flower from another by its scent.

(b). Sight. The great variety of shades of colour in nature, every species of
plant, for instance, having its distinctive shade.

(c). Hearing. No two voices are alike; moreover, in sounds, we can detect
gradually, an infinite variety of timbre, or quality of sound, as apart from intensity
and pitch.

(d). Taste. We can discriminate savours in an endless variety.

(e). Touch. We know most objects by tactile perception. The same nerve
can convey infinite varieties of pain; indeed, it is probable that an identical pain
does not occur twice over in two separate illnesses, or in different individuals.

If the doctrine of "specific energies" or "specific function" of nerves should
turn out to be correct, it must be admitted that much of the argument in this
section will lose its force.

According to this doctrine, the difference between nerves depends on the differ-
ent constitution of their end-organs, or their peripheral and central terminations.
To take the case of the eye:—The peripheral end-organ of each fibre can receive
CO xTER-IRITAT ION.

In impression from one colour only. other colours being incapable of exciting an impression on that nerve termination: a nerve termination whose function it is to be excited by yellow, being incapable of an impression of blue, etc. These compound colours are split up into simpler colours, and so combined in the sensation. The same is supposed to be the case with sound, certain sounds being decomposed into its components. In the argument of this section, I have attempted to show that each nerve can receive and transmit to the brain a great variety of impressions, and that the trophic and sensory nerves can thus carry a great many impressions, and not merely measure or increase the activity of secretion or nutrition (oxygenation of tissue, but these phenomena cannot modify the nature of the compounds formed in these two processes.

Supposing that a nerve-end can receive, and therefore can conduct only one kind of impression, it is hard to explain how we can detect different qualities of sound. We distinguish one instrument from another, say the violin from another, by the quality of its sound. Again, how can we explain the great varieties of pain? Is each distinctive pain conducted by a separate nerve, and in thus conducting nerves differ from the nerves conducting physiological sensations?

We see, therefore, that within its natural sphere each nerve can convey an almost endless variety of impressions, which must induce a corresponding variety of changes affecting the terminations of the nerves, the nerves themselves; their nuclei and the sensations: in other words, every kind of sensation excites a different molecular arrangement in the nerves and their nuclei. Applications to the skin of mustard, cantharides, aconite, veratrum, etc. each produces a distinct characteristic sensation, each determines a distinct molecular arrangement in the nerves and their nuclei.

I may be allowed to add, that to me it seems inconceivable that a nerve called nervous, whether electric or not, there can produce the measurement variety of sensations we constantly experience. For a variety in the quantity and intensity of the current would simply modify the sensation in a corresponding degree. A great variety of sensations must, therefore, be due to a varying molecular arrangement in the nerves and their nuclei. But if impressions are conveyed through nerves by currents, there must be an endless variety of these currents, which induce or depend on different physical states of the nerve.

Nutrition and secretion then, as we have seen, may be variously modified by the state of the central nervous system. Thus neuralgia of the fifth may cause inflammation or thickening of the skin; or the hair to grow thick and brittle, or to turn grey; or it may cause ulceration of the cornea, or wasting of the retina; or induce thickening of the fibrous tissues; or, check, or control, or probably alter, the lachrymal and salivary secretion. In the case of the salivary secretion, patients sometimes say that the taste of the spittle is different from that of health, showing that its quality is changed. We have seen that in various ways neuralgia may
modify nutrition and secretion. These modifications must depend on different impulses conveyed by the nerves, and these, in their turn, on a different molecular condition of the nucleus, or part of the nucleus.

If, in disease, various remote effects on the nutritive and secretive processes take place, according to the occurrence of various changes in the central nervous system, it seems reasonable to presume that we may likewise, in many different ways, armed with the power to influence distant nutrition and secretion, fairly hope in time to be able to choose with precision a local application adapted to the nature of the distant change we desire to effect, instead of, as now, prescribing in a more or less haphazard fashion.

Next, I shall consider the influence of local applications on the central disease of the nervous system, and the modifying and controlling effects of these agents on disease at a distant part.

Various diseases of the central nervous system manifest distant morbid effects. Thus, in neuralgia, as of the fifth, we have pain referred to that nerve, with nutritive changes in the territories supplied by it. In migraine we have pain referred to the fifth with nausea, sickness, perhaps slight jaundice or diarrhoea, or constipation; in asthma we have severe dyspnœa; in intermittent hay-asthma, as it has been called, we have energetic and repeated attacks of sneezing; and in epilepsy, violent convulsive movements of the whole or part of the body. These diseases, in many instances, we are able more or less to control by local applications, which, by their impressions travelling along the nerves, arrest or modify the diseased central changes, and so modify or avert the symptoms.

The effect of local impressions on the central disease, I will consider under two heads:—

1. The influence of distant morbid irritation on the central disease.

2. The influence of local applications.

Under these two heads I will speak of neuralgia, asthma, migraine, and epilepsy.

With regard to neuralgia, a few preliminary remarks seem needful. By violence, the application of irritants, etc., to the terminations of a nerve, we of course excite pain, and the consequent phenomena follow in this order; the irritant, by producing certain molecular changes in the terminations of the nerves, induces similar changes in the nerve trunk and in its nucleus, changes which thence extend to the sensorium, and on removing the cause
of pain, the molecular arrangement reverts to its original condition and the pain subsides. In every instance of pain, however produced, molecular changes may involve the nuclei of nerves, or the centripetal fibres passing from them to the sensorium, and these molecular changes must be similar to those occurring in a normal non-painful sensation.

These painful molecular changes of the nucleus may be produced by (1) affection of the nerve in connection with the nucleus; (2) by disease involving, but not destroying the nucleus; (3) by impressions conveyed by a nerve unconnected with the nucleus, which impressions spread beyond its own nucleus; or leaving its own nucleus unaffected, produce changes in a part which is not directly connected; (4) by morbid matters in the blood.

Pain depends on a molecular change different from that of health but of the same nature. Thus, for the production of pain from any cause, the composition of the nucleus must remain undestroyed; for, were its composition altered, we should fail to get these molecular combinations necessary to excite any sensation, whether natural or painful. The nerves, it is evident, cannot excite molecular changes in the nucleus if it is replaced by a morbid growth of any kind. One exception there is, however, to the foregoing statement; thus a new structure like fibrous tissues, tubercle, or cancer, replacing the nucleus, may act as an irritant to the centripetal fibres going to the sensorium, effecting in it molecular changes producing a sensation of pain. With this exception, so slight must be the alteration of the nucleus in neuralgia, that, with our present microscopes, or chemical tests, we can hardly hope to detect it.

Most authorities, I know, hold that the condition of the nerves and of their centres is the same with a painful as a normal sensation, pain, indeed, being "a gradual increase of the feeling that accompanies every sensory process," and "every increase of ordinary sensory stimuli is capable of producing pain as soon as it attains a certain intensity." Pain, in fact, is stated to be an excessive normal sensation, not different in kind but only in degree from the molecular conditions of the nerve and its centre from those occurring in a natural sensation. Hence pain must always be stronger than the maximum normal sensations of the nerve. Now I venture to suggest some considerations in favour of the view, that the condition of the nerve and its centre is different in kind to their condition during a natural sensation.

It must be admitted that a nerve and its centre can assume molecular arrangements different from those which occur during a natural sensation. The physical condition of a nerve and its sentient centre must be different in itching or formation from their condition during a natural sensation. Itching or formation is generally a sensation far too feeble to be accounted an exaggeration of a natural sensation. The condition of nerve and centre must differ altogether from the condition of a natural sensation.
We may have painful formication and painful itching, but the sensations are still of the same character as formication or itching of a weak kind. We can easily detect that either differs only in degree. I am inclined to maintain that this is also the case with pain which may be so slight that it can scarcely be felt, though so distinctive in character that we correctly call it pain of the same kind as a thoroughly painful sensation. Thus, to appeal to my personal experience, I am certain that in the same nerve, as, for instance, the supra-orbital branch of the fifth and the sciatic, within a few minutes I have felt severe pain, and soon after an exactly similar sensation, but so slight as to be scarcely noticeable. I believe that pain, like itching or formication, may be of any degree of intensity; so weak as scarcely to be perceptible, or so strong as to be unendurable. It can hardly be maintained that the slightest forms of pain are excessive natural sensations, for on this supposition no pain should ever exist which is not an excess of a natural sensation.

I now present a case which to me seems interpretable best on the supposition that the condition of the nerves and their centres is different in pain from their condition during a normal sensation.

A gentleman suffered from a severe attack of herpes on the left side of his neck, back of head, upper part of chest and back, the eruption coming out in crops, each crop being preceded by very severe neuralgic pains. On recovering from the herpes he was seized with attacks of agonizing itching, lasting about a quarter of an hour, just over the neuralgic tract. The application of a very hot sponge would always allay the itching, but till the paroxysm passed away it would shift to another nerve, and being driven from this it would fix on a third, and so forth. With the attacks of itching he had occasional but not at all severe shooting pains in the regions affected with the itching.

Now it may be said that during the neuralgia the nerves, or more probably their centres, were in an excitable condition, so that a normal sensation was felt as pain. But this interpretation will not explain the terrible itching; here there must have been a different molecular arrangement in the nerve centres. I submit that the evidence tends to show that the pain was also due, not to an excitable condition, but to an altered molecular arrangement, and that the molecular arrangement again underwent a change concomitantly with the onset of the painful itching.

I may refer to Dr. Anstie's well-known argument in favour of the view just advanced. If pain is due to an excitable condition of the nerve or its centre, natural sensation should be heightened over a neuralgic tract, whereas the opposite condition is often observed, the normal sensation in the neuralgic territory being in many cases greatly blunted.

If then, bating the foregoing exception, change in the nucleus must occur in every case of pain, how does one painful disease differ from another? There are differences which a mere alteration of the molecular arrangement cannot explain, for in painful diseases, if there is merely a different arrangement of the molecules, pain would differ only in character and intensity, one being shooting, another throbbing, another boring, besides other differences not to be accounted for by mere differences of molecular changes, travelling by afferent nerves, involving their centres. Neuralgia
COUNTER-IRRITATION.

In many ways differs from other pains;—for instance, an irritation affects not only the parts of the nucleus connected with the nerve along which the effect of irritation travels, but the effect diffuses itself over other parts involving more or less every part of the ganglion, and even beyond it; thus, a carious tooth transmits its pain along its sentient nerve to the nucleus, and the impression diffuses itself through the whole or part of the nucleus of the fifth nerve. This is the case, too, with other nerves. Nay, the influence extends beyond the nucleus involving other nervous centres, producing vaso-motor changes, and, if there are separate trophic nerves, their centres also. It may, indeed, reach motor centres and produce spasmodic contraction of the facial muscles as an epileptiform tic. In traumatic and strychnia tetanus we have a good instance of the diffusion of the impression beyond its own territory; in this disease a change occurs in the cord, which enables an impression on a nerve to diffuse itself throughout the cord, producing general tetanic contractions.

It may be urged that the extent over which the impression diffuses itself is attributable to its violence, but in other forms of pain, even the most severe, due to violent causes, we find that as a rule the effects do not spread, but the pain is limited to the injured part; the molecular changes induced by the irritation being limited to that portion of the nucleus in nervous communication with the irritated and painful part. Partial exceptions there are, no doubt to this statement, for persons endowed with what is termed a sensitive nervous system, do undoubtedly feel pain over an area much wider than the part hurt. Neuralgia is very apt to occur in these constitutions. That the diffusion of the pain in neuralgia to unirritated regions is not due to the violence of the irritation is conclusively shown in many cases of severe neuralgia of the fifth, where the slightest touch of one point, even of a hair, will induce a severe paroxysm, involving many branches of the nerve. Nor is the diffusion of the pain due to the exalted condition of the irritated nerve, so that a slight irritation may cause it to transmit a very powerful impression; a fact clearly shown in a case recorded by Dr. Anstie, where injury of the left great occipital nerve caused neuralgia in the fifth, and where the slightest pressure over the damaged nerve induced very severe pain in the forehead and face, although the pain at the point irritated was not greater than would have occurred in health, showing that the impression conveyed along the injured nerve was by no means great, or considerable changes would have been produced in its own nucleus with corre-
sponding pain, and yet the impression was adequate to excite severe pain in many branches of the fifth. This case, too, proves conclusively that the seat of neuralgia is not inherent solely in the nerves, but depends on the condition of the nervous centre, for were only the nerves at fault, the neuralgic pain should be felt in the diseased nerve itself—not in the territory supplied by another nerve. This want of isolation of molecular change to the portion of the nucleus in nervous connection with the part producing it—this diffusibility of molecular change—must be due to some altered condition of the nervous centres. This defect is common to diseases allied to neuralgia.

Thus, to sum up, we have seen that a diseased tooth, bone, or other irritant, incites molecular changes in the nucleus of the affected nerve, producing the sensation of pain; that, owing to a defect, the nature of which has hitherto remained undetected, the influence extends beyond the part of the nucleus in connection with the affected nerve, so that the molecular alteration involves a greater part of the entire nucleus, so that pain is referred to parts supplied by unaffected nerves. Indeed, the influence of the irritation may extend beyond the nucleus of the nerve to neighbouring parts, and these, exciting molecular changes, may produce distant motor or vaso-motor and trophic changes. Thus, a diseased tooth, etc., may cause molecular changes in the whole nucleus of the fifth, producing pain referred to every branch of that nerve, nay, the influence may extend and involve the nucleus of the seventh nerve, inducing spasm of the facial muscles. Further, it is well known that various nutritive changes may occur at the seat of the referred pain, showing that an influence is propagated, either along the sensory or trophic fibres from their nucleus, to the periphery: thus, over the seat of referred pain, various changes occur; the hair may turn grey, or become coarse and brittle; the skin become altered, or even inflamed, and assume an appearance much like erysipelas (Anstie); or the eye may become inflamed, or the retina diseased, so as to damage the sight.

The influence of the nerves is supposed to be shown in the case of herpes zoster. Here the patches are seated along the course of an intercostal nerve, the patches and vesicles having even their long measurement in the direction of the nerve. The same thing is sometimes observed in other rashes like psoriasis. In these cases the rash is supposed to be produced by some alterations in the nerve. I think another view may be plausibly maintained, that the nerve does not produce the rash, but only determines the direction it shall assume. This is certainly the case with some rashes, as, for instance, that of chicken-pox. Though the rash is, without doubt, due to a specific poison, still the vesicles and patches of redness
and them are influenced by the intercostal nerves. Thus on the face, extremi-
ties, back and front of the body in the middle line, the vesicles and the attendant
plaques are round, but on the sides of the chest and abdomen, both the vesicles
and the redness are oval, the long axis of the vesicles and patches of redness run-
ing in the direction of the intercostal nerves, being quite athwart the chest above,
and oblique at its lower part. They are also athwart the loins. The same is seen
in the scars from small-pox. These are oval, with their long axis athwart the
chest, and oblique in the direction of the nerves on the lower part of the chest, and
over the abdomen, whilst they are round over the spine, the sternum, and on the
face and extremities.

Now, in these instances, it can hardly be claimed for the nerves more than that
they determine the shape and direction of the vesicles, and the redness.

It is a rather curious circumstance, that during the continuance
of the neuralgia, whilst the original irritant is in operation, various
minor influences will excite paroxysms of pain. In neuralgia from
a diseased tooth, or diseased bone, etc., irritation of other branches
of the fifth will produce a paroxysm, even a breath of cold air on
the face, or the touch of an object. In each case the paroxysmal
excitants are few in number, though cold air may bring on a para-
oxysm, perhaps pinching, or other irritation of the same spot is
inoperative. On removing the primary cause of the neuralgia, the
attack ceases, and then irritation of other branches also fails to
induce a paroxysm.

We have just seen that, during an attack of neuralgia, the para-
oxysms are induced, at least in many cases, by only a few irritants.
Thus, in some cases, hot things in the mouth always excite a para-
oxysm, in others, only cold things; again, in some instances, a
breath of cold air on the face brings on a paroxysm, whilst in
others, cold air relieves, and warmth excites the pain, yet any
other kind of irritation to the same nerves, produces a natural
sensation and no pain, and is felt only over the seat of application.
It thus appears that only certain, and often a very limited number
of impressions, peculiar to each case, can induce that molecular
change, which, diffusing itself through the nucleus, causes the para-
oxysm of pain, whilst other impressions induce only natural mole-
cular changes, exciting normal sensations, felt merely at the point
of contact. This fact is strikingly illustrated by the difference
between the effect of aconite, and the impact of cold air. A breath
of cold air will raise a severe paroxysm, felt throughout the territ-
ory of the nerve, whilst the aconite will excite tingling, restricted
to the area of its application, not distributed throughout the neu-
ralgic tract; showing that the nucleus does not allow all molecular
arrangements to spread throughout it, but those only of a certain
character, varying in different cases. It may be said that the impressions producing the paroxysm, are stronger than those which induce only a local and natural sensation; but this cannot be so, for in a case of neuralgia, the slightest exciting agent may be sufficient to produce the pain, whilst powerful irritation will not, as a rule, induce a paroxysm, but only characteristic sensation of the irritant at the point of contact, though, in some severe cases, almost any irritant applied over the terminations of the nerve will excite the paroxysm.

In those cases, therefore, when only certain kinds of irritants, like cold or heat, will induce the paroxysm, other applications of irritant agents will excite simply their own characteristic sensation at the point of contact. It appears that one of two views is open to us:—either from some alteration in the nerve, an impression capable ordinarily of exciting a natural non-painful sensation, induces in its stead, morbid molecular changes, and these travelling to the nucleus elicit there similar changes which excite pain, and (through defect of the nucleus) extend beyond that part in connection with the irritated nerve:—or, it may be, from a disordered harmony between the nerve and its nucleus, certain natural molecular combinations produce a different and abnormal one in the nucleus; in fact a painful molecular arrangement. In other words—Is the disease in neuralgia confined to the nucleus, or is the nerve likewise affected, so that, in the nerve itself certain impressions produce unusual, painful, molecular arrangements?

At first sight it might appear that most cases where injury of one nerve produces neuralgia in another not anatomically related to it, as, for instance, where injury of the ulnar causes neuralgia of the fifth* and disease of the great occipital, trigeminal neuralgia,

* Neuralgia of the fifth affords sometimes an illustration of a nerve causing neuralgia whilst it is not itself the seat of pain, for we often meet with facial neuralgia due to decayed teeth, though about the teeth themselves there is no pain nor tenderness.

might assist us in settling this question. Thus where pressure or other irritation on the wound of the ulnar nerve excites a severe paroxysm in the fifth, it may be argued that the impression must produce an abnormal molecular arrangement in the ulnar nerve itself, and that only this particular arrangement is capable of exciting pain in the fifth, for if irritation of the ulnar nerve excited only a natural molecular arrangement, we certainly should expect that the identical application to the branches of the fifth nerve would induce a paroxysm; but this expectation is unfulfilled, for
COUNTER-IRRITATION.

While pressure on the ulnar wound will excite the paroxysm, pressure on the terminations of the fifth nerve produce no such result. On the other hand it may be said, that if the impression on the cicatrix of the ulnar nerve induces an abnormal and painful molecular combination which excites an identical arrangement in the nucleus of the fifth, yet surely the impression would excite a corresponding arrangement in its own nucleus and produce pain in the region of the ulnar nerve; but this is not the case, as the impression on the ulnar nerve is felt in a natural degree. The foregoing question therefore cannot at present, I think, be answered, but its non-solution does not affect the proposition concerning the power of local applications in neuralgia to modify the central molecular arrangement. To this subject, after the preceding rather long digression, I now turn to attempt first to show that—

By "local applications" to the trunks or to the ends of nerves we can prevent the pain-giving molecular arrangement of the nucleus.

In the previous section we saw that in neuralgia, and probably likewise in asthma, in megraine and in epilepsy, there is an affection of the central nervous system whereby the impression made on the nucleus spreads itself through or beyond it; and thus the nucleus, under certain irritation, is liable to assume a painful molecular arrangement. This arrangement and consequent attacks of pain are generally, if not always, brought on by a distant local irritation conveyed to the nucleus. Experience shows us that this morbid process often takes place, and we may fairly conclude that it probably always takes place, for it is difficult to understand how any change in the condition of the central nervous system from static to dynamic can take place spontaneously. The change must be brought about by the effect of "irritation" conducted to the nucleus. No doubt the proneness to an attack varies, and with neuralgia, epilepsy, asthma, and megraine, it often happens that during a long interval between the seizures, the facility with which the dynamic changes take place in the nervous centres become intensified, so that a very slight cause will precipitate an attack. By removing the irritation, as by getting rid of an irritating tooth in neuralgia, the paroxysms of course subside, but the central condition remains unaffected. These cases then we treat by searching for the exciting cause, and when this is undetectable, or when though detectable irremovable, local applications will yet do much good, sometimes will remove the irritating cause, but oftener by influencing the central nervous disease. Among the numerous
examples of the efficacy of local applications in checking the pain of neuralgia, we may instance galvanism and aconitia. Galvanism induces in the nerves an altered molecular arrangement, which travelling centrally, excites in the nucleus a corresponding condition which effaces the molecular arrangement, giving rise to the sensation of pain, and substituting for it the galvanic sensation, and aconitia will in like manner produce a peculiar and characteristic molecular change, which, replacing that present in the nucleus, will change the pain to a tingling sensation.

It is sufficient in most cases to apply the galvanism or the aconitia, etc., over the seat of greatest pain.

The molecular changes so induced will abolish the painful molecular arrangement throughout the nucleus and thus arrest pain parts beyond the area over which these agents have been applied. The tingling of the aconitia or the galvanic sensation is felt only in the part of contact, not over the whole of the painful tract, showing that, whilst controlling the painful molecular arrangements throughout the whole or greater part of the nucleus, the topical agent itself induces only its own peculiar molecular arrangement in that part of the nucleus in direct connection with the nerves to which is applied; affording thus a good illustration of the fact, already noticed, that only certain impressions (molecular arrangements) have the power to diffuse themselves through the nucleus, in other words, to excite paroxysmal pain.

In some cases, however, the pain-exciting conditions are more powerful than the effects produced by the local medicinal applications. It may happen that disease of the nerve, or in the immediate neighbourhood of the nucleus, or an impression conveyed by a nerve unconnected with the nucleus, may predominate over the effect of the local medication, when the pain will remain unaltered. The local agent is then imperfectly felt or is entirely unfelt, or it may even increase the pain; thus it is well known that, unless it suppress the pain, medication over the territory of a painful nerve is very imperfectly felt, though it must be admitted that impressions on the terminations of a painful nerve are appreciated though imperfectly. In a paroxysm of severe neuralgia, the tingling produced by aconite can be discriminated even at the seat of pain, at least so say patients, though they may be in error; they may attribute the tingling in a neighbouring twig to the implicate region. It is probable, however, that impressions can be left over the seat of pain.

Now as it is impossible that the same molecules should sin
Alternation along the same nerve and are appreciated, but intermissions being so rapid and brief, each sensation seems anomalous. The local application by removing the central condition causing the neuralgia, of course prevents those secondary sensations of neuralgia, which have been fully described, and thus I shown that "local applications may modify or remove disease of central nervous system, and so remove or lessen the effects of disease at a distant part."

Asthma.—The following remarks are applicable only to those of asthma due to affection of some part of the nervous system.

Asthma affords many instances of a distant local irritation affecting the nervous system strong contraction of the circular fibres of the bronchial tubes. These local exciting causes act through part of the nucleus of the pneumogastric nerve, or through part of the pulmonary ganglia, irritation being seated in some instances in part of the pneumogastric nucleus, in others in the pulmonary ganglia. When constipation, or uterine derangement, excite the paroxysm, local effect must be transmitted through the pneumogastric nerve. Even in bronchial asthma the pneumogastric nucleus is notably affected rather than the pulmonary ganglia, for in this case food aggravates the spasm and even induces it, though it be considered that bronchitis produces the disease itself, for being absent, food does not tighten the breathing.

The effect of distant irritation in asthma, shows itself only in circular contraction of the bronchial circular fibres. Probably,
still retain its organization sufficiently to undergo molecular changes in response to the nerves, for if the nucleus were disorganized, these irritants would produce no effect on it, and there could not result any spasm of the bronchial tubes.

There is in asthma, apparently, not abnormal, but simple excessive action, the nucleus being excited into undue action either by causes which produce but little spasm, or by causes which in health produce no spasm at all. Thus, in bronchial asthma, a mild attack of bronchitis is sufficient to induce powerful spasm, and as the bronchitis is general, a more increased susceptibility of the nucleus, whereby a slight excitant producing excessive action may constitute the whole disease. In other instances, however, an impression conveyed to the nucleus diffuses itself, and involves other parts of the nucleus. From the ingestion of food, or the presence of a faecal accumulation, or hepatic derangement, an impression is conveyed to the pneumogastric nucleus, and thence extends until it involves the nucleus proper to the lung. Indeed strange to say, the effects are reflected solely to the lungs, and not back to the stomach nor, as a rule, to that part of the nucleus appropriated to the heart, though in some cases food may induce palpitation or irregular action, in which case the lungs are usually unaffected. Thus we see that the diffusibility of the afferent impression, as in neuralgia, constitutes at least in many cases, a great part of the asthmatic affection itself.

The local causation of asthma through the nervous system is well exemplified in cases where the paroxysm is induced by food, constipation, uterine derangement, emotion, and in the singular case narrated by Salter where cold applied to the instep always provoked a severe attack of asthma.

It is an interesting and important practical question whether the disease is situated in the pneumogastric nervous centre only, or whether there is likewise an affection of the nerves, which enables them to propagate and convey the particular impression competent to excite the paroxysm. There are reasons for thinking that in some instances there is a special condition of the nerves: thus in the curious instance just mentioned where cold applied to the instep excited an attack, the cold would seem to have produced a peculiar molecular arrangement in the nerves competent to excite the paroxysm; for if the impact of cold excited the usual change in the afferent nerves we should expect that cold applied to other parts of the body would equally excite the paroxysm, for between the afferent nerves of the feet and the pneumogastric nucleus there is no more connection than between it and the other superficial afferent nerves of the body.
In many cases only a particular kind of impression, or molecular change in the same nerve, will excite the paroxysm; in some cases ipecacuanha or hay will excite a peculiar kind of irritation of the mucous membrane which induces changes in the nerves capable of exciting the nucleus to the production of a paroxysm, whilst other kinds of irritation, as that from bronchitis, from cold, etc., fail to induce a paroxysm.

Migraine.—I shall have occasion to speak of migraine much more concisely than of neuralgia, since many of the comments on neuralgia and asthma are equally applicable to migraine. Like neuralgia and asthma, there is in this disease an affection of the central nervous system, which, so to speak, remains dormant till roused into action by some "irritant;" that is the affected centres exist in the static till stimulated into the dynamic condition. Owing to the great variety of exciting causes, operating differently on different persons, changes take place in a large tract of the central nervous system, the extent varying in different individuals; thus, these changes may commence in the centres for sight, then radiate to the intellectual centres, the centres for speech, and passing downwards and backwards, involve at length the nucleus of the fifth nerve and the centres for vomiting. The symptoms of course will depend on the regions affected; when the centres for sight are implicated there will be spectra, etc.; if the intellectual centres, then depressed mental activity; the nucleus of the fifth nerve produces supra-orbital pain; and the nucleus for vomiting excites nausea and sickness. These are the parts most frequently involved.

The distant effects produced by local conditions, generally supra-orbital pain and vomiting, are well exemplified in an attack of migraine, which may be excited by intellectual or emotional excitement, by straining the eyes, by indigestible food, by derangement of the liver, constipation, the catamenia, and by derangement of the womb.

Whilst on the one hand central changes will produce distant effects, so on the other hands the influence of local medicaments in correcting the central affection, and so controlling the attack, is very manifest. On the commencement of the attack aconitia or veratria ointment rubbed over the seat of referred pain, that is over the brow, will relieve the pain and restrain the further extension of the central changes, and will prevent or check vomiting.

In migraine accompanied by derangement of the stomach, bowels or liver, it is often said that it is useless to gives medicines to act on these parts, since these disturbances, which occur only
during the attack, are produced by the affection of the central nervous system; but if local applications to the seat of the pain itself will arrest both this pain and the concomitant intestinal derangements, there is no reason why remedies which may effect the termination of the other sympathizing nerve, namely the pneumogastric, should not modify the change in the nervous centre likewise, so as to control the supra-orbital pain. In fact, I have no doubt that in certain cases remedies which correct the gastric, hepatic or intestinal derangement (see Podophyllin), will considerably curtail the paroxysm.

The influence of local applications on the central nervous system, is well illustrated in some cases of epilepsy preceded by an aura. Here a local application to the seat whence the aura apparently departs, arrests the threatened epileptic attack. It may be objected that the aura starts from the extremity of the nerve and travelling to the brain excites the epileptic paroxysm, and that the local application by arresting the aura prevents the exciting cause of the epileptic attack: but I believe it is now very generally held that the aura itself depends on central changes, that the peculiar senation, as of some impression travelling up to the brain, must be included in the category of referred sensations.

We may thus concisely summarize the preceding somewhat discursive argument:—

The central nervous system exercises a constant control over nutrition and secretion.

The nervous system does not merely increase or lessen secretion and nutrition, but modifies multifariously their chemical (molecular) changes, as is well exemplified by the manifold influence of neuralgia on nutrition.

By means of agents applied to the periphery we can produce in the central nervous system changes similar to, or identical with, those which take place in neuralgia, and inferentially we can probably, in a similar way, influence nutrition and secretion.

The nature of the change in the central nervous system differs according to the nature of the topical application, and so its influence on nutrition and secretion will vary, leading us to hope that we may hereafter be enabled to select a special topical agent adapted to the precise distant effect on nutrition or secretion we may desire to produce even on the healthy nervous system. In disease of the central nervous system, we can also influence distant nutrition and secretion, for in many nervous affections these functions become much modified or even suppressed.
These effects, resulting from morbid central changes topical agents, through their impression on the afferent nerves, will diminish and sometimes even eradicate. Neuralgia, asthma, migraine, and epilepsy are notable examples of disease in which the modifying and distant influence of topical agents on the central morbid affection is abundantly manifest.

Cantharides applied to the surface of the body soon excites tingling, smarting, and a sensation of heat; the papillae of the skin quickly become reddened and raised; next, in a variable time determined by the strength of the application, on these papular elevations minute vesicles form, which gradually enlarge, and by their lateral extension soon coalesce, so as to form blebs of various sizes, filled with a fluid rich in albumen, and generally containing some fibrine.

It is of great importance to bear in mind that the effects of these applications are very different according to whether extensive vesication is produced or simply reddened skin, with the formation of a few small miliary vesicles. Dr. Graves insisted on the different and even opposite effect of blisters, according to the degree of their action. The primary action of a blister is that of a stimulant to the body generally, and to the individual organs in whose neighbourhood it is applied; but if allowed to remain long enough to produce much vesication, and to form large blebs, it depresses the bodily powers in proportion to the amount of serum withdrawn from the vessels, and so lost to the system,—a lowering effect often exemplified in weakly people, who, through the abstraction of serum, are apt to remain weakened for several days. As the serum of blisters contains almost as much albumen as the blood itself, we might as well bleed the patient to the same amount.

Should it be held desirable to reduce somewhat the patient's strength and to produce simultaneously a counter-irritant effect on any of the individual organs or tissues of the body, then a blister may be applied, even to vesication; but as the good effects of blistering are for the most part ensured by a milder measure, treatment so energetic and so depressing is seldom called for.

Dr. Graves commonly employed blisters as a general stimulant in certain critical conditions. In acute diseases, as the idiopathic fevers and inflammations, a patient sometimes already much prostrated, drifts into a dangerous, apathetic, and unobservant state, which goes on till it reaches even partial insensibility or coma, so that he can be roused only with difficulty, and then wears a stunned, stupid, vacant aspect, understanding very imperfectly what is said to him. With this depressed mental condition the body generally
sympathizes, its functions becoming more and more languidly performed, till those necessary to life altogether cease. It is a condition which may be compared, not inaptly, to that produced by opium-poisoning, where the partial coma produces a lethargy in the functions of the body, their activity diminishes as the coma continues and deepens. Now a patient in the partially comatose state of which we are speaking, gets no true and refreshing sleep; yet sleep is urgently needed, and an opiate and plenty of stimulants carefully given, often produce a refreshing slumber, out of which the patient wakes strengthened and much improved. (See Opium). When the functions are very languidly performed this blistering treatment may well precede the use of opium.

In this precarious condition, it is essential to rouse the patient from his lethargic state. This accomplished, the bodily functions will act with renewed force, and he will pass from imminent danger to comparative safety. Large blisters or mustard poultices should be applied for a short time in quick succession to various parts of the body; for instance, to the chest, the abdomen, and to the thighs and calves. The great value of flying blisters in these circumstances will be the better appreciated if we bear in mind that the critical condition just described generally occurs near the end of an acute illness, when, if the patient can be kept alive for one or two days, the near danger of death passes away, acute diseases having a definite duration, so that if the patient can be sustained to this point his life may be saved. Counter-irritants by rousing the patient, and spurring the flagging vitality, may rescue an almost hopeless life.

Preparations of cantharides may be applied as stimulants of special parts of the body; for instance, when with a general condition like that just described, there is fear of hypostatic congestion of the lungs, or of pneumonia, in which such congestion often ends, flying blisters applied to the chest, and perhaps, as recommended by Dr. Graves, along the course of the pneumogastric nerves, may brace up the vessels, and avert a serious and often fatal complication. Or we may stimulate the heart, and in intense weakness strengthen its contractions for a short time, by flying blisters or mustard poultices placed over the precordial region, and then maintain the advantage thus temporarily gained by the free administration of alcoholic drinks.

Flying blisters are largely employed in various diseases of the deep-seated organs, as pleurisy, pneumonia, asthma, biliary and renal colic, etc.
COUNTER-IRRITATION.

Blisters are frequently employed in pneumonia and pleurisy. Yet great divergence of opinion exists, not only as to the stage of the disease in which they are useful, but even as to their utility in any case. Some maintain that during the febrile stage blisters increase the fevers; but the increase, if any, certainly must be very slight, for I have not been able to excite fever in fever-free persons by blistering, nor have I ever seen it increase a fever already existing. The advocates of blistering in pneumonia maintain that it removes pain, quiets cough, and lessens expectoration; but many competent authorities discredit the efficacy of blistering in this inflammation.

Whatever doubt may exist as to the influence of blistering in acute pneumonia and pleurisy, most observers agree that it lessens the pain, and must therefore benefit the patient by subduing the restlessness, oppression and sleeplessness consequent on pain. In estimating the effect of blistering, it must be recollected that in these acute affections the severe pain is of short duration, and spontaneously lessens or disappears in about forty-eight hours. It is, perhaps, not superfluous to re-caution against too free vesication.

Opinion is more agreed on the usefulness of counter-irritation in pleurisy, after the subsidence of inflammation and fever. At this stage the prompt application of large flying blisters, often repeated and quickly healed, further the absorption of the fluid in the pleural cavity, and lessen the risk of the disease remaining indefinitely chronic. The counter-irritant, as we have said, should be frequently applied, and the vesication, if it occur, healed at once; for all the good of counter-irritation is effected during the first few hours while it stimulates the skin. The notion that free vesication and the maintenance of the discharge by irritating ointment will drain off the fluid, as it were, from the water-logged pleura, is altogether fallacious. This barbarous treatment drains important nutritive material from the system and weakens the patient when strength is most needed. We have already referred to the fact that blisters will redden and even inflame the pleura. Many consider counter-irritation worse than useless when pleural effusion has lasted a long time. The production of a free discharge of serum is no doubt useless; but although in a long-standing case of effusion there is but slight chance of improvement by any treatment, yet mild flying blisters will in some cases help to the absorption of the fluid, and at any rate may prove serviceable, if in no other way, by removing the troublesome intercostal pains which
often accompany chronic pleurisy, although a mustard poultice is to be preferred.

Counter-irritants are often of signal service in removing the oppression of the breathing in asthma, especially of bronchitic asthma, and the shortness of breath accompanying bronchitis with emphysema.

They relieve the pain arising from the passage of renal and biliary calculi.

Counter-irritation is useful in many other diseases, as phthisis, phlebitis, sciatica, facial paralysis, gleet, leucorrhoea, rheumatism, gout, and pleurodynia.

Counter-irritation is very beneficial in certain forms of phthisis. In the acute and rapid forms it is of little other service than to remove pain. But when the disease is chronic, when we have to treat what is now called the fibroid lung; when the cough is paroxysmal and violent, or frequent and distressing, preventing in either case rest and sleep, active counter-irritation of the chest, corresponding to the seat of the disease, often quickly quiets cough, greatly diminishes the profuse expectoration, and thus obviates a severe drain on the strength. In blistering these weakly patients, vesication must be avoided, or the exhaustion produced by the loss of serum may be so great as even to endanger life. In phthisis iodine liniment is a better counter-irritant than blisters.

In inflammation of the superficial veins a blister applied over the course of the inflamed vessel reduces the inflammation, hastens absorption or liquefaction of the coagulated blood, and assists the restoration of the circulation through the obstructed veins.

Blistering is of the greatest service in neuralgia. A flying blister to the temple or behind the ear generally relieves frontal or facial neuralgia. The obstinate form of facial neuralgia dependent on a diseased tooth, rebellious to all treatment except extraction, often yields to a blister; the neuralgic pains ceasing, although the toothache may continue. Blisters relieve the shifting neuralgic pains common in nervous sensitive women, although the pain is apt soon to fix upon another nerve; but flying blisters will drive it from place to place. In this migratory form the pain may alternate between a few, or may affect in succession most of the nerves, producing in addition great cutaneous tenderness; or the nerves supplying the viscera may be affected, and without pain produce functional disturbance, as nausea, sickness, diarrhoea, etc. This form of neuralgia, though it is right to say the disease lacks many of the more distinctive characters of neuralgia, is most difficult to
core. The observable symptoms usually seen to be caused by the pressure of the fluid on the skin, which is further increased by the tightening of the affected area. This increased pressure results in the formation of blisters.

Blistering paper and soap are effective in the treatment of blisters. The blisters can be removed by applying a warm, wet compress. A stronger preparation of camphor or salicylic acid can also be used. The leaves of the balsam pear tree can be applied to relieve pain and swelling. A sample recipe for a salve to be applied to the affected area can be found in the text.

Blisters are often the result of heat exposure. In some cases, the use of a strong preparation of camphor or salicylic acid can help relieve pain and swelling.

The symptoms of blisters can be relieved by applying a warm, wet compress. If necessary, the use of a stronger preparation of camphor or salicylic acid can also be used. The leaves of the balsam pear tree can be applied to relieve pain and swelling. A sample recipe for a salve to be applied to the affected area can be found in the text.
In paralysis of the seventh nerve, dependent on alterations in its periphery, from draughts or cold, painting the skin over the paralyzed muscles with blistering fluid will in some cases quickly remove it. The earlier the application, the greater the probability of good results.

A blister applied to the perineum and along the course of the urethra will sometimes cure a gleet obstinately rebellious to all the usual methods.

Blisters are of the greatest service in rheumatism. Large flying blisters, applied in proximity to an inflamed and painful joint, often quickly remove the pain, and with the ease thus brought about sleep often ensues, and a concurrent general improvement takes place in the patient's condition. But blisters have been of old recommended as the sole or chief treatment of acute rheumatism, and some apply them, to the extent of free vesication, with the unfounded hope of removing from the blood the poison on which rheumatism is supposed to depend. This method has the disadvantage of reducing the strength of the patient in proportion to the quantity of serum lost, the depletion tending to prolong the attack, and to retard the convalescence, usually sufficiently tedious, after a severe attack of rheumatic fever, which induces more anaemia than most other diseases. The advocates of free vesication assert that this method moderates and shortens the attack, and lessens the danger to the heart; and some attribute its efficacy to the influence large blisters have on the urine, changing in a few days the acid urine of rheumatic fever to a neutral or even alkaline state. I think that due regard is not paid to the great influence age exerts on the duration of an attack of rheumatic fever; moreover, the reported cases appear not to have recovered more speedily than frequently happens in persons of the same age, and manifesting the same body temperature, who recover without any medicine.

The nightly application of a flying blister greatly relieves the pain and swelling of chronic and subacute gout, gonorrhœal rheumatism, and chronic synovitis; but if this mild application fail, strong vesication should be tried.

Pleurodynia usually yields to anodyne liniments or mild counter-irritants, but sometimes strong vesication is necessary, although the weakening loss of serum may increase the pain for a day or two.

The active principle of cantharides being soluble in oil, it is useful to smear a little simple oil over preparations of cantharides.
The oil, moreover, helps to maintain the plaster in contact with the skin.

It must be borne in mind that blistering paste and blistering paper require several hours to produce a blister, and that the paper rarely produces much vesication. If a speedy and sharp action is necessary, we must employ blistering fluid, which sometimes vesicates in twenty minutes to half an hour.

The active principles of the Spanish-fly may become absorbed by the skin in sufficient quantity to produce congestion of the kidneys, strangury, and its other characteristic toxic effects; hence, in the treatment of acute or chronic Bright's disease, cantharides should be avoided, as we are unable to regulate the quantity which may be absorbed, and a damaging amount may be taken up by the skin.

We hope it has been made sufficiently plain that, in the great majority of cases, preparations of cantharides should not be applied long enough to cause much vesication. The vesicles should not be opened, but be covered with a layer of soft cotton-wool, till the effused serum is absorbed, when a superficial desquamation follows, and no troublesome consequences need be apprehended. If blistering is carried far enough to produce blebs, the serum will not become absorbed, and the bleb will at last burst; even in this case it is not advisable to open the blister, but to allow the underlying dermis first to heal partially, when no ulceration need be feared. If the bleb is punctured, the air will perhaps irritate the raw surface, producing much inflammation, which may end in extensive slough, an untoward event, especially apt to follow the blistering of young children or old people, or persons with broken-down health, as the victims of Bright's disease, etc. Hence, in such cases, it is generally considered advisable to use other counter-irritants. (Vide Mustard.)

OXYGEN.

Oxygen, as yet, is but rarely employed in medicine. Further experimentation may perhaps show that it is a desirable therapeutical agent, but at present the evidence to this effect is lacking. It has been recommended in the non-febrile forms of phthisis and is said to be of especial service in derangement of the stomach of phthisi-
cal patients. In inflammatory fevers and febrile phthisis it is said to increase the fever and to favour haemoptysis.

According to Beddoes and Demarquay, it is useful in asthma; but they advise the use of oxygen if heart disease co-exists with the asthma.

In anaemia, from loss of blood or from suppuration, oxygen, according to some, increases appetite, stimulates digestion, and improves the strength.

Demarquay asserts the remedial power of oxygen over some forms of diabetes, and states that by means of this agent he has reduced the sugar in the urine by one-half; the diet remains unchanged.

This gas is useful as a local application to atonic painful sores, but produces no effect on healthy sores. Administered as a gaseous bath for an hour or longer at a time, and repeated six or eight times a day, it is said to be of the greatest use in senile gangrene, changing the livid red to a rose colour, restoring warmth to the tissues, renewing sensation, mitigating pain, checking the disease, and sometimes even curing it.

PEROXIDE OF HYDROGEN.

Peroxide of Hydrogen has been used both internally and externally. It whitens the skin or mucous membranes, and excites a pricking sensation, and, in delicate structures, as the conjunctiva, induces a slight degree of inflammation.

According to Dr. Stöhr, on adding peroxide of hydrogen to venous blood, pretty active effervescence occurs. The solution soon becomes yellowish-red, then pale yellow, and in five or six minutes from the beginning of the experiment, colourless, and afterwards a white flocculent coagulum settles. The corpuscles themselves, when treated with a strong solution, become irregular in outline, and do not form rouleaux. Added to pus, much gas is given off, and the mixture becomes turbid with white flocculi, and many of the corpuscles are shrunk or altogether destroyed.

Applied to abraded surfaces, covered with blood or pus, the solution of peroxide behaves in the manner above described, the surface becomes ultimately covered with a thin layer of coagulated albumen. The solution, it is said, will heal a chancrous sore in half the ordinary time. The sore is to be washed with a solution
CHARCOAL.

three times a day, and to be continuously covered with lint moistened with it. Open buboes, too, have been treated successfully in the same manner. The solution is said to destroy the specific character of a chancrous sore.

Internally administered, it is reputed to be a disinfectant and a slight stimulant.

Carbo. *Carbo Animalis.* *Carbo Lign.*

CARBON. ANIMAL CHARCOAL. WOOD CHARCOAL.

Carbon, in proportion to its porosity, absorbs many gases in considerable quantity; and wood, being more porous than animal charcoal, its absorbability is greater.

Charcoal does not absorb all gases in an equal degree; it will absorb but little hydrogen, though it will imbibe a considerable amount of oxygen, a large quantity of sulphuretted hydrogen, and a still greater proportion of ammonia. Charcoal is much used on account of this property as a disinfectant, to remove bad smells, or to prevent the air in rooms becoming contaminated by the effluvia from foul ulcers. Its non-volatility renders it very inferior to chlorinated lime or chlorine gas and other agents for purifying air, since it can act only on the air in immediate contact with it.

It is more effectual in absorbing the offensive gases given off by foul sores, and is employed in the form of a poultice, mixed either with bread or linseed-meal. Bread, being more porous, is to be preferred, as it permits the gases to permeate the substance of the poultice, and so to come into contact with the particles of charcoal.

After becoming thoroughly moistened, and its pores filled with water, it may reasonably be doubted if the charcoal does not lose its capacity to absorb gases and so to act as a deodorizer. It is certain that charcoal poultices often fail to act in this manner. Charcoal may act by preventing decomposition. for, when swallowed after admixture with water, its pores being thus filled or obstructed, it will still prevent flatulence, an effect not due to absorption; it must, therefore, act by arresting fermentation or decomposition. A thoroughly efficient mode of employing charcoal, is to fill a small flat muslin bag with it, in a finely granulated form, and to place it over the poultice covering the sore.

Charcoal poultices are reputed, on doubtful grounds, to clean and heal sloughing or gangrenous wounds.
How does charcoal destroy smells depending on noxious gases? It has been stated in a previous page that it is endowed with the property of condensing many gases in its pores, and some accept this as a sufficient explanation of its action. Others assert that the oxygen condensed and accumulated in the pores of the charcoal, combining with the other gases with which it comes in contact, breaks them up and destroys their ill odour.

A question of more practical importance is whether the carbon becomes inert by use, thus losing its property to condense gases or to destroy them. Buchheim is probably right in stating that the carbon becomes inert, but others assert that if kept dry, it will retain its properties unimpaired for many years. At all events exposure to a dull red heat restores its gas-absorbing power.

Charcoal is likewise employed as a disinfectant, and Dr. Stenhouse has ingeniously devised a charcoal disinfecting respirator, which, no doubt, will protect the wearer against many gases, but at present no evidence exists to show that charcoal will destroy the organic matters which propagate disease, although, acting like a filter, it may prevent their entrance into the system.

Charcoal, by its chemical or mechanical action, possesses the property of carrying down from solutions many colouring matters, many bitter substances, alkaloids, and mineral substances. Hence Dr. Garrod advises its administration in poisoning by corrosive sublimate, arsenic, morphia, strychnia, belladonna, etc., but, at present, this treatment has not found much favour with the profession. As it is said that half an ounce absorbs only one grain of alkaloid, large doses of half an ounce to an ounce, or even more, must be given. Charcoal also precipitates the colouring matter of urine, carrying down at the same time all the uric acid, and some of the urea in solution. The sugar of diabetic urine is unaffected by charcoal. As a precipitant, animal charcoal freed from its earthy impurities is found to be the most efficacious, on account, it is said, of its more finely divided state.

Charcoal is employed with much success in certain diseases of the stomach. It is said to ease the pain of chronic ulcer, and of neuralgia of the stomach, possibly by checking fermentation and so preventing the formation of acids which must irritate the stomach, especially when ulcerated. It is markedly useful in flatulence. In the majority, if not in all cases, intestinal flatulence is the result of gases generated by fermentation. The symptoms accompanying flatulence, however, are not always alike, and their various complications afford indications for treatment. Sometimes "the wind" is
produced in enormous quantities, with great rapidity, producing dis-

sion, eructation, and mental depression, the patient complaining of these symptoms, not of pain nor of acidity. This enormous production of wind, irrespective of other symptoms, prevails chiefly among middle-aged women, especially at the change of life. This condition is met with sometimes during pregnancy and suckling, and seldom in the course of phthisis. It is often very difficult to check the formation of wind, but vegetable charcoal is one of the best remedies. Sometimes after a few mouthfuls of food the wind is formed in quantity so large that the patient is constrained to cease eating; here the charcoal should be taken immediately before each meal. Another patient is not troubled with the wind till half an hour or longer after food; here the charcoal should be taken soon after the meal. Five or ten grains of charcoal is generally enough, and if this dose failing, it seldom happens that a larger one succeeds. Supposing charcoal to fail in cases like these just described, we have another efficient resource in the sulpho-carbolates, or carbolic acid, which, indeed, often succeed when the charcoal fails.

At other times profuse formation of wind is accompanied by acidity. Charcoal, administered as just described, will generally obviate both these symptoms; and sulpho-carbolates and carbolic acid, although less successful than when acidity is absent, will often prevent the production of both wind and acidity.

Some persons after meals are troubled with a little wind, acidity, and a sensation of weight at the pit of the stomach. Charcoal will relieve these cases; but nux vomica, in five-minim doses of the tincture, taken a few minutes before meals is to be preferred. In the treatment of flatulence it must never be forgotten to direct the patient, as far as possible, to abstain from those kinds of food prone to fermentation. Sugar and starchy foods must be avoided or taken sparingly, and thin well-browned toast, on account of the carbonization of its surface, may be substituted for bread. The meals should be very moderate, the food well masticated, and drinking postponed till the meal is nearly finished, or still better, till an hour after its completion. Tea is very obnoxious to flatulent patients.

Most of the charcoal passes away with the fæces, though a little, it is stated, finds its way into the blood and lymphatics.

Wood is preferable to animal charcoal for internal use. It is often advantageously mixed with an equal quantity of bismuth, when flatulence is combined with acidity and pain.
CARBONIC ACID.

It is asserted that this gas applied to the eye relieves the pain and photophobia of scrofulous ophthalmia, and that injected up the vagina it eases the pain of ulceration of the os uteri and of cancer and neuralgia of the uterus. According to Sir J. Simpson, the inhalation of this gas is serviceable in chronic bronchitis, asthma, and irritable cough.

Carbonic acid gas is generally employed dissolved in water. Natural waters containing a large quantity of carbonic acid are used externally in chronic gout, chronic rheumatism, and many chronic affections. Carbonic acid is an excitant of the skin, producing tingling, redness, a sensation of warmth, and increasing the flow of the perspiration; but after a time the gas acts in some measure as an anaesthetic, lessening the sensibility of the skin, and removing or diminishing pain.

Carbonic acid water is employed in painful and irritable conditions of the stomach. It eases pain, and checks vomiting. It is an excellent addition to milk, which will then be generally retained though previously rejected.

Lime-water and milk may be profitably substituted for milk and carbonic acid water in diarrhoea with irritability of the stomach; but in case of constipation carbonic acid water and milk is much to be preferred.

SULPHUR.

Sulphur dusted on the skin produces no effect, but mixed with lard, or other unctuous substances, and rubbed in, it excites a slight degree of inflammation; hence sulphur ointment has been used to stimulate indolent sores to a healthier and more healing condition; but for such a purpose more efficient agents have superseded sulphur ointment, which is now almost entirely restricted to the cure of itch. The object is to destroy the insect (acarus scabiei) and its ova, for it is on the presence of this animal that itch depends; and a knowledge of the habits of the acarus and its ova suggests the means best calculated to effect this purpose. The female as soon as impregnated, burrows obliquely under the skin, and day by day deposits her eggs till she dies. The male remains a wanderer.
on the surface, and is easily attacked and killed by the ointment. To reach and destroy a female and her eggs, it is necessary to break up the burrows where these lie concealed, and to lay them bare to the destructive action of the sulphur. The destruction of the burrows is easily affected by the liberal use of soap and water, which removes the superficial and dead cuticle, and exposes the animal and its ova.

Various methods of sulphur treatment are in use, but it is sufficient here to record only a few.

M. Hardy claims that his method will cure in four hours. He first subjects the body for half an hour to a friction of soft soap, to cleanse the skin and lay bare the burrows. Then follows a warm bath of an hour's duration, meanwhile the skin is well rubbed to complete the destruction of the burrows. Then the skin is well rubbed all over—except the head and face, unless in the rare instances when these parts are attacked—with an ointment composed of two parts of sulphur, one of carbonate of potash, and eight of lard.

This rather severe method not unfrequently irritates and chaps the skin, and is, therefore, inadvisable for delicate skins, especially if much eczema or inflammation is present, affections which this vigorous treatment would undoubtedly much aggravate.

It is often sufficient to treat vigorously only certain parts of the body where the rash is most apparent, and to apply the ointment to other parts in milder manner.

If the skin is delicate, much irritated, or inflamed, a mild soap may be substituted for soft soap, and an ointment, without alkali and with less sulphur, while the time of the applications should be shortened, and instead of one continuous severe application, the several washings and inunctions should be repeated on successive nights. The ointment should be left on all night.

The simple ointment of the Pharmacopoeia, little irritating to the skin, containing no potash or other alkali, is in most instances sufficient to cure itch in three days. The patient should be directed to take a nightly warm bath, and to rub the skin with soap, bland or strong, according to the condition of the skin. After wiping the body thoroughly dry, the ointment is to be well applied to the skin by the fireside, just before bedtime, and to be washed off on the following morning.

The irritation set up by the parasite and its eggs excites some times more or less eczema and impetigo. The treatment adapted to cure the itch would certainly aggravate these accompanying
eruptions. To avoid such a complication, Hebra recommends a milder ointment of a different composition; namely chalk, 4 oz., sulphur and prepared tar, each 6 oz., common soap and lard, each a pound, the various constituents in this preparation each serving a distinct purpose. The chalk helps mechanically to remove the dead cuticle and to break up the burrows; the tar serves the two-fold purpose of diluting the sulphur and acting beneficially on the eczema, while the soap and lard further effect the dilution of the sulphur; and the soap, by virtue of its alkali, checks the weeping from the red, raw, eczematous eruption. This ointment, accompanied with the use of the warm bath, is employed twice a day, and cures completely in three days.

After the itch is cured, it often happens that the mildest ointments excite and increase the eczema and other eruptions produced by the scabies, hence it is inadvisable to continue the use of such unguent for many days. On withholding this treatment, the rashes produced by the scabies will frequently disappear at once. After the course the patient must put on an entire change of linen, and the soiled clothes should either be boiled in water, or heated in an oven, at a temperature above 212° Fah., in order to destroy the animals and ova that may be concealed in the linen.

Some maintain that the sulphur of the ointment plays no part in the destruction of the parasites, but that the fatty matters, by obstructing their breathing pores, suffocate and so destroy them. This opinion seems to be erroneous, a sulphur ointment being far more effectual than an ointment of simple fat. Sulphuretted hydrogen destroys lice, and some suppose that this gas is the efficient insecticide in destroying the developed itch insect by the conversion of the sulphur.

Except in rare cases, the ointment need not be applied to the head and face, for, in this country, these parts are not often affected. The disagreeable odour of the ointment may be in part concealed by the addition of otto of roses or other fragrant substances.

To avoid the disagreeable odour and irritating effect of sulphur, many dermatologists substitute storax, which is said to be just as effectual.

The complexion of young women, in whom the menstrual flow is disordered, is sometimes spoiled by numerous small elevations or pimples, scarcely or not at all reddened, and sometimes a minute pustule on the summit of some of the elevations forms, the skin at the same time losing its healthy transparency. This is a form of
acne perhaps, though unusual and generally seen. Sometimes the
eruption appears independently of mental disturbance, and
indeed may almost vanish at the mental period to recur when
it has ceased. This eruption may last months or even years,
greatly to the patient's annoyance. It will, however, generally
yield to the application, twice or three times daily, of the following
lotion:—Sulphur a drachm; glycerine an ounce; rose-water half
a pint. This lotion speedily lessens the eruption even when for
years it has remained unaffected by other treatment. Acne may
be treated in the same way.

An ointment composed of two drachms of hydrochlorate of sulphur
and an ounce of simple ointment, or especially linseed of sulphur
ointment, is very useful in the severer forms of acne—see Sulphides.
They should be applied twice daily. Where acne fulminans is ac-
panied by much acne punctata, frequent washing with plenty of
soap and warm water will assist the action of these applications.
In genuine prurigo, Dr. Anderson applies night and morning an
ointment composed of an ounce of sulphur, six drachms of liquid
tar, and four ounces of benzoated laudanum.

Being quite insoluble in any of the fluids of the mouth, sulphur
possesses no taste; but as it often contains a small quantity of
either sulphurous acid or of a sulphide, it may impart of the fa-
vor of these substances. It undergoes no change in the stomach,
and in no way affects the mucous membrane of this organ.

In the intestines, however, the case is quite otherwise. Here in
ordinary doses, sulphur causes rumbling, slight colicky pains
followed in a short time by a softened evacuation, sometimes soon
repeated. From the occurrence of colic and the semi-solid con-
dition of the motions, it is generally held that sulphur acts only
slightly on the mucous membrane, but purges chiefly by exciting
contractions of the muscular coat of the intestines. From the
mildness of its operation it is ranked among the laxatives. The
precipitated sulphur, being more finely divided than the sublimed,
acts more surely and effectually as a purgative.

The too prolonged use of sulphur excites a catarrhal state of the
mucous membrane, and impairs digestion.

Sulphur is a useful purgative in piles and fissure of the anus,
when it is needful to maintain the motions in a soft and yielding
state, so that the passage may not be irritated and pained by hard
difficult stools. It is also employed in stricture of the rectum. In
habitual or obstinate constipation it often succeeds after the failure
of other remedies. The compound liquorice powder of the Ger-
man codex, which is preferable to that of the British Pharmacopœia, or ten grains of sulphur mixed with confection of senna are convenient forms. Compound liquorice powder contains both sulphur and senna, and is not disagreeable. Dr. George Bird tells me that children like it, and that for them it is an excellent purgative. The dose for adults is one to two teaspoonfuls stirred in a little water or milk. Apart from its softening effect on the motions sulphur exerts a beneficial action on the rectum in prolapse and in piles. A morning dose of five to ten grains of sulphur mixed in a drachm of confection of senna, is a very useful laxative in piles.

What changes does sulphur undergo in the body, and in what way does this drug act as a purgative?

It has been suggested that some of the sulphur becomes dissolved in the fat it meets with in the intestines, and thus blended, is in a fit condition to act both as a purgative and to pass into the blood; but the fact that when sulphur is administered simultaneously with much fat, the quantity of sulphur in the urine is not increased, renders this explanation improbable.

Some of the sulphur, undoubtedly, is converted into a sulphide by the action of the alkali of the bile; for after the ingestion of sulphur, the gas generated in the intestines contains not only a considerable quantity of sulphuretted hydrogen, but much of the gas is given off by the skin, to the extent even of tarnishing metal articles worn about the person. Sulphur acts as a purgative through conversion into a sulphide, and by virtue of the same change it is enabled to enter the blood, a view supported by the fact that sulphides act in the same way as sulphur. Yet a portion in the form of fine particles, probably passes through the walls of the intestines undissolved, though the quantity so conveyed is undoubtedly very small.

The action of sulphur on the physical or chemical constitution of the blood is at present unknown. It has been said to produce salivation occasionally, in persons who had previously taken mercury. It is generally held that it excites an increased secretion from the mucous membrane of the air-passages of healthy persons, although this is denied by Buchheim. Graves and other authorities, strongly recommended sulphur in doses of from five to ten grains, repeated three or four times a day in severe chronic bronchitis, with abundant discharge, especially when accompanied by constitutional debility. It is said to lessen the secretion, and to render its expulsion easier.
SULPHIDES.

It is said to increase both the frequency and force of the heart’s contractions, and to promote the flow of perspiration; but these assertions greatly need confirmation.

It is believed that the application of sulphur to the skin will relieve the pain of chronic rheumatism and sciatica; but, as in applying the sulphur it is generally recommended to envelope the affected limbs in soft flannel, it is difficult to discriminate to what extent relief is attributable to the flannel.

It is said that the internal administration of sulphur is serviceable in chronic eruptions of the skin of the dartrous family, as acne, psoriasis, impetigo, and eczema.

Most of the sulphur taken into the stomach escapes with the feces; while part of that which enters the blood, becoming oxidized, appears in the urine as a sulphate, or one of the lower oxides of sulphur. The sulphuretted hydrogen, from its great volatility, escapes in some measure by the lungs and skin, and occasionally with the milk, and by the urine.

It is said that a portion of the ingested sulphur passes through the system and is separated by the kidneys in the uncombined state. Sulphur produces no change in the quantity of the constituents of the urine, with the exception of the sulphur compounds, which it augments.

Sulphur may be conveniently administered in milk.

THE SULPHIDE OF POTASSIUM, SODIUM, AMMONIUM, AND CALCIUM.

Many natural waters contain one or more of these substances. Sulphurous waters are found at Harrogate, Barèges, &c. They have a characteristic odour like that of rotten eggs.

The three first substances are freely soluble, the last is very scantily soluble in water.

Strong solutions of these soluble salts excite active inflammation of the skin; weak solutions stimulate the skin, augment its supply of blood, and increase perspiration.

Baths containing these substances are very useful in the chronic forms of some skin diseases, as psoriasis, eczema, and lichen; likewise in chronic rheumatism, chronic gout, and chronic lead poisoning. In these diseases the natural sulphurous waters are largely used as baths; but in eczema and psoriasis care must be
taken not to employ them till the subsidence of the acute stage, otherwise they will greatly aggravate the rash. Obstinate forms of these skin diseases, rebellious to other treatment, often yield to sulphide baths.

It has been attempted to explain the efficacy of sulphurous baths in cases of chronic lead poisoning, by the assumption that they eliminate the lead with the sweat. Under the use of these baths, the skin, it is said, becomes covered with innumerable black points of sulphide of lead; but in fact the lead thus blackened has been deposited on the skin from external sources, not eliminated with the perspiration. This objection, however, is met by the assertion that if a lead-poisoned patient carefully abstinence from all contact with lead, yet, as often as he uses a sulphurous bath, his body still becomes blackened time after time. On theoretical grounds it is hard to understand how this metal can be eliminated with the perspiration; but for the further consideration of this point we must refer our readers to the section on lead.

The use of these baths at a very high temperature will often restore a considerable degree of suppleness to joints distorted and stiffened by chronic rheumatoid arthritis. Yet as other baths of like temperature appear to do equal good, it is difficult to say whether the sulphides play any part in the beneficial results, although it is true there is a wide-spread, and perhaps well-grounded, belief in their efficacy.

A very efficient application to cure itch is made in the following way:—Boil one part of quicklime with two of sublimate sulphur in ten parts of water, until the sulphur and lime combine; let the solution stand, and afterwards decant the clear part. Metal vessels should not be used in its preparation. After the patient has bathed and wiped himself dry the liquid solution is to be painted over the body. This application is rather irritating, and sometimes produces a roughness of the skin, which may continue some time. Dr. Bourguignon, who introduced this plan, claims that it will cure in half an hour. (See Sulphur).

The sulphides are in part decomposed by the acids they encounter in the stomach, giving rise to disagreeable eructations of sulphuretted hydrogen gas.

The sulphides in small doses excite a sensation of warmth at the epigastrium, but in excessive doses they produce active inflammation in the digestive canal, with the customary symptoms.

Small doses act as a slight irritant to the intestines, and determine gentle relaxation of the bowels. It is supposed that sulphur
SULPHIDES.

acts as a purgative, by its conversion into a sulphide through the agency of the alkali of the bile.

In cases of poisoning by certain metallic salts, the sulphides are employed, as they precipitate the metal in the form of an insoluble sulphide, and so render it harmless. There is danger, however, of giving the sulphide in too large a quantity, since in its turn it might itself excite inflammation of the stomach; wherefore sulphide of iron is generally preferable to the alkaline sulphides.

The effect of the sulphides on the blood after absorption into that fluid is at present unascertained.

Persons habitually breathing air impregnated with sulphuretted hydrogen are certainly prone to suffer from great anaemia, and the gas appears to cause much functional depression.

Taken in over-doses the sulphides produce insensibility and speedy death. It has been doubted, however, whether this result is not due to the action of these substances on the stomach itself, and not to their absorption into the blood and conveyance to the nervous centres; for it appears from Bernard's experiments, that sulphuretted hydrogen injected into a vein is so quickly eliminated by the lungs that the arterial blood is uncontaminated by this gas, and consequently the nervous centres cannot be affected by it.

These substances, in certain troublesome diseases, often yield striking results.

This group of remedies influences the suppurative process in a marked and manifest manner.

Thus the common case of a sore, discharging a thin, watery, unhealthy ichor, will speedily undergo a healthy change under the administration of sulphides of calcium, the discharge becoming at first more abundant, afterwards diminishing, and throughout continuing thicker and healthier, with all the characters indeed of "laudable" pus.

The sulphides appear to me to possess the property of preventing and arresting suppuration. Thus in inflammation threatening to end in suppuration they reduce the inflammation, and avert the formation of pus. This effect for instance, is manifested by the action of the local application of sulphur compounds in acne indurata, a subject to be dealt with further on, more in detail.

After the formation of pus, the influence of this group on the suppuration process is still more conspicuous; then the sulphides hasten maturation considerably, whilst at the same time they diminish and circumscribe the inflammation, promote the passage of the pus to the surface, and the evacuation of the abscess. Their
efficacy may be frequently demonstrated in cases of the following kind. An unhealthy child, from six to twelve months old, perhaps in the course of measles or scarlatina is the subject of a slight sore-throat, which produces behind the angle of the jaw considerable enlargement of the glands, and the swelling, of stony hardness, may be large enough to interfere with swallowing, and even to push the head on one side. Very deep-seated suppuration takes place, and for a long time there is neither redness of the skin nor fluctuation, and the pus very slowly makes its way to the surface, so that a fortnight, three weeks, or even a month may elapse before the abscess bursts, or is fit to be opened, when a deep hole is left, with considerable inductions around it. So great are the pain and constitutional disturbance that the child sometimes dies; and even if this fatality be averted, the deep discharging hole heals very slowly owing to the indurated and unhealthy state of the adjacent tissues. Now, in such a testing case, if we give a tenth of a grain of sulphide of calcium, mixed with a grain of sugar of milk, every hour or two, the results are most striking. The pain and constitutional disturbance begin to diminish, the swelling becomes smaller, the pus reaches the surface in four or five days, leaving when it is evacuated a benign wound which quickly heals. The effects of these remedies are equally conspicuous in mammary abscesses, although in rare instances they appear temporarily to increase the pain—a fact which seems sometimes to hold good with respect to boils, though as a rule the pain is speedily mitigated. Singular to say, I have found these remedies much less useful in forwarding the maturation and expulsion of pus in indolent buboes; but in such cases my experience of the sulphides has been but small.

It may be urged that it is difficult to imagine how these remedies can produce effects so different and apparently opposite as the dispersion of inflammation in one case, and the expulsion of pus in another; poultices, however, and hot fomentations both subdue inflammation and prevent suppuration, and in other cases considerably hasten the evacuation of pus.

In boils and carbuncles these remedies yield excellent results. A tenth of a grain of sulphide of calcium, given hourly or every two or three hours, will generally prevent the formation of fresh boils, while it lessens the inflammation and reduces the area of existing boils, and quickly liquefies the core, so that it separates much more speedily, thus considerably curtailing the course of the boil. Where the skin is not yet broken, and the slow-separating
SULPHIDES.

Core not yet exposed, the sulphides often convert the boil into an abscess, so that on bursting, pus is freely discharged and the wound at once heals; or if the centre of the hardened swollen tissues is not yet dead, the pustule dries up, the inflammation subsides, and a hard knot is left which disappears in a few days without the formation of a core, and without any discharge. These remedies meanwhile improve the general health, removing that debility and malaise ordinarily so markedly associated with boils and carbuncles. In some cases, however, as in the deep-seated boils and abscesses of diabetes, they are less efficacious. In carbuncles the sulphides will generally be found equally serviceable. Melting, as it were, the core into healthy pus, and so quickly expelling the dead and otherwise slow-separating tissue. Belladonna applied over abscesses and carbuncles, reduces inflammation and allays pain. The skin should be thickly smeared with equal parts of belladonna and glycerine, and over this a poultice should be applied and the smearing renewed each time the poultice is changed. Poultries, however, being liable to bring out a fresh crop of boils, it is well to smear belladonna ointment some distance round but not over the boil, and then to apply a poultice; the greasy application thus protecting the neighbouring tissues. Or, still better, apply a belladonna or opium plaster on leather, with a hole the size of the boil, around the swelling, and through the opening smear glycerine and belladonna, covering all with a small poultice. The leather plaster efficiently protects the surrounding skin, and averts the production of fresh boils. I have thought it worth while to point out these useful accessory plans of protecting the boil; but it is scarcely necessary to observe that whilst investigating the effects of sulphides I have employed them alone, or at most sometimes using only a poultice. Indeed, the effect of sulphides on boils is so excellent and prompt that external applications are generally unnecessary, though of course they are required in the treatment of carbuncles. Sulphides should be continued till the discharge has nearly ceased, and till stimulating applications are needed, when tonics must replace sulphides.

The good effects of sulphides are conspicuous in certain virulent sores not uncommonly seen in children. Humoral children, during the first few months are sometimes subject to indolent abscesses in the cellular tissue which run a very slow course. At first only small hard substances are observable, no larger than a pea, under the skin, which is of natural colour, and movable over them. The small substances next suppurate and gradually enlarge, the
skin becomes adherent, and changes in colour to red or even violet, while the smaller vessels in their neighbourhood sometimes become enlarged and even varicose. The tumours may attain the size of a florin, and when maturated feel soft and boggy. After a time a small circular opening appears, not larger perhaps than a pin's head, through which escapes a thin unhealthy pus. If deep-seated, as on the buttocks, or occurring in fat children, there may be very little or no discoloration of the skin. The chief noticeable character, then, is the small sharply-cut opening, as if a piece had been punched out. These formations follow one another, and may continue to distress the child for months or years. In mild cases a few only may form, whilst in severe cases there may be at one time ten or a dozen in different stages of development. When they heal they leave a white, sharply-defined, but not deeply-depressed scar. Now this troublesome and pertinacious condition will give way speedily to the administration every hour or two of a tenth or twentieth of a grain of sulphide of calcium. The formation of new nodules is at once checked, for a fresh one rarely now makes its appearance, although for months or years the child may have been infested with successive crops; many of the abscesses, especially in a very early stage of development, dry up and disperse, others generally speedily mature and discharge their contents, the thin and unhealthy pus becoming creamy and "laudable;" the abscesses already in an open state improve, the pus becoming healthier, and the wounds healing quickly.

In some cases, in addition to these subcutaneous formations, the bones likewise become affected. The phalangeal bones of the hand are most frequently attacked, though not uncommonly the metacarpal, and more rarely the metatarsal. Where the phalangeal bones are affected, one or several of the fingers become nodose. For a long while the skin remains pale and freely movable, but then suppuration ensues, the swelling increases, the skin becomes red and painful, and, after a time, slowly softens at one point, remaining boggy for a considerable period before the abscess opens naturally. Then generally a little bone separates, or in bad cases the whole of the shaft comes away, leaving the epiphyses behind. When an opportunity occurs to examine these bones before suppuration sets in, the shaft is found considerably enlarged, very pale, and the cancellous structure infiltrated with a straw-coloured firm substance, whilst the epiphyses and their cartilages are healthy. Even in these severe cases the sulphides will benefit considerably; thus before suppuration has set in, or whilst
made little way, they often remove the swelling, though doses may be required. After much suppuration, the good of sulphides depend in a great measure on the amount of disease of the bone. If the whole shaft becomes necrosed, if the sore will not heal till the bone has been got rid of, but puration often occurs and yet but little, or perhaps none, of the edies. In such a case the sulphides hasten the expulsion of pus; and when the skin is already broken, they improve the character of the wound and the discharge, and heal the sore, leaving a sunken scar adherent to the bone, whilst the finger slowly assumes its natural proportions. The sulphides can only affect large indolent abscesses on the back of the hands or on the feet. Whilst thus influencing locally strumous formations and abscesses these remedies improve the child's health, which perhaps had failed before in spite of cod-liver oil and steel wire. That the improvement is due to the sulphide is shown by the fact that the amendment occurs when this drug only is administered. Sometimes, instead of improving the general health, sulphides produce marked anaemia, due, I think, to the administration of too large a dose. On prematurely discontinuing the sulphide, fresh formations are apt to appear, especially on the occiput; even of a slight illness; indeed a severe illness will often excite a few fresh abscesses, in spite of the sulphides.

In suppurating strumous glands in the neck, the sulphides appear to me to exercise a very beneficial influence by hastening the elimination of the pus, and subsequently the cheesy suppurated matter. After the abscesses have burst, and continue to slowly discharge a scanty, unhealthy pus, and when the edges of the sores have become much thickened and indurated, the sulphides render the discharge more abundant, thick, creamy, and healthy, considerably hasten the evacuation of the suppurated matter, which prevents the healing of the wound, and at the same time soften the round indurated edges, so that the sore heals much more quickly. If small doses appear to affect these sores inadequately, larger doses, as half a grain or a grain, should be given several times a day, or even every two hours. I need hardly say that to compare the results described the treatment must be continued several weeks, for when the sores have been discharging perhaps for months or even years, it is vain to expect much amendment in a few days.

The topical effect of sulphur ointment, or of an ointment of the hypochlorite of sulphur, or, still better, of the iodide of sulphur of
the Pharmacopoeia, is very marked on acne indurata and acne rosacea. Here, again, according to the stage of the eruption the effects are twofold, and even opposed. If applied at the very commencement of the eruption, as soon as the little hard knot is felt under the skin, the ointment arrests further development and quickly dissipates the hardness. For instance, if smeared over the hardness just before going to bed, scarcely any induration will be felt in the morning, though after a time, perhaps from exercise, or the irritation from washing, much of the hardness may return, to be again removed by a renewed application of the ointment, so that in two, or at most three days, it will completely disperse a papula which threatened to become of considerable size. When, however, the nodule has advanced further, and suppuration has set in, then the effect of the ointment is much like that of sulphides administered internally, on boils. The ointment hastens maturation, limits the swelling and hardness, and thus considerably curtails the duration of the eruption. Nay, further, if rubbed over the skin it appears to check the formation of the acne spots; rubbed over the nose and neighbouring parts of the face in acne rosacea, its effects are often striking. Not only does it act as in acne indurata, but the hardened, swollen tissues become softened and reduced to a more natural state. I have found the iodide of sulphur useful likewise in bromic acne; it reduces the eruption, or, at least, lessens considerably the size of each spot. The ointment should be thickly smeared over the eruption of acne night and morning.

A formula adopted by the author is a mixture of much the same strength as the Harrogate waters: Thus I mix a grain of the sulphide of calcium (the member of this group which I always employ) with half a pint of water, and give to a child a teaspoonful hourly. It is essential that the medicine in this form should be compounded daily, since the salt rapidly becomes oxidised and changed into a sulphate, so that in a very short time none of the sulphide remains. It is still more convenient to give the sulphide in powder. Dose for an adult from one-tenth to one-half of a grain mixed with a grain or two of sugar of milk, taken hourly, or every second or third hour as the case may require. Four to six powders daily are usually sufficient. A child should take one-tenth or one-twentieth of a grain, and the powder should be put upon the tongue and washed down with a draught of water, or a tenth of a grain made into a small varnished pill, should be taken hourly.
CHLORINE.

It should be observed that, in employing these agents in baths, porcelain or wooden vessels must be used, as the sulphide attacks and discolors most metals. These baths emit a powerful odour, very offensive to some people.

CHLORINE GAS.
CHLORINE WATER.
CHLORINATED SODA. CHLORINATED LIME. and their solutions.

These substances are used as disinfectants, antiseptics and deodorizers.

This action depends on their power to destroy the organisms that produce putrefaction, and those that produce the septic poison or are themselves the cause of specific fevers.

Whatever power they possess in these respects is due either to chlorine or to hypochlorous acid.

Chlorine gas, possessing very strong chemical affinities, acts probably by seizing with avidity upon the hydrogen in organic and inorganic substances, thus breaking up their composition.

Hypochlorous acid, which is given off abundantly by the two last-mentioned members of this group, is an active oxidising agent. It yields up its oxygen readily, and is thus destructive to many substances; at the same time chlorine gas is set free, which in its turn acts in the way just described.

These substances are therefore deodorizers, destroying the ammonias, sulphuretted hydrogen, and sulphides of ammonium, which create the disagreeable odours of sick rooms.

Owing to its gaseous state, chlorine is admirably suited as a deodorizer; it penetrates every cranny of the room, searching out and destroying noxious and offensive gases.

While these substances may be conveniently and profitably used as deodorizers, it must always be borne in mind that it is better to prevent bad smells by free ventilation, and that chlorine gas itself has an odour very disagreeable to most people. If these deodorizers are often required in a sick room, it is a sure sign that ventilation is defective, and probably that the nurse is careless.

These substances are employed as disinfectants, but the evidence
in favour of their possessing such a property, although very generally held to be sufficient, is inconclusive.

Some infecting matters, it is true, when treated with these substances, lose their power to propagate disease; but it is impossible to subject objects, and particularly persons, to such destructive action as is found to be required in these experiments.

To disinfect unoccupied rooms, the air must be very strongly impregnated with chlorine. M. Regnault recommends the following plan, first blocking the chimney and closing the room;—sew one pound of chloride of lime loosely in a strong canvas bag, and put it into a mixture composed of a pint and a half of commercial hydrochloric acid with four and a half pints of water. Then after twenty-four hours, freely ventilate the room for forty-eight hours.

Besides their capacity to destroy many offensive gases, these substances prevent decomposition; hence they are useful as washes or injections to prevent the decomposition of the pus of sores, or cavities of the body. Sloughing, foul-smelling sores, should be washed with solutions of these or other kindred substances. Chlorine compounds, being slightly stimulating, improve the condition of indolent sores. After an operation, the pus which sometimes collects in the hollows left becomes corrupt, and gives off fetid gas which becomes absorbed and poisons the system. This may be avoided by washing out the cavities several times daily with a weak chlorine solution. In puerperal peritonitis, or at any time when the uterus contains decomposing matter, the vagina must be thoroughly and frequently washed out, some deodorizing and antiseptic substance being mixed with water. Many obstetricians in puerperal fever and other conditions wash out in this way the cavity of the womb itself.

In empyema, after the chest is opened spontaneously or artificially, the putrefaction of the contained pus must be prevented by washing out the cavity with antiseptic substances. A solution of quinine, eight to ten grains to the ounce, is very useful for this purpose. Antiseptic solutions in sloughing of the throat, as in scarlet fever or diphtheria, and in salivation and ulceration of the mouth, will remove the foul odour and tend to arrest putrefaction.

A strong solution of chlorinated soda has been highly recommended in diphtheria.

The deodorizing and antiseptic substances chiefly in use, besides the members of this group, are iodine, permanganate of potash, and carbolic acid. Solutions of permanganate of potash, unless unnecessarily strong, are bland and unirritating; while the chlo-
IODE.

IODE.

Iodine possesses powerful chemical affinities, and combines energetically with many organic and inorganic substances. It is volatile, and readily penetrates the animal textures.

It is applied to the skin for a variety of purposes. A strong solution, as the liniment, is frequently used as a rubefacient and counter-irritant, producing at first a sensation of heat and burning, which may increase to an unendurable extent. The inflammation it excites separates the cuticle to a greater or less extent from the dermis, so slight it may be that in a few days mere desquamation results; but if the liniment is strong it rapidly produces even a blister containing serum with much fibrin, leaving sometimes a permanent scar—a misadventure which should be carefully avoided.

The skin can generally bear two lightly-painted coats of the Pharmacopeia liniment, unless a previous application has rendered the skin thin and delicate, when one coat lightly applied is all that can be endured. If, as sometimes happens, the application causes much pain, the iodine should be washed off with spirits of wine, gin, whisky, or eau de Cologne, or, best of all, with a solution of iodide of potassium, and the pain subdued by the application of a poultice. On and around the painted spot iodine liniment will often excite a crop of itching papules which often appear as late as the third or fourth day after the application.

The liniment applied to the chest as a counter-irritant in chronic pleurisy is used to promote the absorption of the fluid accumulated in the pleura. Painted under the clavicles in the chronic forms of phthisis, it is of great service to allay harassing cough, and to check secretion from the bronchial tubes and cavities of the lungs. Painted over the front and back of the chest it often affords relief in chronic bronchial catarrh by easing the cough and lessening expectoration. It may also be painted on any part of the chest affected with pleurodynic pains, although a mustard poultice is preferable, as it can be re-applied should the pain return. The
iodine, however, may succeed where the mustard fails. Iodine painted around joints affected with chronic rheumatism or chonic colitis, or with chronic synovitis. Like blisters it eases the pain and often removes the fluid distending the cavity of the joint; but blisters, too, it often causes, for a few days, increased distension of the joint, the good effects not becoming apparent till later. The increase of the swelling may be regarded as an indication of the success of the application. The liniment is useful when painted on the skin over a bronchocele. It should be applied—though it seldom be borne oftener than once a week—as often as the skin will permit, till the tumour disappears. The liniment or tincture is recommended as an application to lupus, painted not only on the edges of the sore, but also over the tissues around. It is said to arrest the spreading of the disease. In the form of ointment its applications are manifold. It is of the greatest value in chilblains, if well rubbed over the affected part before the skin is broken. The tincture lightly painted over the part is used for chilblains, but the ointment is far more efficacious, curing unbroken chilblains in one or two days. In this harassing affection I know nothing so effective. The intolerable itching of chilblains is often very difficult to relieve. Hot water often affords temporary relief. I have heard patients say, that an infusion of celery is used as hot as can be borne, is highly efficacious, and that the remedy is not simply due to the hot water, as the celery itself affords far more enduring relief than simple hot water. Being iodine dissolved in ammonia (colourless tincture of iodine and a liniment of ammonia) are each useful in chilblains.

Iodine ointment is often useful in removing some of the inflammatory pains of the chest; but these, not being of the same nature, discrimination must be exercised. When the pain is situated in the muscles (myalgia), and these are tender to pressure, while the skin may be pinched without pain, this ment is indicated. But if the tenderness is situated in the chest (pleurodynia), belladonna is to be preferred. I believe Dr. first pointed out this distinction, and it is one which holds though not without exceptions.

The ointment, tincture and liniment of iodine are used for the same purposes; but it must be recollected that the ointment tincture are much milder preparations, and will even after s
The tincture or the ointment is often applied over indurated swollen glands, or parts thickened by inflammation, with the intention of removing the diseased products; but when painted over sequestrated glands, or glands subacutely inflamed, care must be taken, lest the applications increase the inflammation and favour suppuration. Iodine mixed with light oil of wood tar in the proportion of two drachms of iodine to an ounce of oil of wood tar, has been recommended by Mr. Coster, as an efficient application in tinea tonsurans. It usually produces no pain, and without doubt prevents the extension of this troublesome disease.

In many cases where the disease involves a large part or the whole of the head, this application may be painted over the entire scalp. Occasionally, however, the skin is so delicate that this extensive application cannot be borne, and then it should be applied only to a small surface and painted on a fresh part daily. In some cases it gives so much pain that it cannot be at all tolerated. Coster's paint, as might be expected, is far more effectual in the circumscribed than in the diffuse form.

The liniment, ointment, or tincture, will remove herpes circinatus. One application of the liniment is enough, but the ointment or tincture must be applied once or twice daily.

It is stated that painting the affected and circumjacent skin with a solution of iodine, will prevent the spread of erysipelas.

Mr. Jordan, and Dr. T. K. Spender, speak highly of the application of the liniment in the neighbourhood of local inflammation; applied so as to produce vesication around a bubo, an abscess, or a carbuncle, it considerably reduces inflammation.

In hydrocele, iodine in solution, generally the tincture, is perhaps the best fluid to inject into the serous cavity surrounding the testicle. The serous fluid is first drawn off, then the iodine is injected into the cavity, which, exciting adhesive inflammation, the contiguous surface of the sac unites, and the further effusion of serum is rendered impossible.

Iodine solution is injected into joints affected with white swelling, into the cavity of the pleura in empyema, into ovarian tumours after tapping, and into large abscesses after their evacuation. Ten ounces of the tincture, and even more, may be injected into an ovarian sac. The results of the cases thus treated are most satisfactory. The injection of white swellings is said to produce no ill symptoms, and unless there is caries or necrosis of the bones, or swelling of the surrounding parts, this treatment is generally favourable.
In chronic pleurisy, after the side has been evacuated, iodine injections remove the great foetor often present from the decomposition of pus in the pleural sac, and at the same time diminish the secretion from its walls. The injection must at first be weak, say four or five grains of iodine and iodide of potassium to a pint of water, but when the structures have become accustomed to it, a stronger solution may be employed. No doubt this treatment is often successful, still it must be carried out with the greatest caution, otherwise inflammation, with high fever, may set in, and prove fatal.

Milder injections, containing permanganate of potash, or a small quantity of creosote, or quinia, are generally adequate to destroy the foetor, in which case the more powerful agents are of course not to be used. Since the wasting, the loss of appetite, and depression in cases like these is mainly traceable to the absorption of poisonous gases and putrid fluids, it is of the highest importance to keep the sac free from them.

Iodine solutions, injected into the cavities of large abscesses, their contents having been discharged, often prove very serviceable. The tincture itself may be freely used; the cavity of the abscess should subsequently be kept clean and sweet by frequent washings with a weak solution of permanganate of potash. Iliac and lumbar abscess may be treated in this way.

The tincture of iodine may often be used as an inhalation, with signal benefit in the four following instances:

1. In the chronic forms of phthisis (fibroid lung), when the expectoration is abundant, and the cough troublesome. An inhalation used night and morning, will generally lessen the expectoration, and allay the cough.

2. Children, six to ten years of age, after measles, or independently of it, on exposure to cold, are seized with hoarseness, a hoarse hollow cough, and some wheezing at the chest. This affection involving the larynx, trachea, and larger bronchial tubes, often proves very obstinate, is apt to return, and to persist a considerable time.

3. In some epidemics of diphtheria, Dr. Waring-Curran recommends the following mixture:—4 grains of iodine, 4 grains of iodide of potassium, 4 drachms of alcohol, and 4 ounces of water. A teaspoonful of this should be added to boiling water, kept hot by a spirit lamp, and the steam inhaled. As the patient becomes accustomed to the iodine, the quantity of the solution may be increased till half an ounce of it is used at each inhalation. It should
be repeated many times a day, and each inhalation continued from
ight to twelve minutes.
3. In itching of the nose or of the inner canthus of one or both
eyes, sneezing, running at the nose of a watery fluid, weeping of
the eyes, and severe frontal headache. Patients of various ages
are greatly troubled, often for many years, with daily attacks,
lasting it may be several hours. Iodine inhalation often removes
this affection at once, and when it succeeds partially, it almost
always lessens the headache and the discharge from the nose.
Its effect is most marked on the itching. (See Arsenic.)
I generally adopt the following simple, handy, cleanly, and
effectual plan of inhalation:—Heat well a jug capable of holding
about two pints, by rinsing with boiling water; then partially fill
with boiling water, into which pour twenty to thirty drops of the
tincture of iodine; then direct the patient to put his face over the
mouth of the jug, and to breathe the iodised steam; covering both
the jug and the patient’s head with a towel to prevent the es-
cape of the steam. This inhalation should be used night and
morning, for five minutes, or a little longer. Occasionally an
excess of iodine will temporarily produce a sensation of soreness
in the chest and throat, sometimes with redness of the conjunctiva,
running from the nose, and pain in the head.
Iodine inhalation is sometimes employed in chronic bronchitis;
but without much advantage.
The tincture is useful to remove tartar from the teeth; and to
stimulate the gums when they begin to recede, leaving the teeth
exposed, and more liable to decay. It should be painted over the
gums close to the teeth.
An iodine gargle, made with two or four drachms of the tincture
to eight ounces of water, has been recommended to allay mercurial
salivation; and the tincture of iodine is applied to sores of the
throat, syphilitic and simple.
Iodine, in undue quantity, irritates and excites inflammation in
the delicate structures of the stomach, inducing pain at the epiga-
strium, vomiting, diarrhoea, sometimes much collapse, and even
death. It should be given soon after a meal, when the mucous
membrane is protected by the food.
When iodine reaches the stomach or intestines, and certainly when
it enters the blood, theory would suggest that this drug becomes
converted either into an iodide of potassium, or, more probably,
of sodium, and thenceforth, in its career through the body, it would
behave as an iodide. Practically, there is much to confirm this
IODIDE OF POTASSIUM.

view, as the action of iodine on the distant organs of the body is very generally admitted to be identical with that of the iodides; yet some practical authorities state, that in chronic rheumatic arthritis, the tincture of iodine is serviceable when the iodide of potassium fails, although it is difficult to understand how this should be.

Iodine may be used as a deodorizer and disinfectant by simply suspending a chip-box, or saucer, containing a few grains over the patient’s head.

Dr. Anderson recommends iodine in malarial fever. He has treated "upwards of 300 cases with almost invariable success." He gives from twelve to fifteen minims of the compound tincture.

IODIDE OF POTASSIUM.

This being an extremely soluble salt, endowed with a very high diffusion-powder, finds ready entrance into the blood, and speedy exit from it with the secretions of the body.

As an external application, it formerly enjoyed more favour than is accorded to it now. As an ointment to the skin over enlarged glands, or parts thickened with inflammatory products in conjunction with the internal use of iodide of potassium, it hastens the resolution of obstinate nodes, and is especially useful when the internal use of this salt disagrees, causing nausea, diarrhoea, or great prostration. The ointment is sometimes used for the itch; and the ointment of this salt, or of iodine, is often used in bronchocele.

According to most authorities, the iodide, probably after its absorption into the blood, produces decided changes in the mucous membrane of the mouth, causing redness and injection of the lining of the cheek, the throat, soft palate, and of the tongue, and an increased growth and separation of the epithelium covering these parts, and an augmented flow of saliva. These phenomena, however, are certainly often absent after large doses of the medicine, and even in severe iodism.

A large dose irritates the stomach, and disorders digestion. Some are far more prone than others to be thus affected; so prone, that even minute medicinal doses sometimes irritate the stomach.

Like the chloride of sodium and chloride of ammonium, this salt
IODIDE OF POTASSIUM.

increases the production of mucus from the stomach and intestines, as well as from the mucous membrane of other parts of the body; but when such a result is desired, we resort to the chloride of ammonium in preference to this salt.

Its great diffusion-power enables it to pass with great rapidity from the stomach into the blood, and it very speedily appears in the urine, so that only a small proportion passes into the intestines. It purges only when taken in very large doses, but it is never employed for this purpose.

Some maintain that when iodide of potassium comes in contact with the chloride of sodium, either in the stomach or blood, it changes its base, becoming iodide of sodium. At present we know but little what physical or chemical changes it produces in the blood, or in the organs to which it is carried.

If its administration is continued for a long period, or if the patient manifests great susceptibility to its action, we produce a condition termed iodism.

Many persons can take this drug in very large quantities for an almost indefinite time, without the induction of iodism, while very small doses, even of a grain or part of a grain, cause others to suffer.

The tissues most frequently and most severely influenced by this drug, are the mucous covering of the eyes and lining of the nose, frontal sinus, and mouth, with the skin of the face. Some slight running at the nose is first noticed, with occasional sneezing, and a little frontal headache; these symptoms becoming more marked when the conjunctiva is injected, and the tears flow abundantly.

The loose tissues about the orbit become swollen, reddened, and edematous, and occasionally a peculiar rash appears on the skin of the face, at first noticed around the eyes, after which it attacks the nose and its neighbouring parts, and then the chin. The parts in the order here stated are severally most severely affected. The nose is sometimes reddened, especially at the tip, and is rather swollen. The rash does not always present the same appearance. It is often very much like acne, and is always hard, shotty, and indurated, but the papules may be broad and large, and covered with what looks like a half-developed vesicle or pustule. The changes in the mouth have already been mentioned, when speaking of the influence of this medicine on that part. With some persons the stomach is at the same time deranged, although in the author's experience this organ often escapes when the face is affected; on the other hand, the stomach sometimes suffers when
the nose and eyes are unaffected. When the stomach is singled out by the iodide, it induces nausea, and a sensation of sinking at the epigastrum, with loss of appetite, and sometimes watery diarrhoea. A grain or even less may thus affect the stomach.

If the drug is discontinued on the occurrence of iodism, the symptoms just described speedily disappear; and the rash on the face, the running at the eyes, etc., will greatly decline in the course of twenty-four to forty-eight hours.

Iodides sometimes, as I shall show presently, cause diuresis. In some persons iodides produce a petechial rash, affecting almost always the leg exclusively, rarely extending above the knee, and rarer still to the trunk or upper extremities. It may, at first, take several days to produce this rash, but when the spots have disappeared, a single dose of five grains may, in three hours, suffice to reproduce it. Sometimes on persisting with the medicine no fresh rash appears, and the old spots die away; while in other cases the rash endures as long as the medicine is continued. This rash may be the only apparent effect of the iodide, but it is generally accompanied in a variable degree by a few or many of the symptoms of iodism. The salts of iodine differ with respect to the production of this rash; thus in many cases the ammonium salt is most apt to induce it, and the sodium salt the least liable: in other cases, where the ammonium and potassium salts produce a large crop of petechiae, the sodium salt is inoperative. Some persons are equally affected by each of these three preparations. In one case, while the ammonium and potassium salts produced numerous petechiae, the sodium salt failed to do so, but excited on the arms some erythema marginatum. The petechial rash is often preceded by a sensation of heat, accompanied by some tenderness. These facts seem to disprove the assertion that either in the intestines or blood, all iodides ultimately become iodide of sodium.

Iodide of potassium sometimes produces distressing depression of mind and body, rendering the patient irritable, dejected, listless, wretched, and unable to take moderate exercise without fatigue, and perhaps with a tendency to fainting. The appetite is generally very bad. These symptoms may arise from a very small dose, and may occur without coryza or irritation of the stomach—a fact important to bear in mind, otherwise, the cause of the depression being overlooked, the medicine may be persisted in. On discontinuing the drug, these distressing symptoms disappear in one or two days. It now and then exceptionally happens, that the symptoms just described sometimes cease in a few days, even though the patient goes on taking the medicine.
IODIDE OF POTASSIUM.

When the potassium salt is not tolerated, the ammonium or sodium salt can sometimes be borne. This iodide in potash can be borne in ten-grain doses, thrice daily, preceded or mixed with lemon juice, and running at the nose, that it could not be stopped, while the same dose of iodide of sodium was easily borne, giving no headache, and only a little running at the nose.

A full dose of carbonate of ammonia or siphons of ammonia given with the iodide of potassium will, it is said, relieve acute symptoms of iodism; but though I have many times put this recommendation to the test, I have seen no decided results, although perhaps the ammonia did occasionally somewhat control the symptoms.

Ten grains of iodide of potassium taken at bedtime when there is an acute cold in the head, especially at the root, is most efficacious if the cold attacks the lungs also and it appears to be useless. In ten-grain doses several times a day it is said to cure that troublesome and unpleasant affection, but paroxysmal sneezing, see Arsenic. It is used in all chronic colds in the head. Iodide of potassium is very well in chronic bronchitis, and may be profitably given with one dose of ammonium.

The iodide is employed in a great variety of diseases, being largely employed in syphilis, but is not equally efficacious in all forms, being more useful in secondary and tertiary than in primary. It is used in the tertiary form, where mercury may fail. Iodide should be employed when the secondary or tertiary form has been taken without benefit, or in cases that are not deemed. It is considerably beneficial when the tuberculosis of the bones or joints, consumption of lungs, gout, and forms what are called nodos. In syphilis, the disease is almost magical. It destroys the ulcer and takes it not of long standing under a single dose. In syphilis it is a very specific. In consumption, it is very beneficial. In a salt of moranity, the iodide of potassium is very beneficial. In syphilis, it is of benefit. It is used in syphilis, but is not equally efficacious in all forms. In syphilis giving way but well sustained, it is a very efficacious remedy. A vein filled with liquid iodide of potassium, is sometimes attacked, and a vein filled with liquid iodide of potassium, is sometimes attacked.
sues become infiltrated with a firm exudation, which may increase to such a degree that the implicated part of the limb becomes much swollen, the skin very tense and shining, and a little reddened. The affected parts are very painful. When the disease is seated at the head of the bones, the movement of the joint is not impaired. If long uncured, this condition leaves behind it permanent thickening and enlargement; and so we sometimes see children with syphilitic teeth, and blind from syphilitic iritis, with considerable enlargement of the heads of several of the long bones.

Certain non-syphilitic periosteal thickenings yield likewise to this remedy.

The iodide of potassium has been recommended in mercurial salivation. I agree with those observers who believe that iodide of potassium often aggravates mercurial salivation; and yet the iodide sometimes appears to be undoubtedly beneficial.

As the action of the iodide on the mercury in the system throws much light on this question, we will now shortly discuss it. The mercury salts, like those of most other metals, form insoluble compounds with albuminous substances. These compounds are very generally soluble in the chlorides, bromides and iodides of the alkalies, but especially in the iodides. Many metals, amongst others mercury and lead, are deposited from the blood in an insoluble form in the animal structures, and iodide of potassium, by re-dissolving either of these two metals, brings one or the other again into the circulation, and so re-subjects the system to its influence. But then iodide of potassium will promote the separation of both mercury and lead by the urine, and thus help to free the system from their pernicious effects.

It has been said that iodide of potassium will dissolve mercury compounds of albumen in the body, and bring them back into the circulation; and herein we have the explanation of a well-known property of this salt, namely, that of producing salivation in persons who had previously taken a considerable quantity of mercury. After taking mercury for some time, if a patient had then become salivated, it would naturally be anticipated that iodide of potassium would still further increase the ptyalism, and not check it. In other cases it might happen otherwise; for we have seen that the salt will effect the separation of this metal through the urine. In a case, therefore, where but little mercury has been taken, during only a short time, yet sufficient to produce salivation, the iodide of potassium, by quickly separating the metal from the system, would remove the mercurial symptoms, including the salivation. Should
ary in the way just explained; others hold, even where no
ary has been taken, that the iodide of potassium itself in-
tes the salivary secretion to a variable amount in different
ins.
The unequaled efficacy of iodide of potassium in eliminating lead
the system through the urine has led to the employment of
rug in lead-poisoning. Further on, when treating of lead, it
be shown how, by virtue of its power of eliminating this metal,
of potassium may prove useful in certain forms of gout.
so of signal service in bronchocele, when the enlargement of
yroid gland is due to hypertrophy, not to cystic formations, or
er causes. Its internal employment is often supplemented by
ing the swelling with the tincture or liniment of iodine. Iodide
assum is used too in either induration or enlargements of the
is, as of the mamma or testicle, though with less advantage
in bronchocele.
Iodides quicken the absorption of inflammatory effusions,
as occur in pleurisy and in inflammatory thickening of organs.
de of potassium sometimes relieves sciatica and lumbago, al-
gh it very often fails to affect either, especially sciatica, even
the pain is worse at night.
ide of potassium sometimes benefits chronic rheumatism,
ic rheumatic arthritis, chronic gout, especially the two former
ions. It should, however, always be borne in mind, that
ains of secondary syphilis, frequently resembling in all re-
ds those of so-called chronic rheumatism, are frequently con-
ded with, and included among, the manifold affections termed
cases of chronic rheumatism; now, the iodide generally benefits these rheumatic cases.

A patient, generally a man, complains of a pain in the head, mostly throbbing in character, sometimes accompanied with intolerance of light—a pain which may be felt over the whole head, or beginning at the back of the neck, and thence passing over the vertex to the brow. This pain, worse, or indeed felt only, at night, becomes almost unendurable; and, in the patient’s vernacular, is fit to drive him out of his mind. Alcohol is apt to intensify this pain. The pain having passed away, the scalp is left very tender. Whether this form of headache is due to syphilis it is impossible to say, as it does not present its characteristic features. Iodide of potassium in ten-grain doses, repeated three times a day, will generally cure such a case.

Iodide of potassium is sometimes singularly useful in peptic and bronchial asthma. Five grains or more, three times a day, may be required. Now and then its good effect is not manifested for some time, though possibly in such a case, larger doses would bring prompter relief. The late Dr. Hyde Salter, whilst admitting the great efficacy of this salt in some instances, was inclined to think that in the majority of cases it is useless. My limited experience leads me to think it more frequently useful than Dr. Salter was willing to admit.

Iodide of potassium has sometimes obviated barrenness, presumably due to syphilis.

Iodide of potassium occasionally acts as a powerful diuretic in Bright’s disease. I have seen it remove all the dropsy in thoroughly water-logged patients, every part of the body being edematous, the legs swollen till they could not be bent, the skin shiny from distension, and the abdomen distended with fluid. The iodide increased the scanty urine from a few ounces daily to 30, then 50, 60, and 120 ounces, till the dropsy disappeared, every vestige of it, in a fortnight. While, however, this drug increased the urinary water and removed the dropsy, it produced very little effect on the amount of albumen. Of course, in proportion to the increased quantity of urine, the relative amount of albumen diminished; but, in fact, the albuminous urine is simply more diluted, and in estimating the amount of albumen separated in the day, we must bear in mind the amount of urine voided. For instance, if a patient is passing only ten ounces daily, and on boiling the urine the coagulated albumen occupies half the tube, if then the urine is increased to twenty ounces the coagulated albumen will occupy
patients were syphilitic; the disease, in some cases, following a fever, in others it appeared to be due to cold. Like other
ics, as, for instance, resin of copaiba, its action is very un-
In many cases, in most, indeed, the iodide fails alto-
; but this uncertainty can in part be explained; thus a
rate dose of from five to ten grains will act powerfully with a
number of patients, whilst in others the dose must be very
In one case I did not obtain its diuretic action till I gave
hundred grains daily, and even this dose had to be increased
to hundred daily to maintain the effect and eliminate all the
y. Now, in most patients, large doses bring on severe iodism
pression, so that probably the diuretic dose cannot be
ed. In my experience, iodide of potassium, like digitalis,
to act as a diuretic when the dropsy disappears.
Balfour recommends in aneurism, iodide of potassium from
y thirty grain-doses continued for a considerable time, even
elve months, conjoined with the recumbent posture and a re-
d diet; and he narrates several cases strikingly confirmatory
fficacy of this mode of treatment. Dr. Chuckerbutty sup-
is statements. I too have seen on several occasions large
of the iodide of potassium afford prompt relief in the severe
om aneurism; the drug presumably acts by lessening both
of the tumour and its pressure on the nerves. In some
at is certain that the tumour grows smaller and less pulsatile,
ts sometimes assert that a slight discontinuance of the iodide
36 to 48 hours, is always followed by an increase in pain,
ces on returning to the remedy. Large doses are some-
required. 130 grains or more daily may be necessary to
system, the absorption occurring more slowly when these are replete. The statements concerning its influence on the various constituents of the urine are so discrepant, and the observations made on the subject are so imperfect, that at present our knowledge in this respect must be considered untrustworthy. It is rapidly separated from the body, and, even after large doses, soon becomes indetectable in the urine; indeed, after withholding the drug, every trace of it may vanish in less than twenty-four hours. It is stated on doubtful grounds, that it may be detected in the saliva some days after it has ceased to appear in the urine.

Five grains three times a day is generally a sufficient dose. Sometimes, as in rheumatoid arthritis, and in syphilis, no benefit is obtained until much larger quantities, or ten, fifteen, or even twenty grains are given at a dose.

Large doses arrest the rapid sloughing of certain syphilitic sores and promote the healing process. Full doses sometimes succeed when smaller ones fail.

For the removal of syphilitic nodes from the membranes of the brain, five to ten grains, repeated three times a day, is generally sufficient. At first the drug sometimes intensifies the pain, then the disease rapidly declines. In no other affection does this medicine yield such striking results.

Iodide of potassium may be conveniently administered in milk.

BROMIDE OF POTASSIUM, SODIUM, AMMONIUM, AND LITHIUM.

These salts in physical and chemical properties are closely allied to the corresponding iodides; yet in their action on the body, the bromides and iodides exhibit considerable differences.

The persevering use of bromides occasionally produces an acmeiform rash, and even boils; effects to be more fully described in a subsequent part of this section. Yet Dr. Cholmeley reports the cure of some obstinate cases of acne by moderate doses of bromide of potassium.

Bromide of potassium, in five parts of glycerine, has proved useful, it is said, as a local application to ease the pain in hemorrhoids, fissure of the rectum, and in painful growths.

If taken in moderate doses for some time, or in larger doses for
BROMIDE OF POTASSIUM.

shorter time, bromide of potassium diminishes the sensibility of the soft palate, uvula, and upper portion of the pharynx evidenced by the absence of movement in these parts when they are excited. Speidel finds that bromide of potassium affects the reflex irritability but not the sensibility of the pharynx; that after its use irritation of the throat will not excite deglutition, but the pain of operations is not lessened. He agrees with Volkmann that thirty grains may be insufficient to affect the pharynx, and that sometimes it may be necessary to repeat this dose two or three times, a few hours apart. It has been recommended to give the bromides to reduce the excitability of the throat preparatory to a laryngoscopy examination; and it is even averred by some writers that merely brushing the pharynx and soft palate with a solution of the bromide, is sufficient to quell the irritability and to permit a laryngoscopic examination with comfort to the patient. Many observers, however, question this use of bromide, and Dr. Mackenzie considers that ice alone can lower the excitability of the pharynx.

Assuming that the bromides possess the property of diminishing the sensibility or the reflex irritability of the pharynx, it was naturally surmised that they would lessen the excitability of the larynx, and thus prove useful in those diseases accompanied by spasmodic contraction of the glottis, as whooping-cough and laryngismus stridulus.

It is possible to reconcile the discrepant statement concerning the influence of this remedy on these diseases. Now, as to whooping-cough, all observers must admit that some cases are altogether uninfluenced by this remedy, and it neither lessens the frequency nor the severity of the paroxysms of coughing. In other cases, it appears to control both the frequency and the severity. The bromide, I believe, will only be found serviceable in simple uncomplicated whooping-cough. If there is fever, or much catarrh of the lungs, if there is pneumonia, or tuberculosis, if the child is teething, and the gums are swollen, red, and painful; or if any gastric irritation exists, then till these complications have been met by appropriate treatment this remedy fails; but when the case has been reduced to a simple form, the bromide of potassium does certainly influence the disease, lessening both the frequency and severity of the paroxysms.

It is thus found to be of most service in the summer, or when the weather is genial and mild. Like other remedies for whooping-cough, the bromides are more efficacious in some epidemics than in others.
The efficacy of bromide of potassium in laryngismus stridulus, is subject to conditions very similar to those which limit its usefulness in whooping-cough. Any irritation, as that from teething, must be removed before the remedy appears to manifest any power.

As, however, in cold sponging, we possess a cure for laryngismus stridulus, ready, prompt, efficient, we need not often have recourse to the bromide. (See Cold Bath.)

The bromides are sometimes useful in whooping-cough, and laryngismus stridulus when complicated with convulsions. During a paroxysm of laryngismus stridulus, or whooping-cough, the obstruction in the larynx sometimes becomes so urgent as to induce very imperfect oxidation of the blood, and to cause partial asphyxia, resulting in an attack of convulsions. Convulsions, moreover, are not uncommon in laryngismus, independent of asphyxia, unaccompanied with an attack of crowing, the early and less developed stage of these convulsive attacks being manifested in carpo-pedal contractions, squinting, etc. The bromides will control the recurrence of these convulsions, even when the disease itself is apparently otherwise uninfluenced.

With regard to laryngismus stridulus, cold sponging is generally sufficient to avert convulsions; but in cases where, from the effects of any irritation, cold sponging is ineffectual, the bromide of potassium will, in most instances, avert the convulsions, thus obviating one of the gravest dangers of this disease.

The bromide of potassium will much benefit a curious affection we sometimes meet with of a child, which, from the time of his birth, can swallow solids with ease, yet is choked every time he tries to drink. This strange affection is in no way connected with diphtheria or any visible affection, or malformation, of the throat.

The bromides, so far as we know, appear to have very little influence on the stomach.

In certain cases, these salts exert a beneficial influence on the intestines; for instance, in a form of colic, which sometimes affects children from a few months to one or two years old. The walls of the belly are retracted and hard, while the intestines, at one spot, are visibly contracted into a hard lump, the size of a small orange, and this contraction can be traced through the walls of the belly, travelling from one part of the intestines to another. These colicky attacks, unconnected with constipation, diarrhoea, or flatulence, occur very often, and produce excruciating pain. Sometimes they are associated with a chronic aphthous condition of the mouth. They generally resist all other kinds of treatment but the bromides.
Like the iodides, these salts pass quickly into the blood, and we shall now treat of their influence on the organs to which they are conveyed by this fluid.

The experiments of Brown-Séquard, Meuriot, and Amory, lead them to conclude that bromides contract all the blood-vessels, producing anaemia of the brain and spinal cord, thus diminishing the excitability of these organs.

Certain experiments show that this contraction is probably owing to the effect of bromide of potassium on the vaso-motor nervous system. The six toes of both hind feet of a frog were quickly cut off, and during the following two minutes eight drops of blood flowed from the right leg, and nine from the left. Another frog, after being poisoned by bromide of potassium, was treated in the same way, but during the two minutes after amputation, two drops only flowed from the right leg. The left sciatic plexus was then divided, thereby cutting off nervous communication between the limb and the vaso-motor centres, and in two minutes ten drops flowed from the left leg.

The bromide of potassium induces in animals decided diminution of reflex irritability, and of cutaneous sensibility. Experiments render it probable that this diminished reflex irritability is due in part to the effects of the drug on the reflex function of the cord, and in part to its effect on the sensory nerves.

This effect is not due to its action on the muscles or motor nerves; for, after complete abolition of reflex action, the muscles still contract on the direct application of galvanic stimulation, and the motor nerves still convey impulses to the muscles. Moreover, if the vessels of the hind extremities are first securely tied, and the animal then poisoned, the hind legs in common with other parts of the body lose their reflex irritability, showing that the drug does not expend its force on the muscles or motor nerves, since these parts in the hind extremities are supplied by the ligature of their vessels. Further, this conclusion is strengthened by the fact that, after the abolition of reflex irritability in a frog, it is still capable of voluntary movement. Hence, not only are the muscles and motor nerves unaffected, but likewise the motor tract of the cord, and the motor centres of the brain. It appears, therefore, that the bromide affects only the reflex function of the cord, and leaves unaffected the other parts, certainly the motor tract. Dr. Amory attributes the effects of the bromide on the cord to the contraction of the arterioles, and to the diminution of function consequent on the lessened supply of the blood to the cord. A very doubtful explanation this, for, in the first place, it has not been satisfactorily proved that bromides do contract the arterioles; and again, if depressed reflex action were due to this cause, surely the other functions of the cord would share this depression, for it seems incredible that only the arterioles supplying that part of the cord devoted to reflex function should be affected; and lastly, in the bloodless frog, when all the blood has been washed out of the vessels and replaced by salt water, rendering the cord completely anaemic, the symptoms produced by bromides do not occur. Bromides depress likewise the sensory nerves, it has been shown by several experimenters, that an animal poisoned by bromide of potassium, yet still possessed of the power of voluntary movement, submits to pinching, burning, or pricking, without moving or giving other evidences of pain.
Topically applied to the heart or voluntary muscles, it destroys the contractility, and topically applied to the motor nerves or spinal centres, it destroys their function. This property probably depends on the potash alone, for potash salts paralyze all the structures of the body. (See Potash.)

In a joint paper by Mr. Morshad and myself, published in the *Journal of Anatomy and Physiology*, we have shown that all the effects described as arising from bromide of potassium on frogs, are due to the potash, and further, that these effects are producible by all potassium salts.

After a hypodermic injection of a solution of bromide of potassium, in from one to five minutes as soon as a condition, probably due to fright and shock, has passed off, the animal recovers complete, or almost complete voluntary power, but there is considerable, and in some cases very complete loss of sensation; thus, pinching a toe either excites no voluntary movement, or it is manifested only under sharp and repeated pinching. In six or seven minutes general weakness ensues, and slowly progresses till, in about an hour, paralysis is complete. But before this is induced, the animal lies flat on the table looking dead, whilst pinching excites neither reflex nor voluntary action, yet at this time the animal retains considerable voluntary power, being able to hop vigorously, though awkwardly. The sequence of the symptoms then is, first, that shortly after the injection, complete, or almost complete, paralysis of the afferent nerves, with loss or destruction of reflex action, but with voluntary power very little or not at all affected; next voluntary power declines and is at last abolished. We find that chloride and iodide of potassium produce these identical phenomena; that the rapidity of the loss of voluntary power depends on the proportionate amount of potash the salt contains. Thus we always used, as near as possible, the same relative amount of each salt to the weight of the animal. So as to give an equivalent quantity of the potash, these salts must be administered in about the following ratio:—Chloride of Potassium 1, Bromide 1/5, Iodide 2. Now we found that, on an average, the chloride caused complete paralysis in 40 minutes, the bromide in 55 minutes, and the iodide in 80 minutes, figures standing in about the same ratio as the amount of potash respectively contained in the three salts.

The effect of bromide of sodium is far less energetic; thus, in the course of four or five minutes, its effects pass entirely away and are, indeed, probably due to the mechanical shock, and not to the direct action of the bromide on the nervous tissues. For the above reasons, we conclude that the effects just described depend on the potash in the bromide of potassium, the same results being inducible by other potassium salts. Our observations, therefore, thus confirm Guttman's statements concerning the similar action of all potassium salts on the nervous system of frogs, also Laborde's statement that bromide of sodium, even in double the dose of bromide of potassium, produces in frogs no characteristic symptoms.

Very large doses of bromide of potassium lessen the frequency and the force of the heart's contractions, shortening the systole and prolonging the diastole, and at last arresting the heart in diastole.
BROMIDE OF POTASSIUM.

Bromide of potassium is used in a variety of diseases, but its virtues are chiefly conspicuous in convulsions. It is serviceable in all forms of convulsions—infantile and convulsions of Bright's disease, and in the convulsions of infants, whether due to centric or eccentric causes. Although convulsions may be excited by many causes, it is probable that the conditions of the nervous centres producing the attack are in every instance identical; and it appears to be these conditions which the bromide controls.

In no disease is the bromide of potassium more powerfully efficacious than in epilepsy, though it is not equally useful in all forms. This drug leaves attacks of convulsions often unexplained. It is the convulsive form of epilepsy which is so remarkably amenable to the bromide, for in by far the greater number of cases the fit under its influence, become much less severe and less frequent. Even when of great severity, and repeated perhaps several times a day, the fit may be postponed for weeks and even months may in some cases it has been delayed for years.

Cases of the convulsive form, however, occasionally occur over which the bromide appears to be powerless; the fit recurring as often and as severely as if no medicine had been taken. It is not possible to foretell when the medicine will succeed, and when it will fail. As might be expected, the effects of the drug are most marked when the disease is of short standing.

Dr. Weir Mitchell recommends bromide of potassium in epilepsy. It contains a larger percentage of bromide than either the sodium or potassium salts, and it acts more powerfully in the same doses may be given. Dr. Mitchell thinks the bromide salt succeeds sometimes when the potassium and sodium salts fail. As a hypnotic, he says, “it is superior to the potassium and other salts of bromine.” Echeverria thinks it is inferior to the potassium salt in epilepsy, and a hypnotic superior to the sodium and calcium salts.

Echeverria considers the potassium salt much superior in epilepsy to the ammonium salt. The ammonium salt is more disagreeable to the taste. In epileptic maniacal excitement Echeverria finds bromide of sodium far less serviceable than bromide of ammonium. He moreover asserts that bromides fail to suppress mental excitement in epileptics unless combined with some other carbonate of conium, cannabis indica, hyoscyamus, chloral 15 to 20 grains each, or, still better, ergot of rye.

Brown-Séquard thinks it advantageous to mix the potassium and the ammonium salts, this combination exerting a greater influence.
on epilepsy than either salt separately, and lessening the risk of bromism. Echeverria disputes these assertions.

In mild epileptic cases, ten grains three times daily is sufficient. When the attack occurs only at night, the best way to avert it is to give at bedtime a full dose of thirty grains. Echeverria finds that the average dose required is sixty grains daily, but in severe cases a much larger quantity may be needed. In respect to the dose, Voisin says, “I have employed for many years a method which has given me the best results, which consists in determining the condition of reflex nausea by introducing a spoon as far as the epiglottis. I have remarked that a therapeutic dose of the bromide of potassium is not attained till reflex nausea is suppressed; it is not till then that the bulb is certainly acted on, and its excito-motoric force diminished. The study of other reflex phenomena, such as lachryamation, cough and sneezing, enables us to follow the action of the medicine upon the bulb and spinal cord. The dose should not be increased beyond the suppression of reflex nausea, but it should be given continuously for years together. If the malady be ameliorated, or in process of cure, at the end of two years of amelioration, the remedy, instead of being administered every day, may be given every second, third, or fourth day, provided reflex nausea be always and certainly absent.” Voisin considers that the early manifestation of toxic effects is a good, and their late appearance, a bad augury.

If the patient is not cured, but only benefited, by the bromide, it may be continued for months or years. But its administration should be suspended at times for a week or ten days, otherwise the system becomes accustomed to it, when it loses its influence, so that the good effects, so well marked originally, cease altogether, the fits recurring with their old severity and frequency. If in such a case the drug is withheld for a time, and then resumed, it again manifests all its previous efficacy.

It has been asserted and denied that chloride of potassium in epilepsy is as efficacious as bromide of potassium.

We have already spoken of the effect of bromide of potassium on the convulsions sometimes accompanying whooping-cough and laryngismus stridulus. The bromide will often prove useful in all other diseases associated with general convulsions. Of course the exciting cause of the convulsive attacks should, if possible, be removed; but even when the cause is indetectable, this salt will often lessen or prevent the epileptiform seizures. The convulsions caused by intestinal worms sometimes resist this remedy completely.
BROMIDE OF POTASSIUM

Bromide of potassium will often check the convulsions resulting from simple meningitis, the fits sometimes persisting after the onset of the inflammation, and inflicting serious damage.

Many writers extol bromide of potassium in seeking atavism but it obviates irritability and restlessness and prevents convulsions.

Dr. Begbie has much commended this salt as a soporific. The hypnotic effects, Dr. Clarke and many others consider due to the anaemia of the brain which these salts produce. For anaemic beings, induce wakefulness, while a less degree produces sleep. In this way he explains the different effects of bromide of potassium on himself. After unusual mental or physical fatigue would be asserts causes anaemia of the brain forty or fifty grains of bromide by increasing the anaemia, caused sleeplessness through interrupted and quieted him. When only wakeful from an ordinary amount of mental work, a state where the brain is in a hyperactive condition, the same dose produced sound and refreshing sleep. Even when the brain receives only the usual amount of blood it produces unusually profound sleep. Voisin, referring to his patients in the Hôpital, says, "The hypnotic action upon them was very remarkable night and day. Some were obliged to sleep for a few minutes at a time in the midst of their work. None, in spite of whatever efforts they made to the contrary, could resist sleep already after their evening meal." It has been found of especial use in cases where sleeplessness and wandering at night are unrefreshingly occurring during convalescence from acute diseases. Often the patient for the like symptoms during even the febrile stage of inflammatory and specific fevers as puerperal, malarial, and typhoid fever.

In sleeplessness from other causes as worry, nervous pain, dyspepsia, &c., it may be hopefully employed. These remedies are especially indicated if, besides sleeplessness, the patient although of abstemious habits, suffer from delirium resembling that of delirium tremens.

Bromide of potassium is often of conspicuous benefit in delirium tremens, removing the delusions, calming the delirium, and inducing sleep; and its efficacy is most apparent in the earlier stages before the delirium becomes furious. Moreover, it is of great service in dispelling delusions which may remain after the patient is dual of the attack.

Dr. Clarke recommends this salt in the insomnia accompany a mental anxiety, hysteria, pregnancy, and a sort of hyperesthesia.
sia, which I know not how to describe by any other name than general nervous irritability."

To produce sleep, twenty to thirty grains should be given at night; and should this prove insufficient, a like dose may be taken in the morning. Likewise twenty to thirty grains, or even more, may be given in delirium tremens every two hours till the patient falls asleep. The salt often succeeds as a soporific when opium fails. It increases the hypnotic effect of chloral, hyoscyamus, bella-

donna, cannabis indica, ether and chloroform, and, according to Da Costa, of opium.

Dr. Begbie recommends it for overtaxed brain, either from study, or over-strenuous application to business. It calms the excitement, produces sleep, and dispels the giddiness, noises in the ears, and perversions of the external senses, which often harass these patients. In such cases it is invaluable. He also recommends this salt in acute mania. It is useful too in the headache connected with grief or worry.

There is a group of symptoms variously combined, occurring mostly in women, generally townspeople. The patient is very "nervous," subject often to great despondency, at times so unendurable as to make her, as she expresses it, feel as if she should go out of her mind. She is very irritable, is unable to fix her attention, and noises distress her. She sleeps badly, her rest being broken by harassing dreams. This condition often arises from overwork, grief, worry, or too long residence in town, or want of change.

The bromide of potassium will always cure this group of symptoms. Their occurrence, independently or associated with other illnesses, as the change of life, or migraine (sick headache, nervous sick headache, bilious headache), is a distinct indication to give the bromide.

The bromide has been often extolled for its efficacy in the symptoms pertaining to the "change of life" and in migraine, and though often very serviceable, yet it often fails. The distressing symptoms occurring during the change of life are very various, but generally occur in definite groups, though these may be more or less combined. The group of symptoms I have just described commonly occurs at the menopause, and yields almost always to the bromides. This group is often associated with heats and flushings, followed by free perspiration and prostration, sometimes extreme. These symptoms too will also generally give way to the bromide. If, however, the heats, flushings and perspirations predominate
BROMIDE OF POTASSIUM.

over the mental depression, nervousness, irritability and sleeplessness, then small doses of nitrite of amyl (see this drug) will generally prove more serviceable than bromide of potassium. Whilst removing the heats, flushings, and perspiration, the nitrite of amyl controls the other group of symptoms, quiets the nervous system, produces sound dreamless sleep, and relieves the nervousness and depression. At the change of life patients often complain of much fluttering at the heart, a symptom best controlled by large doses of the astringent preparations of iron (see Iron). Indeed, if a patient is anaemic, the bromide or any treatment, though efficacious for a time, fails in the long run.

Occasionally the troubles just described yield but partially to the treatment recommended; or, if removed for a time, recur with greater intensity and become unendurable. Then the only recourse is thorough change of air and scene, or travelling for three or six months.

In migraine too (sick headache and its allies), bromide of potassium has been strongly recommended by Drs. Yandell and Davis of America, and Latham of Cambridge, and it is often of great service, though in many cases it altogether fails. In the article on chloroform I have treated of migraine, and I here merely add, that we often find the headache associated with the group of symptoms previously described, namely, nervous depression, sleeplessness, irritability, &c. Perhaps for years previously the patient has been troubled with attacks of migraine at intervals of a month or so. On the occurrence of this group of symptoms, the attacks of migraine become much more frequent and severe; indeed, the pain may become continuous, though at times, generally once a day, it may be paroxysmally worse. The irritability, sleeplessness, &c., are indications of a depressed nervous system, which accounts for the increased frequency of the migrainous attacks. With this condition of the nervous system, slight disturbances and causes of irritation bring on severe headaches; sometimes so easily induced that they occur daily. Bromide of potassium produces refreshing sleep, soothes the nervous system, dispels the other symptoms, and at the same time lessens the frequency and severity of the headaches. Again, derangement of the womb excites migrainous attacks either at a normal or menorrhagic period. Here again bromide of potassium is useful, and its efficacy, when the attacks are caused by menorrhagia, is not entirely due to its checking this condition, for, given between the periods, it may improve the migraine before the next attack of menorrhagia. Whilst speaking
of uterine disturbance as an exciting cause of these headaches, I may mention that sometimes they are due to uterine mischief generally of the neck of the uterus, and remain rebellious to any treatment till the womb is cured either by injections or by other treatment.

Sometimes during an attack a full dose induces sleep, and after a few hours the patient awakens free from headache. Drs. Yandell and Davis find five or six grains generally sufficient, but they have given half a drachm three times a day. In severe attacks recurring daily, I find fifteen grains twice during the day, and double that dose at night, generally required.

Sometimes in the later months of pregnancy, a woman becomes at night the prey of the most frightful imaginings, labouring under the impression that she has committed, or is about to commit, some great crime or cruelty, as the murder of her children or husband. The bromide dispels these delusions, and induces calm, refreshing sleep. Freidreich gives 15 to 30 grains daily for vomiting of pregnancy.

Bromide of potassium is of great service in the treatment of children subject to night-screaming, a symptom which appears to be allied to nightmare. Children from a few months to several years old may be attacked with this affection. Sometimes the attack occurs only once or twice a week, as is usually the case with older children; or it may be repeated several times each night. The screaming may last only a few seconds or it may endure for several hours. While screaming, these children are generally quite unconscious of what is occurring around them, and cannot recognize nor be comforted by, their friends. They are generally horribly frightened. A somewhat similar condition is met with in children a few years old, a state very similar to somnambulism, but sometimes apparently allied to epilepsy. The child gets out of bed while fast asleep, walks about the house, and performs, as if awake, various acts, quite unconsciously. This stage is not accompanied with any terror. With the screaming and fright, squinting sometimes occurs, which after some time becomes permanent. In these cases bromide of potassium will prevent the screaming, and remove the squinting. This affection in children being connected very generally with deranged digestion, the condition of the stomach or intestines should be attended to; but even in spite of this derangement the bromide will give quiet and refreshing sleep.

The nightmare of adults will generally yield to the same medicine.
BROMIDE OF POTASSIUM.

It is soothing in hysteria, giving patients greater control over themselves and preventing hysterical paroxysms.

Dr. Begbie has used the same salt with great advantage in some cases of asthma and of diabetes. It occasionally relieves the pain of neuralgia.

It is also used with decided benefit in certain derangements of the organs of generation. Large doses are said to lessen the natural menstrual discharge. In some forms of menorrhagia it is equal, if not superior, to any remedy we possess; but it is more useful in the flooding of young than of old women. Over that form of flooding due to uterine tumours of various kinds, it exerts less control than ergot and some other remedies. To check profuse menstruation, its administration must be regulated by the circumstances of the case. If the loss of blood occur only at the natural period, the medicine is then commenced about a week before; and when the menstrual flux has ceased, the remedy should be discontinued till the next attack is about to begin. On the other hand, if the loss of blood occurs every two or three weeks, or oftener, the medicine must be given without intermission till the loss is controlled; and when the discharge has been brought to its right period and amount, it will still be desirable to give a few doses for a short time before each monthly period. Ten grains three times a day is a dose sufficient in the flooding of young women, but much larger doses are required in the more obstinate forms depending on organic changes in the womb. This remedy has been recommended by Dr. Begbie in puerperal mania and nymphomania. Dr. Clarke also says it reduces sexual excitement in those instances of hysterical excitement verging on nymphomania. Small doses are unavailing. Not less than twenty grains thrice daily will exert a decided control over excessive sexual propensity.

It also restrains spermatorrhœa. Its employment should be supplemented by cold sponging of the scrotum and perineum, and the suspension of the testicles in cold water for some minutes night and morning. Seminal emissions are generally excited by dreams, which may often be avoided by abstaining from suppers, and sleeping on a hard mattress. Dr. George Bird has pointed out that seminal emissions occur from undue indulgence in bed, the emissions taking place almost always early in the morning, during the second sleep. He recommends, therefore, that the patient should be roused after six or seven hours' sleep, and should never give in to a second sleep. The observance of this simple means will often cure this otherwise troublesome affection. Dr. Hardman,
of Blackpool, tells me that he has cured some obstinate cases of spermatorrhœa, by directing the patient to empty his bladder on waking from the first deep sleep.

It proves useful in allaying various forms of hyperæsthesia, and sometimes eases the severe pain of chronic arthritis.

Dr. Da Costa finds that bromide of potassium lessens, or even prevents, many of the disagreeable symptoms of opium, as giddiness, confusion of mind, fainting, headache, and sickness. It manifests this effect over morphia and codia, less than over laudanum. A large dose—20 grains—of bromide, must be given half an hour before and two hours after the laudanum. Even larger doses are necessary; he even gives 40 to 60 grains some hours before the administration of the opium. Da Costa says the bromide exerts most control over the faintness. He avers also that the bromide heightens the "anodyne or hypnotic effects of opium."

If the medicine is continued for a long time, as is sometimes required in the treatment of epilepsy, the physiological effects of the drug become apparent. "Diminished sensibility, followed by complete anæsthesia of the soft palate, uvula, and upper part of the pharynx, is the first symptom that the patient is getting under the influence of the drug. The sexual organs are amongst the first to be influenced, for there is soon produced failure of sexual vigour, and, after a time, marked diminution of the sexual appetite itself." (Bazire.)

These effects vary greatly; in some, the remedy producing only moderate diminution, in others, temporary impairment. On discontinuing the remedy, the sexual organs regain their lost power. Another frequent result of the prolonged administration of the bromide is an eruption, generally aceneform, occurring most on the face and back, but it may affect even a larger surface. These spots do not generally suppurate, nor do they scar. Echeverria, finds that five or ten minims of liquor arsenicalis, given with the bromide, will prevent the eruption, and the experience of the Epileptic Hospital confirms him; and I have seen cases where the rash has been quickly removed and subsequently prevented by arsenic. I have found that iodide of sulphur ointment, frequently applied, considerably lessens the quantity and the severity of these eruptions. The efficacy of the remedy bears no proportion to the amount of acne. The bromide sometimes excites, it is said, eczema, and spots like erythema nodosum. The aceneform spots may become true boils, and these boils sometimes form large ulcers with conical scabs, looking like rupia. Dr. Weir Mitchell
ACIDS.

A case of this kind. He found that bromides of potassium, ammonium, and lithium, produced these ulcers. He also bromides of calcium, magnesium, and bromine itself, but the preparations failed to control the epileptic fits, they were given long enough to determine if they too would produce rapid ulcers. Undue administration of the bromide rendered the patient low-spirited, easily fatigued, and unfitted for work, symptoms which soon subside on the suspension of the medicine.

The other evidences of bromism, rarely occur, unless more than one dose, however large, is taken daily.

M. Rabuteau says that bromide of potassium may be detected in the urine and saliva, twenty days after the administration of a dose of fifteen grains. Dr. Amory could not find it more than forty-eight or fifty-two hours after a single dose, but after the drug had been taken several days, and then discontinued, he could find evidences of it after a longer time. Elimination by the urine is less rapid than absorption by the stomach. Traces appear in the urine in ten minutes. Elimination is most active during the first eight or ten hours, and in less than twenty-four hours the greater part disappears.

Bromide of potassium is conveniently administered in beer or milk.

A THEORY CONCERNING THE TOPICAL ACTION OF ACIDS AND ALKALIES ON SECRETION

Previous to treating in detail of acids and alkalies, I wish to notice their action on the secretions of the body, and to draw attention to a theory which I think explains their action in this respect, and at the same time, serves as a useful guide to their correct employment in disease.

Acids are powerful stimulants of salivary secretion: the impression from the acid is conducted to the spinal cord and thence reflected through the cerebro-spinal nerves, supplying the salivary glands; and if these are divided, acids cease to augment the salivary secretion.

Repeated and careful experiments have established the fact that dilute acids taken into the stomach check its secretion, and on the other hand, powerfully excite the secretion of the gastric juice.
Acids then, check acid, but increase alkaline secretions; while dilute alkalies stimulate acid secretions.

From these facts the more general law is inferred, that acids, applied topically, check the production of acid secretions from glands, while they increase the flow of alkaline secretions; the very reverse being the case with alkalies, for alkalies applied to the orifices of glands with acid secretions, increase their secreting power; while alkalies applied in a corresponding way to glands with alkaline secretions, lessen or check this secretion.

In support of the generalization I have ventured to propose, I will now adduce some practical instances of the efficient therapeutic employment of acids or alkalies.

The sweat being an acid secretion, the sponging the surface of the body with water weakly acidulated with acids, will in many cases effectually control profuse perspiration.

Acids are useful to allay thirst, by promoting, through their topical action on the mucous membrane, the secretion of the alkaline saliva.

Acids given shortly before a meal generally check acidity.

Alkalies given shortly before a meal increase the secretion of the acid gastric juice, and so promote digestion.

A weak alkaline lotion is often useful in the weeping stage of eczema, by checking the alkaline watery exudation.

A weak alkaline injection is efficacious in that form of leucorrhoea depending on a too abundant secretion from the glands of the os uteri, the secretion in that part being alkaline.

Some of these instances will recur in greater detail in their fitting places in this volume.

Kühne, in his *Physiological Chemistry*, makes some statements apparently opposed to this general proposition. He asserts that alkalies as well as acids, stimulate the secretion of the sub-maxillary gland. The secretion produced by alkalies is thick, whitish, and cloudy; but that excited by acids is clear and less viscid. A difference in the characters of the secretions from the sub-maxillary gland is observed, according as the cerebro-spinal or sympathetic nerve supplying this gland is irritated. Irritation of the sympathetic excites a secretion identical with that produced by alkalies; while irritation of the cerebro-spinal nerves excites a secretion identical with that produced by acids. Hence it is inferred that alkalies act on this gland through the sympathetic, and acids through the cerebro-spinal nerves.

No doubt the saliva, produced by acids, and by irritation of the
ACIDS.

Erection of nerves is a true secretion; for it is abundant in quantity, and quickly changes starch into sugar; and irritation of this nerve so greatly increases the flow of blood to the gland, at its veins pulsate, and their contained blood is of a bright red tint. It is doubtful, however, if the fluid produced by the influence of alkalies, or by irritation of the sympathetic nerve, is a physiological secretion; indeed, Kühne thinks it is due to rapid degeneration of the gland. The quantity of fluid produced by alkalies is very small, and that obtained by irritation of the sympathetic, is said to require many hours to produce even a trace of sugar in a solution of starch; but recent researches tend to show, that this sympathetic secretion, though scanty, does very readily convert starch into sugar. The fluid thus obtained, contains large quantities of very pale gelatinous bodies, of different forms and sizes, composed partly of albumen and partly of mucin. Moreover, by the irritation of the sympathetic nerve, the flow of blood to the gland is retarded, and the blood in the veins becomes dark and venous in tint. Alkalies produce very little secretion from the parotid gland, and so far as our present knowledge goes, none is excited by irritation of any branches of the sympathetic nerves.

SULPHURIC, HYDROCHLORIC, NITRIC, PHOSPHORIC, AND ACETIC ACID.

The members of this group are powerful acids, and accordingly have a strong affinity for alkalies and bases. Some, as sulphuric acid and phosphoric acid, absorb water with avidity. All possess high diffusion-power, and so pass readily through animal membranes and textures. These are the properties which explain most of their actions on the living body.

These acids, when concentrated, produce decided changes in the skin by their affinity for the bases and water of the tissues, as well as in a minor degree for the organic substances themselves. Their great diffusion-power enables them to penetrate readily and deeply beneath the surface, with a continuous destructive action, till they are diluted with water or neutralised by the bases of the animal structures. From their great affinity for water, sulphuric acid and phosphoric acid are especially energetic; they withdraw this element from the textures, and thus effect their complete destruction.
ACIDS.

In adequate quantity, they will destroy the tissues to a considerable depth, and produce a brown or black eschar.

The remaining members of this group, owing to their feeble affinity for water, destroy the tissues less extensively, and their action is much more superficial.

Sulphuric acid and phosphoric acid are never used undiluted, on account of their physical action on the tissues. On the other hand, nitric acid is frequently employed to destroy and remove the surface of foul and unhealthy sloughs and ulcers, and in virtue of a property of which we shall shortly speak, it changes an unhealthy and indolent sore into one more healthy and prone to heal. It is frequently employed in cases of soft chancre, indolent and broken bubo, cancrum labialis, etc.

Nitric, hydrochloric, and especially acetic acid, may produce some vesication. Nitric acid colours the skin characteristically yellow.

They are often used with the best results for the purpose of exciting inflammation. It is now established that two diseased actions cannot co-exist actively in the same part, and on this principle we use one or other of the three acids, nitric, hydrochloric, or acetic; for instance, we apply an acid, usually acetic, to a patch of herpes circinatus, and thus establish in its place an inflammation which quickly subsides, at once cutting short a disease which tends to spread and to persist for a considerable time. Thus, too, it is, that nitric acid induces a healthier action in indolent ulcers, or arrests the spreading of sloughing sores.

Acetic acid, and somewhat diluted nitric acid, are frequently applied to warts, which are destroyed by withdrawing the bases, and by dissolving the tissues of the warts themselves. But although any of these acids are effectual, and in many cases completely remove the warty growths, yet sometimes a fresh and abundant crop springs up in the neighbourhood of those undergoing treatment. Dr. George Bird finds the glacial acetic acid very effectual in removing warty growths. Small syphilitic warts and condylomata, kept constantly moist with a wash of diluted nitric acid—a drachm or two of the dilute acid, to a pint of water, is sufficient—are thus surely and painlessly dispersed.

The members of this group are more generally employed externally, mixed with water. Although diluted, they still excite a beneficial irritation, and may be used as lotions in urticaria, controlling the very troublesome itching, even preventing the formation of wheals, and in some cases, appearing to be mainly instrumental in curing this disease.
ACIDS.

Acids, especially nitric acid and hydrochloric acid, are less employed as baths than formerly, yet, beyond doubt, they exert a very powerful influence on the skin. A general bath, with two to eight ounces of the strong nitric or hydrochloric acid, is a very active exciter of a torpid skin. Whether these baths have any effect on the other organs of the body, is at present quite unknown, no experiment having been made to settle this question. It is highly probable, however, that in common with other materials dissolved in baths, these acids remain unabsorbed by the skin, and that any change in the deep parts of the body resulting from medicated baths, must be ascribed to the direct action of the dissolved materials on the skin itself. Sponging the surface of the body with water weakly acidulated with acids, will, in some cases, effectually control profuse sweating, the sweat being an acid secretion.

They, however, act as stimulants to the skin when stripped of its cuticle; thus nitric acid is frequently used with much benefit as a lotion in the treatment of indolent and painful ulcers.

Applied to the softer tissues, the dermis, mucous membranes, etc., acids act as astringents, causing a direct condensation of the tissues, probably by removing part of the base, by combination with which, the albuminous substances were held in the soluble form.

By virtue of their astringency, they check profuse secretions from unhealthy sores. Nitric acid is most preferred in such cases. Nitric acid is generally used as a test for albumen in solution; it precipitates the albumen by abstracting the base combined with it, and in setting the albumen free, converts it into an insoluble substance.

When diluted, these acids very effectually check bleeding from the smaller vessels and capillaries by constringing the tissues, exciting the muscular coat of the arteries to contract, and by coagulating the blood in the ends of the wounded vessels, and so plugging them. Vinegar, always at hand, will check bleeding from leech-bites, piles, cuts, etc. The vinegar should be diluted.

These acids produce the same effect on the mucous membrane of the mouth as on the skin, and for the most part are used for the same purposes. Strong nitric acid is often applied to foul and sloughing ulcers of the mucous membrane, to change their character and to check their progress.

Acids are, in part, neutralized by the alkaline secretion from the salivary glands, while any acid remaining free precipitates the
mucous coating of the mucous membrane, and if in sufficient quantity, attacks the mucous membrane itself. They act beneficially as astringents, when the lining membrane of the mouth is relaxed or ulcerated, as in ulcerative stomatitis, salivation, etc.; but other astringents are preferable. These acids being apt to dissolve the earthy constituents of the teeth, should be taken through a quill, a glass tube, or reed.

Nitric acid exerts a further action on the mucous membrane of the mouth, and may be given in small medicinal doses with conspicuous benefit, when this membrane is inflamed or diseased in various ways, as in ulcerative stomatitis, aphthae, salivation from mercury, or when reddened, inflamed, and glazed, a condition not unfrequently met with in great irritation of the digestive organs.

These, with other acids, as citric, tartaric, etc., quell the thirst of fever patients much more effectually than simple water, especially if the drink is made rather bitter with some agreeable-tasting substance, as orange-peel or cascarilla. Much of the troublesome thirst of fevers is solely due to dryness of the mouth and throat. This disagreeable local sensation of thirst, is very liable to lead fever patients to drink more water than is really good for them, producing loss of appetite, indigestion, and even diarrhoea and flatulence. *(Vide Water)*.

The action of acids in lessening thirst, has already been explained in the chapters on the topical action of acids and alkalies on the secretions. As we have seen, acids probably increase alkaline secretions, and thus the acid drinks used by fever patients promote an increased secretion in the salivary glands. Bitters, as we shall presently see, possess the same power; hence, acid and bitter drinks acting on the salivary glands, keep the mouth and throat comfortably moist and quench the thirst. By lessening the harassing thirst, they comfort the patient, quell irritability of temper, favour sleep, quiet the pulse, and diminish the heat of the body. Organic acids are largely employed as fever medicines.

Acids are applied to the throat for the same purpose as to the mouth. Undiluted nitric acid acts beneficially as a topical application, on the foul sloughs or ulcers occurring in the course of scarlet fever or other diseases.

Bretonneau warmly recommends the application of strong hydrochloric acid to the throat, in diphtheria. The acid may be used undiluted, or it may be mixed with an equal part of honey, which gives the mixture consistence, and makes it cling about the parts on which it is painted. It should be applied only to those
ACIDS.

...ents of the mucous membrane affected by the chronic inflammation, and not to the neighboring healthy tissues, where it could produce active inflammation. The diplopic membrane being very prone to implant itself in inflamed substance, the application of the acid to the sound tissues by existing inflammation might favour the spread of the disease.

Nitric acid, in small medicinal doses may give very benefit when the throat presents the same appearances as those of the mouth previously described.

The albuminous constituents of food are digested and rendered soluble mainly by the agency of acids, but all acids are not equally efficient. Lactic and hydrochloric acids for instance act worse in this respect, while sulphuric and hydrochloric acids promote digestion, by precipitating the albumen in an insoluble form. The action of acids on nitrogenous substances is balanced by the addition of pepsin.

In scanty secretion of gastric juice, these hydrochloric acid may be employed to assist digestion. The considerations here set forth in the section on the topical action of acids and alkalis in the stomachs, render it obvious, that the time of administration in respect to meals, is all-important. If given before a meal, a small secretion of the acid gastric juice, aid in hasten instead of aiding digestion. Where the secretion is scanty, the acid must be given after the meal, when the secretion from the membrane of the stomach is completed; the additional acid will assist the action of that secreted naturally, but not scanty. In many cases of atomic dyspepsia, alkalis are preferable to acids, for they may, of course, be given a short time before a meal, because that they stimulate an abundant secretion of the gastric juice. In most cases of atomic dyspepsia, alkalis given with the pretreatment, acted are superior to acids given after a meal although as is well known, certain cases occur in which acids answer better than alkalis. In such cases, the mucous membrane is already combusted and damaged by excesses in eating or drinking and owing to degeneration of the glands of the stomach, so stimulants could evoke a sufficient flow of gastric juice.

Acids, as we have seen, will check or lessen the secretion of gastric juice. In many stomach diseases or from in proximity with distant organs, the follicles pour into the stomach an undue of acid, which undue secretion may be checked by the admin- stration of acids shortly before food. But any of the symptoms is often due to excessive or irregular fermentation leading to the
production of a large quantity of various acids, as acetic, butyric, and lactic; and this excessive or irregular fermentation of acids is itself checked by acids; and as undue secretion of the gastric juice, or excessive formation of acids by fermentation, are the two causes of acidity, we have in acids themselves, remedies able to control and check the acidity of the stomach, and relieve the consequent distressing symptoms, whether due to pregnancy, uterine disease, calculus of the kidneys, the various indigestions, or more serious diseases of the stomach.

Practical men, indeed, know well that the administration of an acid, will remove acid eructations, heartburn, and the sense of discomfort at the chest and epigastrium, arising from excess of acid in the stomach. Hydrochloric or nitric acid is generally preferred, and small medicinal doses, separately or combined, are ordinarily sufficient, provided the prescribed conditions are obeyed.

Patients are sometimes greatly annoyed by eructations of an offensive gas, with the odour and flavour of rotten eggs—a gas evidently consisting largely of sulphuretted hydrogen. The late Dr. Day, of St. Andrew's, noticed that in such cases the urine is loaded with oxalic acid, and in their treatment, he strongly recommended the employment of mineral acids. Dyspeptics with oxalic acid in the urine, who suffer from great mental depression, but who are free from sulphuretted hydrogen eructations, find much benefit from nitric acid treatment.

In the treatment of dyspepsias, a clue to the administration of acids on the one hand, or of alkalies on the other, may sometimes be obtained by testing the reaction of the fluids ejected from the stomach. Not unfrequently, soon after a meal, a fluid regurgitates almost unconsciously into the mouth, sometimes so strongly acid, that it sets the patient's teeth on edge. The exhibition of nitric or hydrochloric acid shortly before each meal, almost immediately removes this acid pyrosis. Sometimes the fluid of pyrosis has an alkaline reaction, often accompanied with much distress, with nausea and vomiting of the just-eaten food, and the rejected contents of the stomach generally show a strong alkaline reaction. Here an acid immediately after a meal relieves the nausea, the vomiting, and all distressing symptoms. On theoretical grounds, we should expect that an alkali, administered shortly before food,

* Two or three drops of tincture of nux vomica, taken a few minutes before meals will often obviate the acidity of pregnancy. Sometimes ipecacuanha will control it.
ACIDS.

would yield even more satisfactory results, but in such cases I have had no experience of alkalies.

It need hardly be repeated that acids given soon after a meal to patients troubled with acidity and heartburn, greatly aggravate the suffering. It is adding fuel to fire. If continued too long these remedies may not only check undue acidity of the stomach, but even exceed this office, and by lessening the secretion of gastric juice to an undue extent, actually induce the very opposite condition to that for which, in the first instance, they were employed. Those who have watched the action of acids on the stomach, well know that if too long continued, the improvement first noticed in cases by degrees, then fresh symptoms arise, which, strangely enough, are relieved by the very opposite treatment which had previously benefited.

Too long a course of acids excites catarhhal inflammation of the mucus coat of the stomach and intestines, often accompanied by diarrhoea, and even by general wasting. This damaging action of acids explains the occasional thinning effects of vinegar, when taken for a long time, by fat people. Vinegar is sometimes taken surreptitiously in wineglassfuls several times a day to reduce obesity. This foolish practice, which cannot be too strongly condemned, may thin the patient, but it does so at the expense of serious injury to the body. Obesity can be reduced by harmless means.

These acids are inoperative to check the growth of sarcome in the stomach; and they often fail even to check the acidity accompanying these growths.

It is a common practice with drunken soldiers to drink a wineglassful of vinegar in a tumbler of water, to cut short intoxication; but whether it does sober a drunkard is not certain, but it seems to steady a tipsy soldier and to enable him to pass muster or preventing himself at barracks.

By virtue of their astringent action, and their power of coagulating the blood, acids are useful in bleeding from the stomach. Sulphuric acid is generally preferred to the other members of the group. But many other astringents are surer.

Owing to their high diffusion-power these acids pass readily from the stomach into the blood. The acids which pass into the intestines must, to a great extent, become neutralized by the alkalies of the bile and pancreatic juice, and therefore, as acids, can, by direct contact, affect to a very small extent the middle and lower part of the intestinal tract. But as they become neutralize
some of the biliary and weaker acids are set free, heightening in some degree the acidity of the contents of the intestines.

Dilute acids are used as antidotes in poisoning by alkalies. It has been shown experimentally that acids applied to the mucous membrane of the duodenum cause an increased flow of bile, attributed to the consequent contraction of the gall bladder and bile ducts. I suggest that part at least of this augmented flow is due to increased secretion brought about in accordance with the alkaline acid (V. Section 7) theory I have propounded, the acid contents of the duodenum stimulating the secretion of the alkaline bile, and the still more alkaline pancreatic juice.

It has long been held that nitric acid acts in some way beneficially on long-standing diseases of the liver, as in chronic congestion and cirrhosis, and that it will augment the flow of bile after the liver has struck work from the excessive use of mercury.

From his experiments on fasting dogs, Rutherford concludes that nitro-hydrochloric acid is an hepatic stimulant, thus confirming the conclusions founded on clinical experience.

There can be no doubt that sulphuric acid is highly useful in checking summer and choleraic diarrhoea, although, as it is generally administered with opium and warm carminatives, it is difficult to distribute to each remedy its exact share of merit. Its mode of action is less obvious than its efficacy. It may control the formation of acid in the intestines, or it may act as an astringent and so check diarrhoea. If, then, it acts as an astringent, as the acid is soon neutralized and converted into a sulphate in the upper part of the small intestines, losing its astringency at once, its influence on the lower and middle part of the small intestine must be exerted through nervous sympathy between one part of this canal and another. Sulphuric acid is considered to act often capriciously, giving rise to much uncertainty in its administration; but the lack of uniformity in its results can be accounted for, in many instances by the dose; a small medicinal dose often benefits, whilst a full one, by increasing the acidity of the canal, may even aggravate the diarrhoea. Dr. Neligan, and other authorities, recommend in chronic diarrhoea, and to control the "profuse sweating and colliquative diarrhoea of hectic."

In small medicinal doses, nitric acid is of great use in many diarrhoeas; it often acts admirably in the straining diarrhoea of children, when the motions are green, curdled, and mixed with mucus. This form of diarrhoea yields speedily to acids, which counteract the acidity of the intestinal canal, on which this flux de
ACIDS.

Yet, on the whole, other remedies are to be preferred to acids. Nitric acid may sometimes be used with great benefit, especially when given with pepsin, in that chronic diarrhoea of children when the pale and pasty motions smell sour and disagreeable.

Strong nitric acid is an efficient remedy for internal piles, two or at most three applications to the enlarged and dilated vessels being sufficient; it should not be applied to the whole surface, but only to one or two points. It is useful, too, in granular or ulcerated piles. It produces little or no pain. A superficial slough follows, and after the separation of the slough the contraction of the sore diminishes the size of the pile. A dram or half a dram of the dilute nitric acid to half a pint of water is an excellent lotion for bleeding piles, staying the haemorrhage, constringing the swollen and inflamed tumour, and easing the heavy, tense, wearying pain. Acids are reputed to heighten the action of purgative medicines, and for this purpose sulphuric acid is sometimes employed. Sulphuric acid increases the purgative effect of extract of aloes. Acids are usually added to purgative salts as Epsom salt, when a tonic and bracing action on the mucous membrane is desired, as in many cases of anaemia of young women.

If not already neutralized on their passage into the blood, these acids must at once become so, and it would appear that beneficent their history must follow that of the salts they form. Yet the received notion of the action of these acids on the organs of the body is so different from that of any of their salts, that the behaviour of the acids must be spoken of separately.

On combining with the alkalies of the blood, the acids must not free some weaker acids, and so to a slight extent lessen the alkalinity of that fluid, as is evidenced by the increased acid reaction of the urine following the use of mineral acids. What further effects they may have on the blood is at present quite unknown. They are reputed to be tonic and bracing, but the improvement in the general health may more safely be attributed to their action on the intestinal canal. Still, they do produce certain changes in the fluids and solids of the body, since in the absence of lime-juice or fresh vegetables, acids, especially vinegar, act as preventives of scurvy.

Dr. Rees recommends large doses of lime-juice to the extent of eight ounces daily, in acute rheumatism. Dr. Inman speaks highly of this treatment, and observes that neither tartar nor oxalic nor lemon-juice can be substituted for lime-juice.
Nitric acid is recommended in secondary syphilis. It has been said sometimes to induce salivation; if so, this may have been due to the direct action of the acid on the mucous membrane by increasing the alkaline secretion of the salivary glands.

Acids seem sometimes to abate the rapidity of the pulse in fever, a result not due probably to the direct action of the acid on the heart or nervous centres, but more likely to the relief arising from diminished thirst. Sulphuric acid, especially in conjunction with sulphate of zinc, checks the profuse sweating of phthisis and other exhausting diseases. Dr. Graves ascribed a similar action to vinegar, and often used this favourite receipt: Distilled vinegar $\frac{3}{2}$ ij, Laurel water $\frac{3}{2}$ ij, Syrup $\frac{3}{4}$ vj, Aqua $\frac{3}{4}$ v. An ounce or two ounces to be taken every third or fourth hour. Sulphuric acid is supposed to check bleeding from the lungs or womb. It is difficult, indeed, to understand how an ordinary dose of sulphuric acid can exercise such an influence after becoming so greatly diluted by admixture with the blood, and the difficulty is enhanced by the consideration that these acids, either before or immediately after their entrance into the circulation, are converted into salts, as sulphates, nitrates, and phosphates. Whatever influence, therefore, is exerted on distant organs must be effected through these combinations; yet we cannot ascribe to any salts of these acids properties similar to those ascribed to the acids themselves.

In such questions experience is a safer guide than speculation. The subtle influence of even small doses on distant organs of the body is well exemplified by the effect of these medicines on the mother’s milk; for acids taken for some time induce in the child sickness, diarrhœa, and colicky pains.

Phosphoric acid has been recommended in diabetes. Griesinger, who has carefully studied the action of this medicine, considers that it does more harm than good. He employed the acid, to the extent of an ounce daily, and found that this dose increased the sugar. Since the members of this group augment the acidity of the urine, it has been proposed to dissolve phosphatic calculi by artificially acidifying the urine; but as these acids only slightly augment the acidity of urine, they must be taken for a prolonged period before they could materially diminish the bulk of a stone; moreover, there remains the insuperable objection that this method of treating calculi would seriously damage the mucous membrane of the stomach and intestines.

The injection of nitric acid, sufficiently diluted, has been employed with success by some eminent surgeons, and is a far more
effectual treatment for phosphatic calculi. The experiments of Dr. Roberts, of Manchester, on the solvent power of dilute solutions of this acid on calculi, after their removal from the body, lead him to the conviction that this treatment is worthy of much wider application than at present obtains; moreover, by neutralizing the urine, if alkaline, and preventing its decomposition, nitric acid injections protect the mucous membrane of the bladder from the irritation of the alkaline urine.

The further influence of sulphuric, nitric, and hydrochloric acids on the urine is unknown. Of the influence of acetic and phosphoric acids we shall speak in another place.

It should be remembered that phosphoric acid may possess many other properties than those already specified; but these will be referred to in speaking of the phosphates, for it is in this form that phosphoric acid exists in the blood, and manifests many of its beneficial effects on the diseased body.

SULPHUROUS ACID, SULPHITES, HYPOSULPHITES.

Sulphurous acid is commonly used as a deodorizer and disinfectant. It is a deodorizer by virtue of its power to arrest putrefaction; hence it may be used to prevent bad smells, but it possesses little or no power to decompose offensive gases, and therefore it is of little service in destroying foul odours. It arrests fermentation by destroying the minute organisms which determine this process. It is ranked among disinfectants, but at present, for this purpose, its value is undecided. It is supposed that contagious diseases are produced by minute organized particles, and that sulphurous acid will destroy them. If these conjectures are correct, sulphurous acid may take rank as a disinfectant.

It must be borne in mind that sulphurous acid corrodes metals, so that, when used as a disinfectant, these should be protected by a covering of some greasy substance. In fumigating a room, sufficient sulphur should be burned to render the air unfit for respiration, and the escape of the gas by the chimney, windows, and crevices of the doors, should be prevented. It is better to repeat this process three or four times at intervals of twenty-four hours.

To disinfect a bed, Mr. Startin recommends that a warming-pan containing live coals sprinkled with sulphur should be put between the clothes, till the sulphur is consumed. A damp napkin held
before the mouth will prevent the sulphurous acid irritating the lungs. It is far better, however, to submit the bedding, &c., which cannot be boiled, for some hours, to a temperature between 230° and 300° in a disinfecting chamber or oven.

The quickest way of curing itch is to immerse the patient, leaving his head free, in a gaseous bath of sulphurous acid, made by burning 12 drachms of sulphur in a suitable apparatus. Whilst in the bath, the patient’s clothes should be baked, so that in half an hour he is cured of his itch, and is made free from risk of re-infection.

The acid will cure chloasma, by destroying the parasite on which the disease depends. The acid of the Pharmacopoeia mixed with an equal quantity of glycerine, may be used (Garrod). Warm baths should also be employed to remove the cuticle infested by the parasite. It is useful also in favus, and in linea tonsurans; but when these affections are unusually obstinate, its action should be assisted by epilation.

Dr. Dewar, of Kirkaldy, has drawn attention to the beneficial action of sulphurous acid in various diseases.

Dr. Dewar applies the sulphurous acid in three ways,—as a solution, by fumigation, and by the spray-producer. A solution of the acid or fumigation with it, he says, will speedily cure chilblains and chapped hands. Equal parts of the acid of the Pharmacopoeia, and of water or glycerine, will, he states, at once ease the burning, and prevent the spread of erysipelas. Wounds and sore nipples he treats with the solution, constantly applied, either neat or diluted. Bruises, he says, may be prevented or quickly removed by the same treatment.

According to the same authority, many internal diseases are equally amenable to sulphurous acid; amongst others, cold in the head, influenza, tonsilitis, malignant sore throat (scarlatinal or otherwise), laryngitis, chronic bronchitis, chronic phthisis, asthma, croup, clergyman’s hoarseness, and typhoid fever.

The acid may be applied to the throat by fumigation or by inhalation: a few drops should be added to boiling water, and the steam inhaled; or the acid may be applied by a camel-hair brush, or by the spray-producer.

It may be carried into the lungs by fumigation, inhalation, or by spray. If properly and carefully employed, the Pharmacopoeia acid excites scarcely any irritation or annoyance. The application of sulphurous acid may be conducted in the following ways:

"Put a few red cinders into a kitchen shovel, set this upon a
wooden stool, and then sprinkle flowers of sulphur from time to
time till the room is not inconveniently filled with smoke."

The spray may be applied by a vaporizer now in common use,
furnished with vulcanite tubes constructed upon Dr. Dewar's plan.
For a child the instrument should be held about three feet from the
mouth, and the fine spray should be inhaled and the process repeated
according to circumstances. In an acute attack of diphtheria with no
time to lose, it may be repeated hourly, or even oftener.

In applying the spray to adults, Dr. Dewar directs the operator
"to hold the nozzle of the instrument about six inches from the
patient's mouth, and administer three or four whiffs to begin with;
then, after a corresponding interval, during which a cough or two is
given, the process is repeated, about twenty squeezes, in all,
which represents the injection of from forty to sixty minims of acid.
The acid should be pure."

For the relief of rheumatism and gout, besides the fumigation,
Dr. Dewar advises that the bed-clothes should be exposed to the
vapour fumes, and then spread over the patient, who after sweating
and sleeping wakes much relieved.

The solution, either strong or diluted in various proportions,
readily removes thrush. Dr. Lawson speaks highly of sulphurous
acid as a remedy for pyrosis; indeed, he says it never fails to be
der of service. The sulphite he finds useless.

Sulphurous acid in doses of five to ten minims often prevents
foululence produced by fermentation, and is especially useful when
the gas is abundant. It is more efficient than sulphites and hyposulphites.

Sulphites, administered by the mouth, will, it is said, prevent
decomposition and putrefaction of urine in the bladder.

Sulphites and hyposulphites have been employed to destroy
sarcinae and torulae in the stomach.

It is said that hyposulphite of soda, in fifteen to twenty grain
doses every two hours, will cure intermittent fever.

CHROMIC ACID.

Chromic acid was first used as an escharotic by Mr. John Marshall,
of University College, who employed it to remove warty growths
from the nose, genital organs, or elsewhere. Immediately after
touching the parts with chromic acid, Mr. Marshall applies lead lotion, "which restraints the subsequent inflammation, relieves the subsequent soreness, and does not in any way neutralize or retard the rapid effects of this apparently useful escharotic." He uses a solution containing a hundred grains of crystallised chromic acid to an ounce of water. "The solution is best applied by the aid of a pointed glass rod, or when a large quantity is needed, by means of a small glass tube, drawn to a point. Only so much should be applied as will saturate the diseased growth, avoiding the surrounding healthy mucous membrane, for, though the solution is not sufficiently powerful as an escharotic to destroy or even vesicate the mucous membrane, it may give rise to an unnecessary amount of inflammation." "Any superfluous acid may be removed by a piece of wet lint. The first effect of its application to the warts is to produce a slight smarting pain. If, however, any ulcerated surface be touched, the pain is of a burning character, more lasting, but not so acute and intolerable as that caused by nitrate of silver or by nitric acid, with or without arsenious acid. Under its influence the morbid growths rapidly waste, in some cases being thrown off altogether, and in others undergoing a partial, though evident, diminution in size. The best immediate dressing is dry lint, afterwards the part may be washed with lead lotion, and dressed with lint moistened in the same." "In most cases one application suffices, the cure being completed in from four to eight days. In severe cases, where the warts are large, repeated applications are necessary." Mr. Marshall further states that "chromic acid solution neither burns nor stains linen; it all washes out."

A solution of this acid is said to allay itching, but the kind of itching is not mentioned.

Group embracing CAUSTIC POTASH, SOLUTION OF POTASH, CARBONATE AND BICARBONATE OF POTASH, ACETATE OF POTASH, CITRATE OF POTASH, and the corresponding preparations of SODA, POTASH SOAP, SODA SOAP, BORAX.

The members of this group are all endowed with very high diffusion-power, the potash in a greater degree than the soda-salts. All are very freely soluble in water. With the exception of the acetates and citrates of potash or soda, they have an alkaline reaction,
weak in some, as the bborate of soda, but very marked in others, a
caustic potash or soda.

They dissolve the nitrogenous constituents of the animal textures;
and their solvent power is in proportion to, yet distinct from, their
affinity for water.

Owing to their affinity for water, and their solvent action on the
nitrogenous tissues, several of these substances, by abstracting the
constituent water, will destroy the skin or other structures to a con-
siderable depth. The caustic alkalies possess a greater affinity for
water, and therefore a more solvent and destructive action on the
tissues than the remaining members of this group. The carbonates
and solutions of the caustic alkalies come next; while the bicar-
bonates, acetates, and the rest of this group, are comparatively
lethel agents.

The caustic alkalies, undiluted, or sometimes mixed with caustic
lime to lessen their activity, are often employed to destroy warty
growth or the hard edges of some unhealing sores, such as
chancres, or to open abscesses, or to make issues.

It must be borne in mind that, in common with the rest of this
group, the caustic alkalies, possessing a very high diffusion-power,
will penetrate the tissues and destroy them widely and deeply;
unless great care is taken, the undue diffusion of the alkali will
destroy a far larger amount of structure than is intended, produc-
ing a large slough, and leaving, of course, a correspondingly large
sore. The application of the alkali should always be checked
before it has taken full effect, since the destructive effect will con-
tinue for some hours; other precautions should likewise be ob-
served, or the caustic alkali dissolved in the fluids of the tissues
will run over a large surface, subsequently destroying it. In mak-
ing an issue, pieces of plaster, with a hole in them of the required
size, should be placed one over the other, and the caustic applied
to the skin exposed through the hole, while the neighbouring parts
are effectually protected. As soon as the application is finished,
it is desirable to wash the surface with vinegar and water, to ne-
utralise any remaining alkali. The caustic, very slightly moistened,
should be rubbed on the surface till it assumes a dull bluish look,
and till the cuticle is softened and easily rubs off, when the appli-
cation of a poultice will help the separation of the dead parts, and
ease the pain.

A solution of a member of this group sponged over the peccant
part will often allay the troublesome itching accompanying many
skin diseases. A weak solution of the caustic salt, or of its carbo-
nate is best. A solution of carbonate of potash or soda, containing a drachm of the salt to a pint of water, applied with a small piece of sponge, is often of extreme comfort in urticaria or lichen. A solution of the same strength, of cyanide of potassium, which has also a strong alkaline reaction, is, perhaps, a still more effective application.

The itching of many other eruptions, as of scabies, eczema, pruritus ani, and pruritus vulvae, and prurigo from lice, yield better to other applications, which are indicated elsewhere.

The carbonates of the alkalies are employed in the treatment of itch, either soap, or in the form of ointment, to remove the superficial and dead cuticle, and so to break up the burrows of the itch insect.

By virtue of the alkali it contains, soap facilitates the removal of the scales of psoriasis.

In the treatment of eczema, a weak solution of carbonate of potash or of soda finds much favour. I have no doubt of its usefulness in the early and middle stages of the disease, when the red and raw surface weeps copiously; but when the weeping has ceased, and especially when mere desquamation remains, the alkali fails to be of use, and other applications are preferable. Dr. Hughes Bennett recommends a solution containing half a drachm of carbonate of soda to a pint of water, and the affected surface to be kept constantly moist by a thin piece of lint, soaked in the solution and covered with oilskin, or with a piece of lint spread with simple ointment. A weaker solution acts sometimes still better. Like the oilskin, the ointment prevents evaporation, but is less "heating" and is more comfortable to the patient. This treatment is an instance of the general proposition (vide section on the topical action of alkalies and acids on the secretions) of alkalies as local applications, checking an alkaline secretion; for the fluid which oozes so abundantly from eczematous surfaces is strongly alkaline, and an alkaline application very speedily checks the abundant weeping.

It must be admitted, however, in some instances, that an alkali appears to irritate the skin, a result often due to an over-strong solution. During this treatment attention must be paid to the state of the digestive organs, and any irritation produced by teething or worms should be attended to.

It is sometimes useful to wash the moist and weeping eczematous surface night and morning with soap and water, which in many cases checks the secretion, and allays the heat and irritation. If a
ALKALIES.

Young soap is too irritating, a milder one must be used. In chronic cases of eczema, Hebra recommends the application of liquor potassae, or of the stronger solution of caustic potash. He advises that liquor potassae should be brushed once a day over the surface, and if it produces much smarting, the residue must be washed off with cold water. When the skin is only slightly infiltrated and thickened, he employs a solution composed of two grains of caustic potash to an ounce of water; but when the infiltration is greater he uses a solution containing from five to thirty grains or more to the ounce. These stronger applications must be employed only once a day, and must be quickly washed off with cold water. This treatment speedily allays itching, but is liable to make the skin brittle, and to obviate this condition, Dr. McCall Anderson applies every night either cod-liver oil or glycerine. Dr. Anderson frequently employs alkalies in conjunction with tar or oil of cade. He recommends the following prescription:—"Equal parts of soft soap, rectified spirit, and oil of cade. A little of this to be firmly rubbed over the eruption night and morning and washed off before each re-application." Mr. Startin condemns the use of soap in eczema, or in any skin disease, using instead a wash consisting either of yoke of egg and water, or milk and water.

Sponging the head several times a day with a saturated solution of borax and water is an effectual application in pityriasis of the scalp; it at once eases the itching, loosens the scales, and cleans the head. Pityriasis often gives way in a short time to this treatment; although, unfortunately, after a variable period the affection generally returns, which indeed happens when the disease is removed by other treatment. Should the pityriasis prove rebellious glycerine of borax often proves more useful, as it keeps the scalp continually moist with the weak alkaline preparation. This plan is useful, too, in eczema of the ears and scalp.

Acne punctata generally yields to hot water and plenty of soap several times a day, a treatment which keeps open the orifices of the sebaceous follicles and prevents the accumulation of the abundant secretion. If this treatment roughens, reddens, and irritates the skin it should be well rubbed with glycerine of starch after each washing.

Free ablation with soap and water is very effective in decomposing and removing the acid irritating secretions which keep up the intertrigo so often infesting the buttocks of children, or in the irritation in the folds of the skin of stout children or underneath the breasts of fat women. After carefully drying the parts, they
should be smeared over with some greasy application, which is generally preferable to dusting powders, as starch powder or oxide of zinc. Caustic potash or soda is sometimes used to open abscesses with the intention of preventing scarring.

Alkaline baths are often employed, but their action on the skin and its secretion is not yet satisfactorily determined; like acid or simple baths they lessen the acidity of the urine.

Soap with excess of alkali will induce pityriasis of the face, which will often disappear at once on substituting oatmeal or a milder soap, as "Compressed glycerine soap" or "Solidified glycerine."

Mr. Peppercorne recommends a saturated solution of carbonate of soda as a local application to burns and scalds.

A weak solution of bicarbonate of potash or soda, a drachm of the salt to a pint of water, is a useful injection to check leucorrhoea, when this discharge depends on an increased secretion of the glands of the os uteri. The secretion is strongly alkaline, and when unduly abundant, the efficacy of the alkaline injection in such cases is another proof of the general proposition that alkali check alkaline secretions.

When the leucorrhoeal discharge is clear like white of egg, or when it is lumpy, but not yellow, three or four injections will generally check it. On the other hand, when the discharge is yellow and puriform, the injection may fail; although in many cases, when this yellow discharge is due to mere abrasion of the os uteri, the injection, continued for one or two weeks, will change the yellow to a white discharge, and sometimes causes even this to disappear. If the leucorrhoea is produced by displacement of the uterus, or ulceration of its neck, this injection, like many others, may temporarily check the discharge; but it soon returns, and in such cases the leucorrhoea cannot be cured till these conditions are removed.

The success of this injection obviously depends on its reaching, and coming well in contact with, the os uteri, the offending part; hence it is necessary to give full and careful directions as to its use. The patient should be directed to lie on her back, to raise the buttocks by placing a pillow under them, and then to introduce the syringe as far as she conveniently can, and to leave the injection in the vagina about five minutes. The injection should be used cold, when it can be borne twice or three times in the day. A Kennedy's syringe, by means of which any quantity of lotion may be forcibly injected, and which, by washing away the discharges
ALKALIES.

and douching the part with a cold or warm medicated application, even more effectual.

Mr. Norton, of St. Mary's Hospital, ingeniously employs a solution of liquor potassae: two draughts to the ounce of water in the treatment of ingrowing toe-nails. A piece of cotton-wool is saturated with the solution, and pressed gently down between the upper surface of the nail and the soft tissues. The solution permeates the substance of the nail and softens and permeates the superficial cells. The wool is kept constantly moist with the lotion, and softened tissues are wiped away each morning. The nail in a few days becomes thin and flexible, and if desired, it can be pared away without pain. The lotion should be continued until all ulceration has disappeared.

Borax is antiseptic, and prevents fermentation and putrefaction. It coagulates yeast, and destroys its power to decompose sugar into alcohol. It destroys the action of diastase or amylogue and so prevents the formation of essence of bitter almonds and prussic acid, and the conversion of starch into glucose. It also destroys the action of myrosine, and prevents the formation of the pungent essence of mustard from the mustard radicula. Borax and possesses the same properties; they thus act like other antiseptics as quina, etc. Boracic acid is not now largely used either as an ointment or lotion, or a dressing for burns and wounds. A teaspoonful of boracic acid dissolved in a pint of boiling water and used hot or cold, is very useful in pruritus pudendi and in ulceration of the vulva.

Dr. Simpson, of Highgate, tells me that he finds boracic acid dissolved in glycerine very useful as a local application in conjunctivitis. In a letter to me, he says:—During the last epidemic of ophthalmia, I have used boracic acid dissolved in glycerine in each bath of the strength of 1 in 30, applied by means of a warm moist area, every two hours during the night, until all traces of the ulceration had disappeared. The patches took on a white color, but no offensive odour emanating, and in the course of forty-eight hours, and often much earlier, no trace of membrane was visible. Dr. Cossar Ewart and I found by experiment that bacteria present in the membrane so treated could not be propagated. Children do not dislike the taste. I find boracic acid of strength of 1 in 30 of service also in stomatitis.

Sir J. Simpson recommended borax in the purulent secretion which appears on the mucous membrane of the uterus and tends up along the vagina as far as the bath-stem. It may also
extend, and is sometimes, indeed, originally situated on, the cutaneous border of the vulva, and appears on the outer cutaneous surface of the labium, spreading backwards along the perineum to the circle of the anus. Accordingly it is a fitting and transient affliction, recurring with menstruation, pregnancy, or delivery. It may be more fixed, and last weeks, or months, or years, producing constant irritation and distress, frequently interfering with rest and sleep, and rendering the victims miserable and almost deranged when the disease has become somewhat chronic, and necessitates the patient to attempt to alleviate it by constant and sometimes rough friction. The mucous membrane becomes at the most irritable parts white, and thickened with red fissures." This distressing complaint, says Sir J. Simpson, "may be generally cured by the assiduous and persevering application of a solution of bichloride of soda (five or ten grains to the ounce of water)." A hot solution much enhances the efficacy of borax. Water alone, if not as can be fairly borne, will often allay this itching; but hot water with borax is far more efficacious. If this treatment fail, infusion of tobacco may be tried; or an ointment of iodide of lead (31 to 31 i.), or of bismuth and morphia. Chloroform vapour, liniment, or ointment, is often found useful; a drachm of chloroform may be added to an ounce of some sedative liniment or ointment. A strong lead lotion or a solution of nitrate of silver often does good. Dr. Simpson, says, "There is a great advantage in alternating these local applications; for most of them begin to lose their effects when persevered in above a few days. In the most obstinate and severe cases strong astringents are sometimes of the greatest use as a strong solution of alum or tannin."

Dr. Garrod employs strong solutions of lithia salts to remove gouty enlargements. Gout-stones are composed of urates. Urate of lithia being the most soluble of uric acid salts, a strong solution of lithia salt is applied with the intention of converting the urates in the tissues into urate of lithia, and so to soak the urates out through the skin. The swelling must be constantly enveloped in lint or rag kept moist with the lithia solution. In Dr. Garrod’s practice this treatment has proved very successful. He thinks that lithia salts formed with the uric acid passes into the blood, and that in this way gout-stones are reduced. He employs carbonate of lithia, five grains to the ounce, with which he has removed considerable enlargements and restored suppleness and even free movement to stiff and useless joints. I also have employed this treatment with considerable success. It is especially useful when
ALKALIES.

The skin is broken over the gouty enlargement. It is well known that a sore of this kind is extremely difficult to heal. The crystals being intimately mixed with the connective tissue and being slowly through the wound, are dissolved and washed away by the fluid solution, thus enabling the sore to heal. The oxalate of potash is to be preferred; but a strong solution of citrate of potash is nearly, if not quite, as useful. It probably converts the urates into neutral urates, and in this more soluble form the urates are carried off through the skin. Equal parts of citrate of potash and water may be used. Neither the solution of oxalate of borax nor that of citrate of potash irritates the skin. As might be expected, this treatment takes many weeks, or even months in effect, considerable reduction of large deposits.

Borax and honey, or the glycerine of borax, is often used in aphthae. In aphthae the mucous membrane is usually covered with small, round, sharply-cut superficial ulcers, covered with a purulent exudation. Aphthae naturally run a short course, and when left untreated gets well in most cases in a week or ten days. The same preparations are useful in removing the purdy exudation of thrush.

Dr. Corson finds, that a piece of borax the size of a pea dissolved in the mouth, acts magically in restoring the voice in cases of sudden hoarseness brought on by a cold, and frequently for an hour or so, it renders the voice "silvery and clear."

Borax is useful in hoarseness common among singers and throat specialists.

The action of the members of this group in the stomach was somewhat anticipated when it was shown that alkalies increase the secretions of the gastric juice, and may thus prove useful to promote digestion. It is obvious, however, that method must be observed, or the contrary effect to that intended will ensue. If given soon after a meal, the alkalies will neutralize the acid of the gastric juice, and effectually retard digestion. Alkalies intended to increase the quantity of gastric juice, and to promote digestion, must be taken a short time before a meal. The alkaline saliva swallowed at the beginning of a meal is highly useful although, as it must speedily become neutralized by the acids of the stomach, its action must be but temporary. Alkalies may be usefully administered in many forms of atonic dyspepsia, and in other forms associated with deficient secretion of the gastric juice. The bicarbonate of soda is the salt generally employed.

When on the other hand, a patient complains of heartburn and
acid eructations these disagreeable symptoms may at once be removed by the exhibition of an alkali, as the bicarbonate, which neutralizes the excess of acid in the stomach; but it must always be remembered that this treatment is merely palliative. No doubt a course of alkaline treatment appears sometimes to remove acidity; but the good attributed to alkalies may with great probability be ascribed to the tonic with which they are generally combined. The bicarbonates are preferred to the more caustic salts on account of their milder action, while the acetates and citrates are neutral, becoming alkaline only by decomposition in the intestines or blood. The bicarbonates being milder can be continued longer than the more caustic preparations; but they have the disadvantage of giving off much carbonic acid gas, which may cause trouble from distension of the stomach. To prevent this, magnesia, which is an alkali, and acts like the members of this group, may be substituted if the bowels are confined, or lime-water if they are relaxed.

Alkalies are apparently sedative to the stomach, at least they often relieve the pain of this organ. Liquor potassae is generally employed in such cases.

In cases of poisoning by any of the acids, alkalies the least irritating to the stomach are employed to neutralize and to prevent the further action of the acid on the tissues.

In poisoning by metallic salts and alkaloids, the same salts, namely, the bicarbonates of the alkalies, may be used, to precipitate the insoluble oxide of the metal or of alkaloids. Magnesia, as it acts as a slight purgative, and so helps to expel the poison from the intestinal canal, is generally preferred.

By virtue of their diffusion-power, the substances contained in this group pass so readily into the blood, that but a small portion of them reaches far into the small intestines. Little is known of their action on the small intestines, and on the organs which pour their secretion into them; yet it seems probable that those secretions having an alkaline reaction may be affected in a double and opposite way, according to the period of administering these drugs. The secretion from the intestinal glands is alkaline; hence, if the general proposition elsewhere formulated be valid, acids applied to the orifices of the ducts should augment their secretion, while alkalies should have the contrary effect. But we have seen that alkalies, given before meals, increase the secretion of the acid gastric juice, and thus augment the acidity of the intestinal canal; they should likewise increase the biliary and pancreatic secretion.
ALKALIES.

On the other hand, if given after a meal, alkalies neutralize the acid in the stomach, and should lessen the burden of the liver and pancreas. On these points, however, there is a great uncertainty, the foregoing statements being merely conjectural.

Rutherford, from his experimental discoveries made in the use of soda injected into the duodenum, differing much in the nature and extent of the secretion of bile.

The milder alkalies, as bicarbonates of sodium and magnesium, may be used with great benefit in diarrheal diseases from too much acid in the intestines. By neutralizing the excess of acid, these substances arrest the diarrhea.

Soap is often added to enemas, purgatives, and enema baths, as a safe purgative. A piece the size of the thumb is added to castor-oil or merely wetted with water and inserted as the rectum will carry it, a large dose will cause easy, copious, and natural evacuation. The paste is extremely available for infants and children.

On entering the blood, alkalies undergo a marked change according to their composition. The alkaline is turned into a base, not already undergone a base change when the cation becomes converted into the carbonate and the final product, bicarbonate, assumed by the oxide of the alkali.

The alkalinity of the blood may therefore be increased by alkali alkalies, not probably to any great extent, not in any fusion-power they are rapidly eliminated, especially if there has been much speculation concerning the alkalinity of the blood. The alkaline are antagonistic to the blood, whence it has been speculated that the alkaline, if given to acids, in tissues, may be increased by increasing the excretion of the bodies of the blood.

It has been suggested that alkalies might be employed in diabetes to promote the excretion of the sugar, and been advocated also for excess of acid at the stomach, expectation of coldness in the proximal intestine by converting it into acid, and other circumstances.

Sometimes given to fat people to promote a latter of fat, or to consume the superficial fat and softening the skin. The solutions of the bicarbonate of alkali are occasionally and I should think extremely astringent and soporific.

The action of alkalies in diabetes appears to be very obscure. It should be said, they in no degree lessen the amount of sugar.
separated by the kidneys, although, if long persisted in, some
derangement of the stomach must occur, with diminution in ap-
etite, so that less food being taken, less sugar is excreted.

Nor does it appear that alkalies can oxidize uric acid in the
blood; at least there are no experiments in proof of this. It is,
however, very useful to give alkalies so as to render the urine
weakly acid, or even alkaline, so as to convert the excessive quan-
tity of uric acid into a more soluble urate. This treatment, too,
will prevent the growth of uric acid calculi.

Micturition in young male children not unfrequently causes
severe pain, traced to the existence of uric acid or biurates, in the
form of spicular crystals, which in their passage irritate the ur-
thra. By alkalinizing the urine, these crystals are dissolved and
rendered innocuous. The citrates having very little action on the
mucous membrane of the stomach are the salts best adapted to
deacidize or dealkalize the urine.

As to the power of alkalies to increase the oxidation of fats, it
is clear that the long-continued administration of the more alka-
line preparations will induce much wasting of the body, and ad-
mits of no doubt, but this is effected by the disordering action on
the mucous membrane of the stomach.

To diminish fatness in a way so likely to damage health, and
even to endanger life, is surely a mistake. Some writers of
authority insist that obesity may be thus reduced without any ill
effects on the mucous coat of the stomach; Dr. Neligan states that
he has often removed an uncomfortable excess of fat by the use of
liquor potassse, without in any way injuring the patient’s general
health. Though occasionally successful, this treatment generally
fails signally.

After the passage of alkalies into the blood, and their conver-
sion into carbonate, the action of these substances on that fluid is
at present but little known. Dr. Garrod is of opinion that scurvy
is due to deficiency of potash salts with the food, a surmise sup-
ported by many facts, but not yet confirmed by exact observation.

The bicarbonate or citrate of potash is often employed in rheu-
matism. This disease is supposed to be produced by an excessive
formation of lactic acid, which, having an affinity for certain tissues
of the body, excites in them the rheumatic inflammation. Alkalies
are given to neutralize this acid, and to protect the tissues from its
action. But so little is known about the nature of rheumatism,
that it is impossible to approach the question of its treatment on
the theoretical side. As careful and exact observations of this
ent renders rheumatic fever both milder and shorter, and less the danger of heart complications. I have made many observations on this question, and am led to believe that, attention being paid to the age of the patient, and to the nature of rheumatism, it will be found that these salts are unavailing to lessen the intensity or the duration of the fever.

The fifty-second volume of the Medico-Chirurgical Transactions, all and Sutton published a paper on the value of remedies in acute fever. The cases quoted, although not numerous enough to this much- vexed question, lead them to the conclusion that, lemon-juice, or blistering, do not shorten the course of acute fever, but it is not denied that these remedies may allay.

They further conclude that neither alkalies, lemon-juice, of potash, nor blisters, prevent the occurrence of heart dis- tention. In dealing with statistics, relating to the rheumatism, it is necessary to be specially cautious; general tendency, warranted by observation, leads to the conclusion that hereafter rheumatism will be discriminated into many forms. Already we have distinctive rheumatic fevers, due not to weather influence, but to syphilis, lead, &c., and it is often impossible, to distinguish gonorrhoeal arthritis and acute febrile rheumatoid arthritis from rheumatic.

In rheumatism there is a large unworked field of inquiry. Influence of age too in acute rheumatism must be taken into account. Thus in children the attack is sharp and short, declining when untreated in from five to ten days; and whilst the
influenced by age. Rheumatic hyperpyrexia, the most common cause of death in acute rheumatism, rarely occurs in children or middle-aged people. Children rarely die of acute rheumatism; indeed, I have never seen a child die of this disease. The following observations make it obvious that, in testing the efficacy of remedies, we must take care not only to discriminate one kind of rheumatism from another, but to compare cases occurring in persons of much the same age.

The frequency of relapse in acute rheumatism is well recognized. I believe this relapse is in many cases explicable and avoidable. Thus I have found that when the temperature has become nearly normal, rising only to 99.5, to 100, or a little over, there may be no pain, especially in the case of a child, and the patient feels so well that he is often allowed to get up and walk about, the great risk of bringing back the fever and joint-pain. In the ward I have frequently verified the fact, that relapses are often brought about in this way, and I am sure it is much safer to take care that the temperature should become normal, and remain so for several days, before the patient is allowed to get up. These cases will illustrate the importance of the thermometer, as so slight a degree of fever is quite indetectable by the hand. But the temperature must be taken several times a day, as the preternatural rise may last only a few hours daily. Movement of the joints in rheumatic fever inflames them and heightens the fever; if a joint is free from inflammation and pain, is worked by the hand for a short time, it often becomes in a few hours acutely painful and inflamed. Again, it is well known that the journey to the hospital often excites inflammation in patients' joints and heightens the fever; that simple rest during the few first days in the ward almost always causes a diminution of pain and fever.

Potash salts exist abundantly in the milk, whence it has been suggested, that the administration of these salts may promote secretion.

The sustained administration of the alkalies and their carbon dioxide renders the blood, it is said, poorer in solids and in red corpuscles, and impairs the nutrition of the body. These results are probably due to disordered digestion, produced by the long-continued use of alkalies, and are not dependent on an excess of alkalinity of the blood; such excess must always be slight on account of the rapid elimination of these salts by the kidneys. It has been shown by Dr. Roberts, of Manchester, that the citrate of potash may be taken for an almost indefinite time, without deranging the gen
th, yet this drug increases the alkalinity of the blood while
g to its neutral reaction. It is harmless to the stomach.

Liquor potassae bears the reputation of promoting the catabolic
inflammatory formations, and is occasionally employed in phys-
ics; but its good effects are not evident and the disorder pro-
nces in the stomach renders its use unadvisable for any length of
time. Dr. Walshe praises liquor potassae in phthisical cases.

Carbonate of potash, in one or two grain doses, given three or
four times daily, with a little syrup to cover the taste, is much used
in Philadelphia for whooping-cough.

What influence have the alkalies on tissue changes? Dr. Parke
tes investigated the action of liquor potassae, and he declares that
probably increases the disintegration of the abnormal elements of
the body. He believes that his experiments [and] confirm con-
cluding that it disintegrates also the sulphur-holding tissues. The
liquor potassae increases both the area and the apparent end of
the urine. The strong reaction of liquor potassae suffices to be
given in doses sufficiently large to affect in any great degree the
reaction of the urine, so that when it is required to a condition in
had the bicarbonates or citrates must be employed.

What action have alkalies on the constituents of the urine?
They are all reputed to be diuretics but as no exact results we have
be made with these salts, this statement must be regarded
as only a probable assumption.

Before referring to the presumed diuretic properties of these
substances, it will be well to discuss for a moment the general
terms of diuretics.

By diuretics, we understand medicines which act as "wetters"
of the urine; and we must distinguish diuretics from those medici-
ces which, by promoting tissue changes, take an active part in
of the constituents of the urine. Diuretics merely separate from
the system already-existing products.

As the urine is a complex fluid containing many salt and
salts and other ingredients, we may have medicines which
eliminate one or more of these substances, leaving the others
affected. We may therefore have diuretics that affect the excretion
of uric acid, &c. The retention in the body of waste products,
should be eliminated by the kidneys may be used to advantage
conditions. The physical state of these organs may alter the use
these organs disabled by disease; if prone to los, etc., then
Or, through insufficient oxidation and removal of the waste
products of disintegration, refuse material may remain in a form

ALKALIES.
excretable by the kidneys; and, lastly, the retention of the urinary ingredients in the blood may be dependent on organic disease of the kidneys themselves.

Thus, in one instance a medicine acting on some organ at a distance from the kidneys, as the heart or lungs, will be a diuretic; while in another, those means which promote oxidation in the blood will prove diuretic; and, lastly, diuretics may act immediately on the kidneys by removing or altering those physical conditions which hinder the action of those organs.

How far do the members of this group act as diuretics? and in which of the foregoing ways? We cannot give very satisfactory answers to these questions.

First as to their diuretic action.

It is generally held that all these substances are diuretic, and, under certain circumstances, they may possibly become so. Acetate of potash and acetate of soda enjoy the highest repute in this respect, though some careful observations have been made with these substances on persons in health, which have led to unexpected results. It was found by Böcker (quoted by Parkes), "that so far from acting as a diuretic in health, the acetate of potash diminished the water, the urea, the extractives, and, in a remarkable manner, the earthy salts." Some valuable observations concerning the action of citrate of potash and acetate of potash, as diuretics in health, have been made by Dr. Nunneley on himself. He took daily, for twelve days, three to five drachms of citrate of potash. On an average, the daily excretion of water was increased by two ounces and a half, but the urea was lessened by eighty-four grains, and the solids by sixty grains. The acetate of potash, in daily doses of from two and a half to three and a half drachms, exerted a similar influence in a somewhat less degree.

But should we expect medicines to act as diuretics or eliminators in healthy persons? In their blood there should be but little urea or uric acid to be eliminated, and we must be careful how far we allow physiological experiments on healthy subjects to guide us as to the action of diuretics in disease. That such caution is highly necessary, is shown by the experiments of Ranke, who, after giving acetate of potash, noticed a very considerable increase in the quantity of urine voided soon after, showing that this salt will sometimes act as a diuretic of water.

So far as to their diuretic properties; and we will endeavour now to answer the second part of the foregoing question—In what way do they act as diuretics?
ALKALIES.

It is not supposed that any members of this group act on organs remote from the kidneys. They may possibly promote oxidation in the blood, and so reduce effete products to urea, in which form they are separated by the kidneys.

Some of the alkalies are considered to be febrifuge, as the citrates and acetates. If so, they would act as eliminators of water, as on the decline of fever, an increase takes place of the urinary water, previously held back in the system during the febrile state, and often accompanied by a simultaneous increase in the solids of the urine. If, therefore, these substances will check fever, this increase of water and solids must, in some measure, be due to their action.

These alkalies are generally reputed to act as diuretics when the kidneys are diseased, the citrates and acetates being given in acute and chronic Bright's disease. By making the urine alkaline, some consider it is enabled to dissolve the organic but diseased matters, which block up the uriniferous tubes in Bright's disease, and hinder the secretion of the kidneys.

It has already been mentioned, that the members of this group render the urine less acid, or even alkaline; but, strange to say, the amount of acid excreted with the urine is actually increased, but, being neutralized by the alkalies, it gives no acid reaction.

The citrates and bicarbonates are constantly employed to render the urine alkaline, when the urinary organs are irritated or inflamed, as in cystitis and gonorrhoea. If in cystitis, the urine, before it is passed, is already alkaline from decomposition of the area, alkalies must be intermitted; for they would, of course, increase the alkalinity of the urine, and, as alkaline decomposes much more readily than acid urine, they would still further promote the decomposition of urea, and the formation of carbonate of ammonia.

When excess of uric acid occurs in the urine, it should be kept for a time alkaline; and, by many careful and ingenious experiments, Dr. W. Roberts, of Manchester, has shown that uric acid calculi may probably be dissolved in the bladder, if the urine is maintained alkaline for some weeks. This treatment is probably useful in renal calculus, which is generally composed of uric acid only. It is reasonable to expect that the alkaline urine would in time reduce the calculus sufficiently to pass down the ureter. We certainly meet with patients complaining of much pain in the back, passing bloody urine, containing a large quantity of uric acid crystals, and a little pus, who are curable with large doses of citrate of potash.
We may here introduce a summary of some interesting experiments made by Dr. Paul Guttmann, which confirm many of the conclusions of Claude Bernard and others, on the action of potash and soda salts. The results are singular, and scarcely in accordance with medical experience of the action of these substances on the human body.

Potash salts are all far more poisonous than soda salts.

Potash salts are all equally poisonous and equally fatal in the same space of time, if administered in the same way.

Chloride of potassium, carbonate of potash, and nitrate of potash, in identical doses, are equally powerful to destroy life, and in the same period of time, even when either salt, previous to injection, is mixed with a solution of albumen.

The acid of the salt plays no part in the fatal result.

In poisonous doses great muscular weakness sets in, first appearing in the hinder extremities; while, in warm-blooded animals, dyspnea and convulsions take place. Large doses lessen the frequency and force of the heart’s beats, and sometimes make them irregular. This holds good with all potash salts. Large doses at once arrest the action of the heart, which always ceases to act in the diastole.

Traube asserts that the action on the heart is affected through the vagi nerves. Guttmann considers this view erroneous, as, after the vagi were both divided, and the medulla removed, the potash salts still affected the heart as before, and even when the vagi was paralyzed by woorali, the potash salts still acted as usual at this organ. Whether their effect on the heart is owing to their action on the heart’s substance, or on its ganglia, Guttmann cannot say. He states that these salts lower the temperature of the body; but certainly to a very insignificant extent.

These salts act but slightly on the muscles, and not at all on the peripheral nerves, unless applied directly to them in a strong form. The loss of sensibility and motion is due to their paralyzing action on the spinal cord, an action first evidenced and most expressed on the hind part of the cord.

Soda salts, in twice or three times the quantity which proves fatal in the case of the potash salt, produces no effect on the system except a passing weakness.

Even in larger doses, soda salts exert no action on the heart, cause no diminution in the temperature, and produce no apparent effect on the cord, brain, nerves, or muscles.

The heart of a frog suspended in a solution of potash quickly ceases to contract, whilst it takes a much longer time to produce a like effect in a solution of soda of similar strength.

Many soda salts produce an opacity of the lens in frogs, but this does not occur with sulphate of soda. Guttmann shows that the opacity is not due to mere abstraction of water from the lens; though this condition is removed by immersing the opaque lens in water. This opacity does not take in mammiferous animals.

Some experiments on chloride, bromide, and iodide of potassium I made, in company with Mr. E. Morshhead, lead us to conclusions similar to those arrived at by Guttmann. We find that these three salts produce the same symptoms in the same order, and with an intensity proportioned to the amount of potash they contain. They at first depress or destroy the functions of the afferent nerves, and thus
diminish or destroy sensation and reflex action. Reflex action, Guttman's experiments show, is depressed also by the reflex action of the potash salt on the reflex portion of the cord. When the functions of the afferent nerves are depressed or even abolished, the animal retains perfect voluntary power. Hence the brain, the motor tracts of the cord, the motor nerves and muscles are unaffected, next general paralysis begins, increases, and at last becomes complete, due, as Guttmann has shown, to the further effect of the salt on the cord. (See Bromide of Potassium.)

In conjunction with Dr. Murrell, I have recently made some further investigations concerning the action of chloride of potassium (Journal of Physiology, vol. 1, No. 1).

This salt, we find, is a protoplasmic poison. It poisons all nitrogenous tissues and destroys their functions. A subcutaneous injection specifically affects the brain and cord, causing complete general paralysis, and in a few hours the motor nerves, when directly stimulated by the interrupted current, cease to conduct impressions. A little later still the muscles will not contract to electric stimulation. Now this paralysis of all the tissues is due to the direct action of the potash, and not to the arrest of the circulation, since the paralysis of the nerves and muscles occurs much earlier after poisoning with chloride of potassium, than after mere mechanical arrest of the circulation.

We conclude also that the chloride acts by an equal affinity for all protoplasm, and destroys the tissues in the order of their vital endowments. Potash salts are depressors and paralyzers of the heart. How do they paralyze the heart? In the same manner, we conclude, as they paralyze the other structures, by an affinity for all the nitrogenous tissues. The more highly endowed nervous ganglia are the first to suffer, hence small doses will arrest the heart, whilst the muscular tissue will still respond to galvanic stimulation; but, if into the jugular vein a large quantity of potash salt is at once introduced, it will destroy not only the functions of the nervous structures, but also muscular contractility. Thus Guttmann found that the injection of small doses into the jugular vein of warm-blooded animals paralyzes through the nervous system; whilst Traube found that the injection of a large dose paralyzes also the muscular tissue, so that it failed to contract on the application of galvanism. These experiments strongly support the views we have advanced.

If it seems strange that chloride of potassium produces such profound effects on frogs, whilst it appears so harmless a drug to man, we need merely point out that our frogs were given a quantity proportionate to from 3 to 9 oz. for a man weighing 110 pounds, and so large a dose thrown at once into its circulation, would doubtless profoundly affect the chemical condition of the blood, and the functional activity of the organs.

As arrest of the circulation is itself a paralyzing influence, we conclude that arrest of the circulation caused by the chloride of potassium must, in some degree, assist in direct action on the tissues.

In the chapter on Bromide of Potassium, we have shown that it produces the same symptoms, in the same order, as other potash salts, and that the more or less rapid induction of these symptoms depends upon the amount of potash the salt contains. Bromide of potassium, like the chloride, paralyzes not only the central nervous system, but likewise the nerves, muscles, and heart, the central nervous system being affected sooner than the nerves, and the nerves sooner than the muscles, and therefore, we conclude that these effects of bromide of potassium,
which it possesses in common with all potash salts, are due solely to the potash, the bromide playing no part in their production.

SOLUTION OF AMMONIA, CARBONATE OF AMMONIA, SPIRITS OF AMMONIA.

These preparations have many properties in common with the alkaline potash and soda group. They possess a strong alkaline reaction, are freely soluble in water, have a high diffusion-power, and dissolve the animal textures. They differ from the potash and soda preparations in their volatility, in being more powerful local irritants of the living animal tissues, and exciting very active inflammation.

Their action on the skin is, in many respects, similar to that of the alkaline potash and soda preparations. Owing to the water in its composition, liquid ammonia manifests but little attraction for that of the tissues; and since its solvent action on the textures is less than that of the soda or potash salts, its destructive powers are much less rapid and extensive. Owing, however, to its high diffusion-power, it readily penetrates the cuticular covering of the body, and excites a degree of active inflammation sufficient to destroy the tissues, and so produce, first a slough, then an ulcer. The preparations of the members of this group, are never purposely employed to produce formidable destructive changes in the tissues, but are used in the form of liniment, or the solution of ammonia itself, as vesicants and rubefacients.

The strong solution may be employed to produce very speedy vesication. A few pieces of lint should be cut a little larger than the required blister, and on the lint should be poured ten or twenty drops of the strong solution of ammonia; the pledget must be applied at once to the skin, and covered with a good-sized watch-glass. Heat, with some smarting and tingling, is soon felt, and in a short time, a rim of redness appears around the glass, denoting that the application has done its work; then a poultice promotes the vesication, and eases the burning pain. In this way, a blister may be produced sometimes in ten minutes, though it may take half an hour; so great is the difference in the vesicating action of ammonia, that with some a blister is not formed at all. Hence, it must be considered a very uncertain vesicant.

As a rubefacient, or "counter-irritant," it is more useful; but it
is in no respect superior to a mustard poultice, the materials for which are always at hand. The liniment of ammonia, if merely rubbed or dabbed on the skin, acts very imperfectly as a counter-irritant. It must be applied on lint, or linen, kept in contact with the skin, when decided rubefaction takes place in a few minutes.

As a counter-irritant, ammonia is used for the same purposes as mustard poultices or blisters.

Dr. Tilt speaks highly of Raspail's sedative lotion, in the treatment of headaches produced by the change of life, or by defective uterine functions. The lotion, made by adding two ounces of liquor ammonia, and of common salt respectively, and three drachms of camphorated spirits of wine, to thirty-two ounces of water, is applied to the painful part with a small sponge, and is renewed as often as may be required. It excites a sensation of burning, and reddens the scalp. If too strong, it should be diluted with water.

The weaker solutions of ammonia, are sometimes applied to the bites or stings of insects, as wasps, spiders, etc., to neutralize the formic acid, the active principle of the poison.

Formic acid is commonly said to be the poisonous principle in insects, whose bites or stings excite pain and inflammation. This, I think, can hardly be correct. The sting or bite of an insect affects some persons much more than others. The bite of a bug or flea will, in one person, cause considerable swelling, whilst in another, it will excite neither pain nor swelling. Even in the same person we find that perhaps, when young, insect bites or stings scarcely affected him, whilst later in life they cause much swelling and pain. Again, a bug-bite will cause great swelling, whilst in the same individual a gnat, a flea, or midge, will cause no inflammation. The bite of a midge, too, will excite considerable swelling with much itching, lasting eight or ten days, whilst in the same person the bites of other insects are quite innocuous. Now this difference could not be if the active principle were always the same. It is evident, therefore, that there must be some difference in the nature of the poisons secreted by different insects, and that it cannot depend on formic acid; or were this always present in the poison of insects, it must be mixed with some other virus differing in different animals.

Salts of ammonia, applied to the nose, and breathed into the air-passages, are commonly used in fainting, and in poisoning by narcotics, in the early stages of cold in the head, and as derivatives, to remove pain and inflammation of the nose and frontal bones. Ammonia inhalations have been recommended in chronic bronchitis to ease, and probably to lessen the over-abundant expectoration.

Ammonia in the stomach, acts much in the manner as it acts on the skin. It neutralizes the acid it encounters, and is therefore an antacid; at the same time, if incompletely neutralized, it acts as an excitant, or even irritant of the mucous membrane.
Soon after the administration of ammonia, a sensation of warmth at the pit of the stomach sets in, which quickly spreads to the rest of the body. When the functions of the stomach and upper part of the intestines are depressed, it may be used as an excitant. It often obviates spasm of the intestinal canal, and braces up the relaxed mucous membrane. Ammonia compounds of this group are therefore among the best anti-spasmodics. They are useful remedies for children, especially for infants, who are frequently tormented by cholic or flatulent distension of the intestines brought on by bad feeding.

These preparations may be profitably employed in the later stages of diarrhoea, after the removal of the irritating excitant cause, when the mucous membrane continues to pour out a watery secretion, which perpetuates the diarrhea.

The alkaline preparations of ammonia are employed in flatulent distension of the stomach and intestines, with the view of absorbing the excess of gas, generally consisting of carbonic acid. In such affections, these remedies no doubt are often temporarily useful as palliatives. They excite the muscular coat of the intestine to contract, and so promote the expulsion of the distending gases.

In full doses, these remedies excite an increased formation of mucus, and even vomiting; as emetics, they act without inducing nausea or depression. They are seldom employed alone, but are used to counteract the depressing effects of other emetics.

If administered too long, they excite catarrh of the stomach and intestines.

These substances readily enter the blood, and must to some extent increase its alkaline reaction; but owing to their volatility and high diffusion-power, they are rapidly eliminated, and therefore, exert only a transient action on the blood and the organs of the body.

The effect of ammonia on the blood is at present unknown. It has been maintained, without much show of proof, that carbonate of ammonia is the poisonous agent in uremia; the urea, it is said, decomposes in the blood, forms this carbonate, which in its turn produces the serious symptoms constituting uræmic poisoning.

Ammonia induces a slight increase in the force of the pulse, some excitement of the brain, and a general sensation of warmth. Being a slight stimulant of the heart, ammonia is used in fainting and exhaustion. It is frequently administered as an antispasmodic—an action depending probably, in part, on its power to strengthen...
AMMONIA.

The heart's action, but, like all other antispasmodics, its influence is slight. Carbonate of ammonia is often employed as a stimulating expectorant in chronic bronchitis, when the expectoration is profuse, and the patient's strength is diminishing. It is often given with pride of ammonium, which probably acts in a similar manner. Carbonate of ammonia is frequently of signal service in severe acute bronchitis, or broncho-pneumonia of children, especially when they are prostrate and livid from obstructed breathing.

Carbonate of ammonia, in three to five grain doses, administered combined with any other drug, hourly, or every two or three hours, according to the severity of the case, has been much lauded in scarlet fever. It was largely used by the late Dr. Peart, who did not lose one patient out of nearly three hundred." The late Dr. Wilkinson also employed it largely with equal success; and recently, Mr. Charles Witt has written a pamphlet extolling its virtues. It is said to be useful in all forms of scarlet fever, especially when given early. The immediate effects are stated to be diminution of heat, fever, and delirium, and a disposition to sleep. Mr. Wilkinson says it is equally useful in measles, and that the ammonia treatment leaves no secondary evils. I have used this treatment largely in measles, apparently with considerable benefit. Carbonate of ammonia induces free perspiration, and appears to develop the rash and cause the disease to run a benign course. Mr. Charles Witt says, care must be taken that no acid drinks nor acid fruits of any kind are permitted, or the ammonia, becoming neutralized, loses its efficacy. Solution of acetate of ammonia is a useful diaphoretic, and is largely employed in fevers. It is especially useful in the milder forms, as in common catarrh. A full dose of acetate of ammonia, or Mindererus's spirit, will often speedily steady and sober a drunkard. The supposed effect of ammonia in preventing iodism, is noticed in another place.

Owing to its high diffusion-power, ammonia escapes very readily from the body in various ways, a portion passing with the breath, some probably with the sweat, and much with the urine.
MAGNESIA, LIGHT MAGNESIA, CARBONATE OF MAGNESIA, LIGHT CARBONATE OF MAGNESIA, SOLUTION OF CARBONATE OF MAGNESIA.

These substances, having an alkaline reaction, might be placed in the group of potash and soda alkalies, but the effects of the magnesia group on the body, are in many respects very different from those of the potash and soda group. We have elsewhere treated of the properties pertaining alike to all alkaline substances, including, of course, the members of this group. (See Potash group.)

Some of the oxide of magnesia combines with the acids of the gastric juice, and becomes soluble; the remainder, being unaffected, is left insoluble. Part of the carbonate, decomposed by the acids of the stomach, sets free its carbonic acid.

These substances act as antacids and as antidotes, in poisoning by the strong acids and by some metallic salts. In some cases, they are preferable as antacids to bicarbonate of soda or lime. The advantages of the members of this group are:—(1) their large saturating capacity for acid; (2) their purgative property; (3) their harmlessness, on account of their insolubility, when given in excess.

Their disadvantage consists in their great bulk. The oxide or carbonate of magnesia is generally used as an antacid; but the oxide is preferable, as the carbonate, by giving off much gas, may produce disagreeable distension of the stomach. It must not be forgotten that they are merely temporising remedies, and that acids are far better correctives of acidity of the stomach. (See Acids.)

The oxide of magnesia is a convenient antidote to the strong mineral or vegetable acids. It neutralizes them, and protects the delicate structures of the stomach from their corroding action; and it precipitates many metals from their acids, rendering them less soluble, and therefore, less poisonous. The magnesias form an insoluble compound with arsenic, and thus take rank among the antidotes of this poison.

The magnesian salts combine in part with the acids of the gastric juice. The oxide and carbonate, on account of their insolvability, cannot pass into the blood, nor does the chloride pass in any amount because of its low diffusion-power. Hence, almost all the magnesia passes into the intestines.

In the intestines, the salts of magnesia undergo changes accord-
LIME.

213

ing to their composition. The chloride, probably, is decomposed by the bile, and the oxide precipitated, part of which combines with the biliary acids. The oxide is converted first into the carbonate, then into the bicarbonate of carbonic acid of the intestines, and so made soluble, and capable of acting as a purgative. The carbonate is changed in a similar manner into the bicarbonate, and likewise becomes a purgative. Thus, they act as purgatives only after conversion into bicarbonates, in which form they possess most of the properties of the group which includes sulphate of magnesia, etc. Like the members of this group, the bicarbonate has a very low diffusion-power, and, like them, it is purgative; its action in this respect being very mild, it is termed a laxative. Their mild action, freedom from taste, and antacid property, fit these substances admirably for children. They are generally combined with a little rhubarb. If unduly employed, they occasionally accumulate, and form concretions of ammonio-magnesian phosphates in the intestines.

Bicarbonate of magnesia, fluid magnesia as it is termed, is a useful and mild aperient.

Magnesia has been lauded in sympathetic vomiting, as that of pregnancy, when it is to be presumed, the vomiting depends on excessive secretion of acid from the stomach; but its effects are very transient. Should it fail, recourse may be had to oxalate of serum (one grain every three hours), ipecacuanha, quinine, acids, etc. (See Ipecacuanha.)

The chief of the magnesia passes out with the faeces, and, for the reasons stated, a small portion only enters the blood. In excess of uric acid, members of this group prove useful by saturating much of the acid in the stomach, and carrying it out of the body.

LIME, CAUSTIC LIME, LIME-WATER, LINIMENT OF LIME,
SACCHARATED SOLUTION OF LIME, CARBONATE OF LIME.

This group contains highly valuable medicinal substances, which might with advantage be more extensively used.

Lime is a necessary constituent of the hard and soft tissues of the body, of bone, and the parts more vitally endowed, as the nerves and muscles; wherever there is active growth, whether natural or unnatural, lime salts are found in excess, probably as phosphate,
being in all likelihood the form of lime required by the body for
the performance of many of its functions. In practice, however,
we find the other salts of lime of equal service in almost precisely
the same morbid states in which the phosphate is so valuable, and
it seems feasible, that a portion of the lime salts becomes united in
the body with phosphoric acid.

Their diffusion-power being very low, and having little affinity
for animal structures, when applied to the skin they produce very
little change. But caustic lime, having a strong attraction for
water, will withdraw it from the dermis when deprived of its cut-
cle, and to some extent effect the destruction of the tissues. Yet, as
its diffusion-power is slight, it fails to penetrate the tissues, and its
action is superficial. Caustic lime is not often used as an esca-
rotic. Mixed with caustic potash, it forms a compound less deliques-
cent, far more manageable, and safer than simple caustic potash,
especially in affections of the neck of the uterus, as first pointed
out by Dr. Henry Bennet.

Applied to broken skin and to sores, the carbonate and lime-
water are slightly astringent; hence lime is sometimes used to
check the discharge from sores and skin eruptions.

Lime-water and oil in equal quantities, or in the proportion of
four of lime-water to one of oil, enjoys a high reputation in the
treatment of burns.

Lime-water is of service as a lotion to cracked nipples.9

9 It is far better to prevent cracked nipples, and is much easier than curing
them. Immediately the child is removed from the breast, the nipple should be
carefully washed and dried. The nipples may be hardened by washing them some
short time before delivery, and after each suckling, with a little brandy and water.
A zinc shield worn constantly over the nipple is both healing and protective.

Lime-water is sometimes employed to check the abundant dis-
charge of certain skin diseases, as eczema, and likewise as a seda-
tive to ease the smarting and tingling. When the inflammation of
eczema has been subdued, the discharge being great, lime-water
and glycerine form a useful and comforting application.

Carbonate of lime is sometimes used as a dusting powder in
eczema or intertrigo, to absorb the abundant secretion, to prevent
discharges from irritating the already inflamed skin, and to protect
the skin from the air. In common with other dry powders, car-
bonate of lime is inferior to some simple, bland, or slightly stimu-
lating greasy application. Certain cases, however, are certainly
more benefited by dry powders, as oxide of zinc, bismuth, and car-
bonate of lime, than by ointments.
As we have said, carbonate of lime is used for intertrigo of the buttocks and perinæum of young children, and to protect the skin from the irritation of the urine and of the air. Napkins soaked in urine being very generally the cause of this eruption, it is obvious that greasy applications afford a more efficient protection, since the powder readily absorbs discharges, becomes itself irritating to the skin, cakes and cracks, leaving parts of the surface exposed. The best treatment indeed consists in frequent ablutions with soap and water, and anointing with greasy applications.

Lime-water, on account of its astringent quality, is used as a wash in discharges from the ears and vulva, and is of most service when some active inflammation is still present. In the chronic stages of ear disease it is far inferior to the glycerine of tannic acid and other astringents.

Dr. Joseph Bell recommends lime-liniment with cotton-wool to prevent small-pox pitting. Cotton-wool cut in proper shapes is dipped into the liniment, and applied so as carefully to cover the face and neck, leaving apertures for the eyes, nose, and mouth. No crevice must be allowed, and a large handkerchief must be tied over all, and the dressing allowed to remain on until convalescence.

Lime-water, probably owing to its alkalinity, is often useful as an injection in leucorrhœa.

Chalk makes a good tooth-powder, and is safer than powder with hard and angular particles which wear away the enamel, and lay bare the dentine.

Lime-water is occasionally used to lessen the discharge, and to promote the healing of inflammatory and ulcerative diseases of the mouth.

Preparations of lime neutralize the acid in the stomach, and are antacids; but other remedies are mostly preferred. Salts of lime are useful in poisoning by oxalic acid.

It is not easy to indicate precisely the therapeutic value of lime-water in vomiting, but, in some forms of it, few remedies are more useful. It is generally useful in chronic vomiting; thus it often arrests the vomiting from chronic ulcer of the stomach. It should be mixed with milk, either in equal parts, or in the proportion of one of lime-water to four of milk; and if the vomiting is incessant, the patient should be fed only on this, in frequent small quantities of a tea or tablespoonful. Young children often eject much other milk in lumpy masses; some passing into the intestines, and escaping with the motion, cause in their transit much wind and
severe colic. Cows' milk is apt to induce this condition, as gastric juice coagulates it in lumps, while it generally coagulates human milk in fine flakes. Lime-water, by preventing this lumpy coagulation, checks this kind of vomiting generally at once; or, should it continue, the rejected milk is no longer curdled. In case of constipation, bicarbonate of soda should be substituted for lime-water. One-eighth of lime-water is generally sufficient, but this failing, a larger quantity, even equal parts of each, should be tried. Half a drachm to a drachm of bicarbonate of soda should be added to a pint of milk. These remedies both sometimes fail, and it may be necessary for a time to withhold milk, and to feed the child sopped bread, water gruel, and chicken broth, or veal broth.

This vomiting occurs in early months of life, sometimes even during suckling. If the child is brought up "by hand" the milk should be sufficiently diluted, and during the first month with at least an equal quantity of water; indeed some authorities advise two parts of water to one of milk, the relative quantity of milk increasing as the child grows older. A child a month old may take a pint to a pint and a half. Dr. Meigs, of Philadelphia, recommends an excellent food for healthy children, and especially those suffering from the kind of vomiting under consideration.

Soak a scruple of gelatine in a little cold water for a short time and boil it in half a pint of water till it is dissolved, that is about ten or fifteen minutes. Just before finishing the boiling, add milk with some arrowroot made into paste with cold water, and afterwards some cream. The proportion of the milk, cream, and arrowroot, depends on the age of the child. For an infant less than a month old he advises three to four ounces of milk, a spoonful of arrowroot, and half an ounce to an ounce of cream to half a pint of gelatine-water; for older children the milk may be increased to a half or two-thirds. The gelatine and arrowroot prevent the lumpy coagulation of the milk, while the small quantity of arrowroot will not disorder the stomach. If even this food is rejected, then dilute the milk with three or even four parts of very thin decoction of arrowroot, or try merely cream and water, one part of cream to three or four of water. This food consists of milk, cream, arrowroot, and gelatine-water is very useful in diarrhoea.

Again, in young children suffering from chronic vomiting and diarrhoea, and consequent wasting, lime-water is often of great benefit, improving digestion, and apparently assimilation, and viating that highly irritating state of the urine, which so common occasions intertrigo:
Solutions of these salts pass but slowly into the blood, on account of their low diffusion-power, hence the greater part pass through the intestines, and are ultimately voided with the feces.

These substances neutralize any acid present in the intestines, and check the secretion from the mucous membrane; and, sometimes by one means, and sometimes by both, act efficaciously in diarrhea. Carbonate of lime, and, in a less degree, lime-water, deservedly hold a high place among remedies for diarrhea in the latter stages, when the irritant is got rid of. Common chalk mixture is useful in diarrhea depending on more serious causes, as ulceration in phthisis or typhoid fever; but in these graver cases other remedies are to be preferred.

It has been said that saccharated solution of lime does not confine the bowels, but, on the contrary, relieves constipation. It should not be taken on an empty stomach, lest it excite nausea.

In scrofula with glandular enlargements of the neck, in cases resembling tabes mesenterica, and chronic diarrhea with weak digestion, Dr. Warburton Begbie extols chloride of calcium in ten to twenty grain doses, given in milk after food and continued for a considerable time, its good effects, in many cases, not at once becoming apparent. It is praised too for its usefulness in phthisis.

Lime-water is reputed to be useful in whooping-cough, and this may well be, owing to its astringency; for, in certain forms of this disease astringents, as alum and tannin, often effect a decided improvement.

Lime-water is a useful injection to destroy the thread-worms which infest the rectum. It has been also used as an injection in gleet.

From their low diffusion-power, a small quantity only of these substances passes into the blood; so small, probably, that it might well be doubted if they can in any way influence the organs remote from the intestines. But experience shows that lime-water or carbonate of lime is a valuable remedy in deficient nutrition, and, in convalescence from serious disease, its good effects being most marked in children, in most stages of rickets, mal-nutrition, &c.

In some instances these good results are traceable to the action of the lime-salts on the mucous membrane of the intestines. The action of these salts, however, being very similar, although inferior, to that of phosphate of lime, we refer our readers to the section which treats of this salt. One point may be noticed here, confirmed by both theory and experience, that small will do as much good as large doses, since but little of these substances passes into the blood.
PHOSPHATE OF LIME.

This salt is of very great importance, both in health and in disease. It must be ranked among the most valuable and necessary foods, being probably as essential to proper growth and nutrition as the nitrogenous and fatty foods. Observations have abundantly proved its physiological importance. It gives solidity to the skeleton; hence if the quantity supplied to the body is small, or if the demand for it is greater than the supply, these solid structures suffer and lose their rigidity. Chossat produced softening of the bones of animals fed on food free from lime-salts; while, during pregnancy, much phosphate of lime being required for the ossification of the skeleton of the foetus, it is found that the fractured bones of pregnant women unite slowly and imperfectly. Some experiments by Milne-Edwards bear practically on this point, for he found that animals' bones intentionally fractured united more quickly when the animals were supplied with phosphate of lime.

The urine of pregnant women is said to be deficient in lime-salts, but on this point the evidence is very discrepant.

The cardinal importance of this essential food to the soft and growing tissues is to promote cell-growth and nutrition; and that this is a very feasible conclusion the following considerations tend to show:—

1. The presence of this salt throughout the body.
2. Its presence in much larger proportion in the intercellular fluid of the body than in the blood itself.
3. The fact that in herbivora the intercellular fluid is as rich in this salt as it is in carnivora, though the vegetable-feeders take so little of it with their food; hence it must be carefully retained in the intercellular fluid for some important purpose.
4. Smith's observations show that a certain quantity of phosphate is required to supply the first basis for the new tissues, even in the case of those organs which subsequently exhibit an excess of carbonate of lime, as the shells of animals; an observation showing that phosphate of lime is necessary to initiate growth, and, in this respect, is not interchangeable with the carbonate.
5. Wherever cell-growth is active, there is phosphate of lime in excess—a statement holding good both with regard to healthy and diseased growths; for this salt is found to prevail in disease associated with rapid formation.

With regard to the second and third points, it must be borne in
mind that phosphate of lime is soluble in acids, and, as the inter-
cellular fluid is acid, we should expect that the phosphate would
accumulate in it.

Theoretically, it might be supposed that abundant data exist to
enable us to forecast the occasions when to employ this salt remed-
dially; it would be rightly assumed that in defective nutrition, or
deficient cell-growth, the phosphate of lime would prove service-
able. Certain hypothetical objections have, indeed, been urged
against the employment of this salt. The fault, it has been said,
is really not due to deficiency of lime, but inheres in the tissues,
which fail to assimilate it; that, in cases of defective cell-growth
and of mal-nutrition, the quantity of the phosphate in the urine is
unusually great; and, consequently, our efforts should be directed
to remove the circumstances which check assimilation, for it is as
little reasonable to treat diabetes with sugar, as a diabetes of
phosphate of lime with phosphate of lime. Some truth no doubt
there is in these strictures, and too much attention cannot be paid
to the hygienic conditions favourable to assimilation—good air,
abundant light, and sufficient exercise. The case before us is
more analogous to anaemia than to diabetes; and we give iron
with decided benefit in anaemia where this condition is due, not to
want of iron in the food, but to the non-assimilation of it by the
tissues. The efficacy of phosphates, however, must be decided by
experience, and experience speaks abundantly in their favour.
Beneke, to whom on this subject we owe much of our knowledge,
both physiological and therapeutical, has shown that phosphate of
lime is especially useful in those very diseases wherein it occurs in
excess in the urine, as hectic and chronic wasting disease.

This salt is of great use in the anaemia of young and rapidly
growing persons, and women weakened by rapid child-bearing,
prolonged suckling, or excessive menstruation. In checking chro-
nic tubercular and non-tubercular diarrhoea, and other profuse dis-
charges, as in leucorrhoea, chronic bronchitis and large abscesses,
it is a valuable remedy, effecting in these states both general and
local improvement. Beneke speaks highly of its influence on scro-
fulous sores. It is useful also in caries of the bones.

This salt is apt to be deficient in town-dwelling women, who im-
prove under its administration; an increased quantity, too, finds
its way into the lime-lacking milk of a suckling mother, who with
her child are thus simultaneously benefited.

Persons in broken health from prolonged town life or over-work,
or who from other causes are languid, hipped, and incapable of
much exertion, often derive much benefit from this medicine. In cases like this, a good formula is a grain of phosphate of lime, phosphate of iron, and carbonate of lime; but phosphate of lime will act admirably by itself. This medicine is useful in the chronic forms of phthisis with little or no fever. It should be taken on the tongue either dry or mixed with a little milk.

No reasonable doubt can, I think, be entertained of the efficacy of phosphate of lime in many cases of rickets.

It has been sought to establish a connection in all cases between rickets and a deficient supply of lime; it is urged, firstly, that rickets commonly occur during the first dentition, when much lime is required by the growing teeth, and, secondly, that rickets affect the children of mothers in just that state of ill-health in which it has been established that the milk is deficient in lime. There may be much truth in these statements; but as in many cases of rickets, an excess of lime is found in the urine, the disease in such cases cannot be held to depend on a deficient supply of the salt, but must be due to other circumstances, with which, at present, we are only partially cognizant. In cases where the disease is dependent on deficiency of phosphate of lime, its administration is obviously all that is required.

A deficiency of lime and phosphoric acid in food does not produce in animals the changes characteristic of rickets, but the bone becomes fragile.

In rickets, moreover, there is not merely deficient ossification of the bones, but unnatural growth and defective nutrition, both in the skeleton and in the other textures. The phosphate of lime appears to control this defective and perverse nutrition, and to induce healthy growth, so as not merely to favour the consolidation of the skeleton, but to improve the condition of the soft organs, and experience shows abundantly that many rickety cases are benefited more decidedly by lime-salts than by any other single drug.

German authorities, who have studied this subject most attentively, consider that the fittest time to give this remedy is after the cessation of the active stages of the disease, that is, when the pains and tenderness of the bones have disappeared.

It is well to repeat a caution against the uselessness of administering this or other lime-salts in large quantities, for, owing to their very low diffusion-power, very little passes into the blood. A grain, or two grains, several times a day, is a sufficient dose. Given in excess, it hinders digestion.

Phosphate of lime in the stomach must be variously affected by
the free acids, as lactic, hydrochloric, and, in a lesser degree, acetic acid, dissolve it.

Most of the phosphate passes into the intestines, where, if the salt is administered too long a time, it is liable to form concretions. Being unaffected by the pancreatic and biliary secretions, and but slightly soluble in the intestinal juice, most of the phosphate passes off with the stools.

Phosphate of lime is highly recommended in various forms of chronic diarrhoea, and especially in that of young children, to whom it may be given with carbonate of lime and lactate of iron. Whether the beneficial effects are due to its direct action on the mucous membrane, or take place after absorption, in the manner previously described, our present knowledge does not enable us to decide.

Being soluble in the acids of the gastric juice, and to some extent in solutions of common salt, its passage into the blood takes place probably in several ways. It has, however, been doubted whether any portion, if uncombined with food, passes into the blood, since no augmentation of this salt is met with in the urine; nay, in some cases it seems even lessened. The observations on this point are, perhaps, too scant to set the question at rest.

Much phosphate is taken either in combination with the food, or so intimately blended with it that it is well-nigh impossible to separate it from the tissue-forming substances, and so it finds ready entrance into the blood, with the digested materials constituting the chief, and, in ordinary cases, the only source of phosphate of lime for the supply of the system. That so alkaline a fluid as the blood is capable of dissolving the phosphate is explained by its solubility in solutions containing free carbonic acid or common salt.

HYPOPHOSPHITES. HYPOPHOSPHITE OF SODA.

Dr. Churchill recommends these drugs in phthisis, and his statements regarding their action have for the most part been upheld by Dr. Thorowgood and some other observers.

Dr. Churchill commences with a grain and increases the dose to six or seven grains a day, giving it in the form of syrup or pill.
Dr. Thorowgood gives a grain three times a day in the form of syrup. In too large doses it may produce weakness, sleepiness, headache, giddiness, noises in the ears, loss of appetite, colic, diarrhoea and even bleeding from the nose and lungs. Dr. Churchill administers these agents uncombined, and cautions against giving them with iron, cod-liver oil, or stimulants. It is said that the hypophosphites increase appetite and digestion; promote the formation of the blood; lessen cough and expectoration; relieve pain in the side, and diarrhoea; and often effect a cure. They are said to be more useful in the first than in the second stage; and in the second than in the third stage; and when only one lung is affected—a statement sufficiently obvious and applicable indeed to every remedy. Thorowgood says they are more successful with young than with old people. These remedies are also recommended in nervous and general debility; teething; spermatorrhoea; chlorosis; and anæmia.

CHLORIDE OF POTASSIUM, CHLORIDE OF SODIUM, CHLORIDE OF AMMONIUM.

These substances, having many chemical and therapeutic qualities in common, have been grouped together; but the remarks in this section refer mainly to chloride of ammonium.

These salts are freely soluble, and possess high diffusion-power. The saltish taste common to them all, is, in the case of chloride of ammonium, somewhat disagreeable, and constitutes one of the objections to its use.

These chlorides considerably increase the secretion from the mucous membrane; and may indeed even excite catarrh. This is notably the case with chloride of ammonium, which is consequently employed chiefly when it is proposed to influence the mucous membrane. How do these chlorides promote the formation of mucus? Let us take the instance of common salt. Chloride of sodium is a large constituent of mucus, and salt, when taken into the system, probably promotes the production of those secretions of which it forms a large part. It is, indeed, a food to the mucous membranes. This suggestive hypothesis may possibly apply in the case of other members of this group. These substances, especially sal ammoniac, are sometimes employed in catarrhal conditions of the intestines, to prevent the formation of that thick tenacious mucus which
as a convenient nidus for the various worms infesting this

Dr. Rutherford’s experiments with fasting dogs lead him to the
inclusion that common salt very slightly increases the secretion of

Owing to their high diffusion-power, these salts pass rapidly into
the blood, and so travel along the intestines too small a distance to
act as purgatives; hence, unless administered in considerable quan-
tity, they exert very little influence on the character of the motions.

Common salt is used to produce sickness, or to promote the
action of other emetics. Given in poisoning by nitrate of silver
it effects a double decomposition, precipitating the silver as the
formless insoluble chloride.

Chloride of ammonium is often given with considerable success
in chronic catarrhs of the bronchial and urinary mucous membrane.
It is indicated in bronchitis when the secretion is thick and abun-
dant; and it may be applied topically to the morbid mucous mem-
brane by the atomizer. It should be given in twenty-grain doses
every three or four hours, adding it to milk; or, still better, mixing
a drachm of liquid extract of liquorice with each dose, and thus
concealing its disagreeable taste.

The same remedy has been lauded for whooping-cough. It is
said to be frequently successful in removing the pain of facial
neuralgia “of rheumatic character.” It should be given in half-
drachm doses, and if, says Sir T. Watson, four doses fail to give
relief, the drug may be considered unsuitable for the case. In full
doses, several times a day, I have many times found it useful in
facial neuralgia. Dr. Anstie speaks well of it in migraine, clavus,
myalgia, intercostal and hepatic neuralgia, and in mild forms of
sciatica.

Many doctors employ this salt in all forms of neuralgia; and I
have heard some eminently practical men go so far as to assert
that in this painful affection they require no new remedy, since
chloride of ammonium so rarely fails. Chloride of ammonium is
largely used in India for congestion of the liver.

Chloride of ammonium is given with advantage in headaches due
to menorrhagia, amenorrhœa, &c. (Migraine).

Common salt sometimes arrests hæmoptysis. Half a teaspoonful
should be taken undissolved, and be repeated occasionally till it
excites nausea.

Dr. Parkes states that “muriate of ammonia is not oxydised, but
passes out unchanged by the urine.” “According to Böcker, it
increases (in health) all the constituents of the urine, except uric acid, which it slightly diminishes. The mean daily increase of the urea in these experiments was 4.793 grammes, or 74 grains, an amount which indicates a vast augmentation of metamorphosis or of elimination. The volatile salts and extractives were increased by no less than 18.959 grammes, or 292 grains, which was, in doubt, partly owing to the presence of the volatile chloride of ammonium.” (Parkes on Urine).

Group containing SULPHATE OF POTASH, SULPHATE OF SODA, SULPHATE OF MAGNESIA, PHOSPHATE OF SODA, TARTRATE OF POTASH, BITARTRATE OF POTASH, TARTRATE OF POTASH AND SODA.

We have adopted this grouping, with slight modification from Buchheim’s excellent work on therapeutics.

With the exception of the sulphate and bitartrate of potash, these substances are freely soluble in water.

The sulphates have a very disagreeable bitter taste, which in the phosphate of soda is but slight, and in the tartrates is absent.

They are all purgative, producing watery evacuations, which is probably due to their very low diffusion-power.

They have little or no affinity for animal textures, or much attraction for water, whence they effect few changes in the organic constituents of the body.

While they all act as purgatives, producing watery evacuations, they excite very little irritation in the mucous membrane.

How do they produce their purgative effect?

Purgatives may act in one of two ways, or in both combined.

Some purge by increasing the moisture of the intestines, and so facilitating the passage of the contents along the canal; others act by increasing the peristaltic action of the intestines so that the contents are urged more rapidly towards the rectum; whilst most purgatives combine both modes, although one action usually predominates.

The watery character of the motions shows without doubt that, in part at least, these drugs purge by augmenting the moisture of the contents of the intestines—an augmentation effected in three ways: by causing water to flow from the blood into the intestines; by exciting the mucous glands of this tract to increased secretion;
SULPHATES.

The retention of the water already present in the intestines. From Buchheim's careful observations it appears that the salts purge solely in virtue of their power to retain in the intestines the water existing there, producing no flow of fluid from the blood, no increased secretion from the mucous glands, shown by the fact that, after purgation with these medicines, no albuminoid substances are found in the faeces. Other observers, however, maintain that these salts do cause a flow of water from the blood to the intestines, for, when a solution of sulphate of magnesia is put into a knuckle of intestine secured at both ends, it is found that after some hours the contents of the bag are increased.

How do they influence the retention of the water existing in the intestines?

These salts, as we have said, possess a very low diffusion-power; they pass slowly, and hardly through animal membranes; that is, they pass from the intestines to the blood with difficulty, being for a long time retained in the canal. As, however, they are held with considerable tenacity both the water of solution and that encountered in their course through the body, this water is prevented from passing from the stomach and intestines to the blood.

It is not generally held that the members of this group act purgatively by increasing markedly the peristaltic contraction of the intestines, since they produce neither much pain nor griping. It appears, then, that they are mere expellents from the intestines, not eliminators of effete material from the blood, although, by emptying the intestinal canal, they prevent its contamination by the products of faecal decomposition.

An excellent way to administer some of these salts is in the form of Pullna, Friedrichshall, or Hunyadi Janos water, in doses varying from a wine-glassful to half a tumblerful or more. Usually one dose before breakfast is sufficient; if not, a second, and even a third, dose may be taken in the course of the day. It is advisable to mix the natural water with a third, or an equal quantity of boiling water; for when taken cold, it is sometimes liable to "lie heavy on the stomach." Usually a wine-glassful of one of these waters, with an equal quantity of hot water, is sufficient to open the bowels without much griping or pain.

A wine-glassful of Friedrichshall water in a breakfast-cupful of hot water is very useful in bilious sick headache. The best time is before breakfast, though it is useful at any time. It stays the nausea and soon relieves the headache, sometimes without purging. The taste of this mixture is not very disagreeable. Pullna
or Friedrichshall water mixed with milk is a good purgative for children, the milk disguising the bitterness of the natural waters.

An orange or two eaten before breakfast is a pleasant and often effectual way of overcoming moderate habitual constipation; and sometimes, indeed, this plan overcomes the most obstinate forms. A glass of cold water before, and an orange soon after, breakfast, are another good means of obviating constipation, and if oranges before breakfast disagree, they should be taken soon after it.

Stewed rhubarb, or stewed gooseberries, cooked or uncooked apples, are effectual; grapes and strawberries, on the other hand, are useless with many persons. Strange to say, we occasionally meet with people in whom fruit causes constipation. Again, we see individual peculiarities in respect of fruit. Thus, some are made bilious by oranges or strawberries; some are constipated by strawberries, whilst other fruit relaxes.

There are many persons, especially busy, worried men, whose comfort and well-being seem to depend on an efficient daily evacuation of the bowels. If they pass a day without relief of the bowels, or if the defecation is delayed to the after part of the day, they suffer from mental dulness and inactivity, a kind of fogginess, with much irritability, and perhaps a dull, "stupid" headache. They are quite conscious of their irritability, but cannot well control it. Directly the bowels act freely, these symptoms vanish at once, the head clears, the spirits revive, the ill-temper disappears, they recover their full mental capacity, and in a short time longer, perhaps half an hour or an hour, the headache disappears. With many such patients the constipation is not obstinate, but they pass daily a hardened, dry evacuation, insufficient to give comfort. Porridge, brown bread, and exercise are generally sufficient to overcome the constipation. If not, then fruit before or after breakfast should be tried, and this failing, the natural purgative waters will often prove useful.

Carlsbad waters are eminently useful in many abdominal diseases. The imported waters are especially efficacious when a dietary is adopted similar to that enjoined at Carlsbad. The water should be warmed to about 100° to 110°, and the patient must drink three to six tumblerfuls before breakfast, prolonging the drinking over an hour or more, and if possible, whilst taking exercise in the open air. Dr. Stephen Ward says, "even when first taken, and in moderate quantity they usually cause pulpy slimy stools of dark colour and offensive odour. These stools are generally frequently repeated, and the patient is astonished at the
SULPHATES.

ty that sometimes comes away, but in many persons no very
t symptoms beyond the purgative action attend the drink-
the waters.” I have rarely seen them purge, because
I have chiefly used them in obstinate constipation. The
ty to be taken depends on their effects. It is better to begin
three tumblerfuls and gradually increase the quantity to four,
six according to the action. This treatment must be con-
three weeks or a month. It often induces some weakness.
butes stoutness, and sometimes even makes a patient very
But if it produce much depression, or excite nervous symp-
a smaller quantity must be taken, and the course must be
d to a fortnight or three weeks. The good effects are
imes not apparent till a week or so after the course. The
Carlsbad is extremely simple. “Fat, butter, cream, pastry,
rich meats, as pork, goose, sausages, salmon, mackerel,
gs, anchovies, entrées, and other dishes, seasoned with spices,
ions, garlic, etc., are to be avoided. Dressed salads,
er, and uncooked fruit generally are objected to as being
stible, and likely to cause flatulence, and irritation of the
The use of spirits is absolutely forbidden, and the wine of
untry, or the lighter French wines are permitted only spar-
and in cases especially requiring a certain amount of stimu-
The breakfast, which is usually taken about an hour after
ing the last cup of water, consists merely of weak tea or
, with milk and a little sugar, and small, well-baked rolls, or
day’s bread; meat, fish, or eggs being excluded, except
very delicate. The dinner, which takes place at one,
m of but three courses; soup, free from grease and spices,
thickened with barley, rice, or vermicelli; meat, as beef,
, lamb, poultry, or game, with well-boiled, fresh vege-
s; and a light, simple pudding, or a compôte of stewed fruit:
of coffee may be taken in the afternoon; a light supper is
at eight o’clock; and smoking in moderation is not objected
In cases of simple, obstinate constipation, it is not necessary to enforce very strictly the rigorous Carlsbad regimen just described.

Again, in cases like the following, Carlsbad waters are very useful:—A middle-aged woman, accustomed to eat and drink somewhat too freely suffers from acidity, much flatulence, constipation with attacks of pain at the epigastrium, or over the liver, between the shoulders, the conjunctiva becoming rather jaundiced, and the complexion sallow. In a case like this, a well-regulated diet greatly assists the action of the waters. This treatment is also very useful in gall-stones and gout. It is the most successful treatment for the removal of gall-stones, and the prevention of their formation. Patients sometimes say they have tried Carlsbad waters without good results, when they have simply taken Carlsbad salts dissolved in a small quantity of water. In such a form the Glauber salts purge, but fail to yield the same excellent results, as when given largely diluted with water; I have no doubt that the large bulk of water plays a prominent part in the therapeutic effects.

The medicines now under consideration, are not to be indiscriminately used. Bitartrate of potash is employed in both general and local dropsies, but more frequently in general dropsies, and is especially used as a hydrogogue cathartic in Bright's disease, to prevent dangerous watery accumulation in the cellular tissues, or in the cavities containing the heart and lungs. With the water, it draws off also the effete and poisonous matters which in this disease are contained in the blood. Being mere evacuants of the intestines, these remedies might be thought ineffectual to withdraw either water or urea from the system; but a little reflection will show us this is not the case.

During digestion, a considerable quantity of fluid is poured into the intestines by the stomach, the liver, and the pancreas. Now, if the blood contains poisonous matters, some portion of the poison must contaminate the fluids secreted by these organs. By retaining in the canal much of this fluid, until it undergoes expulsion through the anus, these medicines diminish the quantity of fluid of the body, removing simultaneously some of the poisonous matters accumulated in it. So far, theory; and experience, we find, supports it. The concurrent testimony of practical men, bears witness to the fact that free purging with bitartrate of potash, or by other members of this group, lessens the fluid in the cellular tissue and cavities of the body, while it often simultaneously removes coma, convulsions, and other symptoms due to the poisoned blood. It is
a treatment that must be adopted with caution; for it must be borne in mind, that free purging is weakening.

A brisk purgative frequently promotes free and abundant secretion from the kidneys, either when healthy or diseased; and herein we have, perhaps, further elucidation of the good effects of these remedies in Bright's disease.

Some member of this group, generally either sulphate of magnesia or phosphate of soda, is often given as an intestinal evacuant in fever; hence they are reputed to be febrifuge. But their action is due simply to the unloading of the bowels, since it is well known that constipation augments the preternatural fever heat.

For fever patients, Dr. Armstrong strongly recommended free purgation, to the extent of several evacuations daily, during the first few days, before exhaustion sets in. This treatment still finds just favour with many practical authorities, although it is not approved by Dr. Graves. It is considered that free purgation in scarlet fever prevents severe sore-throat, glandular swellings, discharges from the nose and ears, with many other disagreeable sequelæ.

In measles, purgatives must be given with caution, the bowels being generally irritable, and diarrhoea often present.

The salts of this group most frequently employed, are the bitartrate of potash, sulphate of magnesia, and phosphate of soda. This phosphate, well-nigh tasteless, may be given, unsuspected, to a little broth, to children.

The sulphates are common ingredients in purgative natural waters, and in this form are frequently taken in small doses in constipation or torpid liver. In obstinate constipation, a draught should be taken once or twice daily. Small doses, often repeated, with greater certainty than a single large dose; hence, when the bowels are tightly locked up, having resisted the action of a dose of Epsom salt, it is a good practice to give the same remedy in small and often-repeated quantities.

It should be mentioned that sulphate of potash should be given with some caution, for, although usually a safe and mild purgative, it is proved in some cases poisonous.

Rotherford, from his experiments with fasting dogs, finds that sulphate of soda is a powerful cholangue, not merely emptying the gall-bladder and biliary ducts, though actually increasing the flow of bile. Sulphate of potash and Rochelle salts he finds true cholagogues, whilst sulphate of soda is only a feeble stimulant. Strange to say, he finds that sulphate of mag-
nesia produces no effect on the liver. It is interesting to observe, that sulphate of soda is the chief ingredient in Carlsbad water, so largely used for its action on the liver.

On account of the low diffusion-power of these salts, very little passes into the blood, the greater part, especially when they purge, passing from the system with the faeces. Small doses, if they tarry long in the intestines, ultimately pass into the blood, and are separated by the kidneys. They are reputed to act as diuretics. The tartrates of this group are highly esteemed as excellent diuretics in Bright’s disease, and are often employed in doses short of purging. The tartrates and bitartrates are converted into carbonates, partly in the intestines, and partly in the blood. They thus lessen the acidity of the urine, or even render it alkaline. Except in the case of phosphate of soda, the action of these salts on the constituents of the urine, either in health or disease, has not yet been worked out.

As the action of phosphate of soda and of phosphoric acid appears to be nearly identical, we will speak of them conjointly; and for the account of their action, we must be indebted to Dr. Parkes’ classical work on the urine.

If Böcker’s experiments on his own person are to be accepted as conclusive, the effects of these substances are highly singular. He found that phosphoric acid always carried potash out with it, and that phosphate of soda changed its base, taking potash in its place.

Phosphate of soda, therefore, greatly lessens the quantity of potash in the body, and the acid would greatly diminish the amount of alkali in the blood, but for the singular fact observed by Böcker, that, while eliminating potash, both phosphoric acid and phosphate of soda caused a retention of chloride of sodium in the blood to such a degree, as actually to heighten the alkalinity of the body.

The effect of phosphate of soda is to lessen the urea in the urine, partly by the retarding effect it exercises on digestion, so limiting the supply of food to the system, and consequently diminishing the quantity of urea separated by the kidneys. But it appears that this diminution is due in part to lessened metamorphosis of tissue, since, even when the salt is given on an empty stomach, the urea is still diminished. Phosphoric acid neither lessens the urea, nor affects the digestion.

For further information regarding the influence of these two medicines on the urine, we must refer our readers to Dr. Parkes’ work.
NITRATES.

NITRATE OF POTASH, NITRATE OF SODA.

These salts possess a very high diffusion-power, and are freely soluble in water. They lower the temperature of water, an effect very considerably increased if sal ammoniac is mixed with the nitre. This combination of salts used to be applied to the skin as a refrigerator, though now it is rarely so employed, and is to be especially avoided if the skin is broken, as solutions of the nitrate are very irritating to the wounds. Ice is in every way a better refrigerator.

The inhalation of the fumes of burnt nitre paper will sometimes avert the paroxysm of asthma. According to Dr. Hyde Salter this treatment is most effectual in pure uncomplicated asthma. He points out that the paper must not imbibe too much nor too little nitre. If the bibulous paper is too thin, it absorbs insufficient nitre; if too thick, it takes up excess of nitre, and the fumes are too carbonaceous, the paper burning too fast, with a sudden explosive flame. There should be no brown smoke, but clear white fumes. Red blotting paper of moderate thickness and loose texture is best. Dr. Salter gives the following directions for the manufacture of nitre-paper:—Dissolve four ounces of nitre in half a pint of boiling water; pour the liquid into a small waiter, and soak the paper; then drain and dry it. Cut it into pieces four inches square, and when required, burn one or two of these pieces, or a piece may be burnt nightly in the bedroom. The prepared paper must be kept in a dry place. In the Pharmacopoeia of the Throat Hospital, Dr. Morell Mackenzie gives the preparation of three papers of different strength; one made from a solution containing sixty grains, another forty grains, and the third thirty grains of nitre to an ounce of water. He directs the paper to be cut into pieces three inches long and half an inch broad, and one to six of these pieces to be used successively at each inhalation. The paper is burned in a jar, and the fumes inhaled by taking deep inspirations from the fuming vessel. Various substances may be added to the solution which appear in some instances to heighten the effect of the nitre, such as compound tincture of benzoin, spirits of camphor, oil of cassia, and tincture of sumbul. It is a singular circumstance, affording a marked example of the "caprice" of asthma, that a paper prepared with nitre only will relieve one patient, yet will utterly fail to relieve another, although a nitre paper prepared in a different manner may be quite successful. It must be borne in
mind, therefore, that although one kind of nitre paper has failed, it does not necessarily follow that another sort of nitre paper will also fail. Sometimes a thin paper fails where a thick one succeeds, or vice versa. It appears, indeed, that very slight differences in the mode of manufacture influence the therapeutic effects. Many quack papers said to contain other substances besides nitre, or besides nitre and chlorate of potash, often succeed admirably.

A considerable recent experience leads me to conclude that these papers would prove much more relieving if somewhat differently prepared, and if pieces were burned sufficiently large to fill the room with fumes. The most efficacious paper is made by dipping ordinary white blotting paper in a boiling saturated solution of nitrate of potash and chlorate of potash. Paper thus prepared burns with a flame. A large piece, the size of course depending on the dimensions of the room, often succeeds when other prepared papers fail. A piece ten inches square, and sometimes two or three pieces are required. When ordinary papers have failed, I have recently used in some cases with advantage a pastile compounded of two parts of nitre, one part of chlorate of potash, with two parts of lycopodium powder. My friend, Mr. William Murrell, is using with much success a thick paper soaked in a boiling saturated solution of nitre and chlorate of potash. This thick paper, made by the adhesion of six sheets during crystallization, contains, when dry, twice its own weight of salt, and a piece of paper six inches square, takes up nearly half an ounce of the mixed salt. Certain cases require a greater quantity of nitre smoke than others. I am convinced that the reason why papers appear in so many cases to fail, is that they are not adequately impregnated with nitre, and are consumed too sparingly.

The crystals of nitre have a cooling saline taste, and in acute inflammation of the throat are sometimes sucked, but other remedies are preferable.

These salts, it is thought, while undergoing solution in the stomach, will absorb heat, and cool this organ; but to be of any service in this way a sufficient quantity cannot be taken with safety. Ice or iced water is far more effectual.

In large doses the nitrates inflame the stomach. Even when taken for some time in moderate quantities, they considerably disorder digestion, producing nausea, vomiting, and a coated tongue; consequently their action must be carefully watched.

How the nitrates excite inflammation of the skin or stomach is not yet explained; for, if these tissues are soaked in solutions of
these salts, no other change takes place than occurs from the action of simple water.

From their high diffusion-power these salts speedily enter the circulation. Unless, indeed, large quantities are taken, they pass but a short way along the intestines, and, therefore, do not purge, and, indeed, so far as we know at present, exert little or no direct influence on either the small or large intestines.

Much conjecture has been hazarded regarding the action of the nitrates on the blood. It is well known that they prevent the coagulation of the fibrin in blood withdrawn from the body, or, when coagulated, dissolve it. Scherer, however, asserts that they will not dissolve the fibrin of inflammatory blood. These facts have led to the supposition that the nitrates may possess a like influence over fibrin in the circulation, and that they are indicated when this substance is in excess, as in inflammations and acute rheumatism. There is no proof, however, that the nitrates possess any such power; and, indeed, unless employed in considerable quantities, they exert very little influence upon fibrin out of the body. Hence it cannot be expected that after its dilution with the fluids of the circulation, harmless doses can in any way influence the fibrin of the blood. But, indeed, this notion is no longer tenable; for it has been ascertained that blood withdrawn from the body, both before and after the administration of nitrate of potash, contains in each case the same quantity of fibrin.

These salts are considered to be highly useful in acute rheumatism, and are supposed to protect the valves of the heart, or to restore them to their natural state when damaged by rheumatism—a supposition founded on a misapprehension of the morbid processes which lead to valvular contraction and incompetency. These structural changes, it was imagined, resulted from the depositions of fibrin on the surface of the valves, and the subsequent contraction of this substance rendered them shrunken and inefficient; the truth being that these changes in the valves are owing to lymph formed in their own substance. Occasionally, it is true, fibrin is deposited on thickened and roughened valves, but even this, as has just been pointed out, these salts can neither prevent nor remove.

While it must be admitted that these salts do not act in the way supposed, many high authorities consider that nitre mitigates and shortens an attack of rheumatism. The advocates of nitre administer it in large doses, freely diluted in water, giving as much as half an ounce to an ounce of the salt in the course of the day.
in lemonade or barley-water agreeably sweetened. The urine, it is said, becomes very abundant, when the fever declines, and the pains abate. At present there are no observations sufficiently exact to determine this point.

The same discrepancies of opinion prevail regarding the influence of the nitrates on acute inflammation.

Large doses produce pains in the stomach, with vomiting and diarrhoea, great weakness, faintings, loss of consciousness, and death. The same symptoms are witnessed in a minor degree, when less immoderate quantities are used. The patient becomes languid, disinclined to exert either body or mind, and the pulse is feeble and slow.

These salts readily pass from the body through the kidneys with the urine, and in their passage may irritate and inflame the urinary organs, and in large doses may even produce bloody urine.

Nitrate of potash has been recommended in the incontinence of urine of children.

The nitrates appear to increase temporarily the water and urea of the urine; ultimately, however, these both fall below their natural amount; hence the nitrates are mere eliminators of these substances.

In some quarters they enjoy a very high reputation as diuretics, and in certain cases appear to be of considerable service. Their diuretic action is well displayed in lumbago and chronic rheumatism; accompanied by scanty high-coloured urine, which becomes turbid on cooling. Ten grains of the salt dissolved in water, taken hourly or every two hours, in most cases, will soon increase the urine, rendering it clear and limpid, when the rheumatic pains generally decline.

CHLORATE OF POTASH.

Is many of its chemical properties Chlorate of Potash corresponds to the preceding group of nitrates; like them, endowed with a high diffusion-power, it differs in its sparing solubility.

A solution of the chlorate, used as a wash, is said to clean and stimulate foul ulcers; but other remedies are more effective.

This salt appears to increase the flow of the saliva, and, according to Hutchinson and others, to produce ulceration of the mucous membrane of the mouth. It is largely used in various affections of
CHLORATE OF POTASH.

the mouth, and is of signal service in mercurial and simple salivation, in ulcerative stomatitis and aphthæ. It is particularly useful in the ulceration of the edges of the gums, generally limited to one side of the mouth, affecting both the upper and lower jaws, also that part of the tongue and cheeks coming in contact with the ulcerated gums. Although not at all dangerous, it is often a very obstinate complaint, especially with adults, though children are most prone to it. The influence of the chlorate on this form of ulceration is almost magical; in one or two days it cleans the dirty-looking ulceration, and heals it in a day or two more. It is said to cure follicular and phagedenic ulceration like a charm. Dr. Lloyd Roberts says, that chlorate of potash may be taken internally, and used as a lotion for the teasing dryness of the mucous membrane of the throat left after diphtheria and scarlatina.

Dr. Leonard Sedgwick speaks highly of chlorate of potash in catarrh; he says, it quickly relieves stuffing of the nose, rawness of the throat, and thickness of voice. Taken early and frequently, it will stop many a cold. Eight or ten lozenges should be sucked in the twenty-four hours.

Some assert that the action of chlorate of potash, is simply local, and that its good effects are all due to its topical application.

Chlorate of soda is more soluble than chlorate of potash, and is said to be equally serviceable.

Chlorate of potash seems to produce but little effect on the stomach, unless taken in considerable quantities, when, like the nitrates, it inflames the mucous membrane, and produces both vomiting and diarrhœa. It is not employed in diseases of the stomach.

Owing to its high diffusion-power it passes readily into the blood, but owing to its slight solubility, a large quantity of this salt cannot find its way quickly into this fluid.

Dr. Kent Spender recommends large doses of it in phthisis, and lets the patient drink, ad libitum, a concentrated solution. This treatment, he says, checks diarrhœa and prolongs life. He recommends, also, large doses in the stomatitis of children.

As this salt easily parts with its oxygen, it was at one time supposed, that by yielding up this element to the blood and tissues, it might promote oxidation; but careful observations have conclusively proved the erroneousness of this view, as the salt can be obtained unaltered from the urine.

It has been recommended in facial neuralgia.

Its influence, if any, on the organs of the body is unknown.
ALUM, DRIED ALUM, ACETATE OF ALUMINA.

These salts are employed almost exclusively as topical astringents. They act as astringents in virtue, it is supposed, of their capacity to unite with albumen, and coagulate it.

They produce no effect on the entire skin; but when applied to sores, they coagulate the albumen of the pus, mucus, or of the tissues themselves, thus coating the sore with an impermeable layer, and protecting it from the action of the air. Like the salts of many other metals, alum may be used to form this protective coating. These agents have a further action than that just described; for, as just stated, they act as astringents by combining with and condensing the tissues. The topical application of alum contracts the blood-vessels, and lessens the supply of blood to a sore. By constricting the blood-vessels, and by condensing the tissues themselves, the members of this group will depress the vital action of a sore, and so check the secretion of mucus or pus. For this purpose alum is applied dry, or in solution, to relaxed and abundantly secreting sores.

In such cases other astringents generally succeed better.

Alum solutions may be applied to free-weeping eczematous surfaces to check profuse discharge, and to bring the eruption into a condition suited for other remedies. Like other astringents, alum is generally insufficient to heal eczema.

Owing to their property of condensing tissues and coagulating albumen, these substances may be used to control the milder forms of bleeding; and alum in an emergency has the advantage of being almost always at hand. In severe haemorrhage other treatment is of course required, but to check the bleeding of the gums, of piles, leech-bites or slight cuts, alum dusted on the affected part, first wiping it dry, or applied in a pretty strong solution, is generally sufficient. In epistaxis alum may be injected into the nose, or may be snuffed up as the dried powder.

In strong solutions (six grains to the ounce) alum has been recommended, though it is little used, in prolapsed anus or uterus.

In vulvitis of children, few remedies can be compared to alum, used in the strength of sixty grains to a pint of water, and frequently applied, every hour or oftener, by the help of a syringe, to the secreting service, first washing away the pus with warm water and then applying between the parts a piece of lint soaked in the lotion. Although generally successful, this treatment sometimes
ALUM.

fails to check this troublesome complaint, even when it cannot be traced to any irritation, as worms, constipation or teething. In some cases the discharge, besides coming from the surface of the vulvae, is poured out from the lining membrane of the vagina, when it is necessary to take care to pass the injection up the vagina. Want of attention to this fact explains the occasional failure of treatment and apparent obstinacy of the case. The solution just recommended may sometimes prove too strong, increasing both the inflammation and the discharge, when, of course, its strength must be reduced.

Similar solutions are useful in chronic otorrhœa, but alum is far inferior to glycerine of tannic acid.

A solution of alum, of the strength of eight grains to the ounce of water, is an excellent solution in simple, and especially in purulent, ophthalmia of children. The conjunctiva must be well washed with it every quarter of an hour, for success depends on the frequency of the application. Simple water, as frequently applied, is a useful, although inferior, substitute.

Few substances are as useful as alum in certain diseases of the mouth. Thus, in simple ulcerative stomatitis—that form which, beginning at the edge of the gums, and never spreading far beyond, is often limited or most marked over one half of the jaw—gives way in a few days to dried alum applied with the finger many times a day. It is not merely astringent; but, from its attraction for water (which it has lost by being heated), it is also slightly escharotic, and gently stimulating to the indolent tissues. Ulcers like these, produce ulceration by contact with the contiguous mucous membrane of the tongue or cheek.

Aphthous ulcers, showing but little disposition to heal, or indeed, tending to spread, may be touched with dried alum a few times a day with the best effect. Usually, no such application is required, and chloride of potash and perhaps a purgative are all that is necessary. Other forms of ulceration may be treated in the same way. Alum is recommended to be applied to the throat, either dry or in solution, in simple or scarlatinal sore-throat, in tonsilitis, and even diphtheria. Alum being now little used in any of these cases, its advocates, perhaps, exaggerated its good effects.

It is asserted that ten grains of powdered alum, placed dry on the tongue, will sometimes arrest a paroxysm of asthma.

Gargles of alum are more useful in chronic inflammations of the throat, when the mucous membrane is relaxed and covered with a grey mucus or with pus, but although alum is highly useful, the glycerine of tannin is a surer and less disagreeable application.
Many cases of chronic ozaena speedily yield to a solution of alum, a drachm to the pint, applied by an irrigating tube. About a foot above the patient's head is a jug containing the solution, and in this jug, one end of an elastic tube is placed. The solution is then sucked or manipulated into the tube, when the free end is placed in one nostril, and the ala of the nose pressed on it to secure it in position. Here we have a syphon, and the fluid runs from the vessel through the tube, up one nostril, round the septum, and down the other nostril, washing the sinuosities of the nasal membrane most thoroughly. The head is bent a little forward, and the mouth must be kept open, and if properly managed, none of the solution escapes by the mouth, or runs down the throat. Even when this irrigation fails to eradicate the disease, it checks the discharge, and removes the offensive smell depending on decomposing matters. Some prefer acetate of alumina as more efficient in correcting the fector than simple alum. If the fector persist, the application should be used twice a day, or oftener. If the fector is very great, a weak solution of permanganate of potash or carbolic acid may be used. A wash of a solution of glycerine of tannin in water is often useful.

A strong solution of alum is sometimes useful in pruritus vulvae.

Ten grains of alum to the ounce of water is used in the form of spray for chronic coughs and hoarseness.

Alum behaves in the stomach, as on the denuded skin; it coagulates the albumen, and constrings the mucous membrane; and it hinders digestion by each of these processes. It will often check bleeding from the stomach, but it is inferior to other astringents. It sometimes controls vomiting. In six to ten-grain doses it sometimes checks obstinate forms of vomiting, occurring in phthisical patients, especially that form excited by coughing.

Dr. Meigs speaks very highly of alum emetics for children, and he prefers it to other emetics in croup. He gives a drachm in honey or syrup every ten or fifteen minutes, till the child vomits, but a second dose is not generally required. Alum, he says, does not weaken, and does not lose its effects so soon as antimony or ipecacuanha. Dr. Meigs strongly advocates the employment of emetics in true croup, and thinks that many lives might be saved were they more commonly used and repeated oftener. In severe cases, he produces vomiting three or four times a day or even oftener. This treatment must be begun early.

Alum checks secretion from the mucous membrane of the intestines, and constipates by rendering the contents of the canal more
compact and more difficult of propulsion. Alum is sometimes used
in both acute and chronic diarrhoea, and it has proved useful in the
diarrhoea of typhoid fever and of dysentery.

It is uncertain how far the members of this group pass down the
intestinal canal, but probably not far, without being decomposed
and rendered inert. Alum, extolled by many high authorities in
lead colic, is said to remove the spasm and the pain, and at the
same time, to unload the bowels more speedily and certainly than
other remedies. It is given in considerable quantities, as much as
ten grains every hour. The few trials I have given this treatment
have not been rewarded with success.

The long-continued administration of the substances, produces
loss of appetite, constipation, and at last, chronic catarrh of the
stomach and intestines. Large doses cause gastro-enteritis at
once, with its usual symptoms.

When the acute stage of whooping-cough is over, and when
there is no fever nor inflammation of the lungs, nor any irritation
of the teeth, alum is an excellent remedy. In fact, it is useful only
in uncomplicated cases; but in these, few remedies give more
satisfactory results. It speedily reduces the violence and fre-
cuency of the paroxysms, often, indeed, at once lessening their
recurrence one-half, and, in fact, it often straightway soon cures.

Alum checks the troublesome vomiting so often met with in
whooping-cough, and much improves the appetite—effects observed
sometimes even before the cough undergoes any diminution. Con-
stipation rarely happens.

Alum may control whooping-cough simply by its astringent ac-
tion on the throat, and in support of this conjecture, other astringent
substances, as tannin, etc., are likewise useful (see Tannin),
even when applied to the throat only. Alum itself, acts best when
mixed with some tenacious fluid, as gum, glycerine, or honey, so
that the solution is made to cling for some time about the fauces.

The alum should be given in doses varying from two to six
grains every three hours, or it may be given hourly in corre-
sponding doses. Alum is generally beneficial in the paroxysmal
cough, which may continue a long time after the characteristic
whoop has disappeared, and in other coughs having the same
spasmodic character.

It is unknown how much of these substances is absorbed by the
intestines, and conveyed into the blood, but probably not a large
quantity. The chief part escapes by the faeces, which the alum is
said to make firmer and odourless.
Dr. Justin finds that a grain and a half of sulphate of alumina, one grain of bismuth, with enough extract of gentian to form a pill, to be taken night and morning, is useful in chronic constipation.

It is doubtful if alum has much effect as a remote astringent to check bleeding from the lungs, uterus, kidneys, etc., and to check profuse sweating and discharges. Alum injections, one drachm to a pint, employed in the manner directed for the injection of carbonate of soda (see Potash Group), are very useful to check leukorrheal discharges. The alum solution constricts the parts, and sometimes causes severe cramp-like pains in the belly.

PREPARATIONS OF IRON.

Iron is a constant and necessary constituent of the body, and must be regarded as an important food.

None of the preparations of this metal applied to the skin produce any change in it. Several of the soluble salts combine with albumen on raw surfaces, sores, and mucous membrane, condensing the tissues, and constringing the blood-vessels; and, besides this astringent action, they at the same time act as stimulants or irritants, according to the strength of the application or the condition of the sore.

The organic salts are less astringent and stimulating than the inorganic; while of the inorganic, the ferric salts possess these properties in a greater degree than the ferrous salts.

Several compounds of iron may be employed as astringents and stimulants; but, when a stimulant is required, other metallic preparations are preferable. The sulphate, and especially the ferric chloride, solid or in solution, are employed to check haemorrhage. The chloride is a powerful styptic, and readily controls the bleeding from small vessels, but it has the disadvantage of irritating the surface of wounds, and preventing union by first intention. Carbolic acid will probably supersede perchloride of iron; for this acid, properly employed, does not hinder the immediate closure of a wound.

The soluble preparations of iron have a metallic astringent taste, and act on the mucous membrane of the mouth as on the abraded skin.

Iron salts are never employed as topical agents in diseases of the mouth; and, as they often discolour the teeth and stain the
tongue black, especially when the breath contains sulphuretted hydrogen gas, arising from carious teeth, etc., they may be taken through a quill, glass tube, or reed. They are conveniently given in the form of pill.

The effects of these salts in the stomach, differ according to their properties. Some are astringent, stimulating, and in large doses irritating to the mucous membrane, as the pernitrate, the perchloride, the iodide, and the sulphate, while the remaining preparations with respect to this membrane are almost inert. If the stomach is irritable, bland preparations of iron must be chosen. It is often stated that chlorotic or anæmic patients with weak stomachs must be treated with bland unirritating preparations of iron. In some instances, no doubt, the astringent preparations are unsuited, but in most cases, they produce far better results than the bland forms of iron. A pale, flabby, broad, and teeth-indentened tongue, indicates almost always the need of large doses of the astringent preparations of iron. Thirty drops of the tincture, or three or four grains of the sulphate, may be given three times a day. Weak anæmic girls, suffering from pain and vomiting after food, with perhaps tenderness of the skin at the epigastrium, are often effectively treated by large quantities of the tincture of the perchloride.

The soluble preparations of iron combine with the albumen in the stomach, while the insoluble preparations are dissolved to a variable extent in the acids of the gastric juice. The reduced iron is pretty freely soluble in the gastric juice, but gives off hydrogen gas, or, if the preparation is impure and contains a sulphide, sulphuretted hydrogen; either gas causing eructations, and the sulphuretted hydrogen a very disagreeable taste. The peroxide, if strongly heated, is soluble in the stomach with great difficulty; the more slightly heated forms should therefore be preferred. The carbonate and the magnetic oxide are more easily dissolved than the sesquioxide.

The metallic preparations and the proto-salts, after undergoing solution, become converted, either in the stomach or duodenum, into per-salts, very likely by means of the oxygen of the air swallowed with the saliva.

The astringent preparations, as the perchloride, acetate, pernitrate, or sulphate, are employed to check hemorrhage from the stomach. In proportion to their astringency, these preparations confine the bowels; but to this rule there are exceptions. As soon after quitting the stomach they are changed into an insoluble and
inert sulphide, their astringency must be exerted on the upper part of the small intestines.

The sulphate, acetate, perchloride, pernitrate, in common with other astringent metallic preparations, may be given in diarrhoea. The pernitrate, much praised in the chronic forms of diarrhoea, is probably an efficient preparation.

Owing to the astringency of iron salts, each dose should be combined with some laxative, as a quarter of a grain of aloes, a few grains to half a drachm of sulphate of magnesia, soda, or potash. Some authorities consider that the combination of iron with a laxative markedly promotes the absorption of the iron.

In their course along the intestines, iron salts, as we have said, are changed into a sulphide of the metal, giving to the faeces a black and characteristic appearance. A very small quantity of an iron salt is sufficient to stain the motions deeply, and to keep them darkened for several days after its discontinuance. Iron salts have no direct influence on the pancreatic or biliary secretions.

In the treatment of the small thread-worms infesting the rectum, the tincture or the sesquichloride, in the strength of a drachm of the tincture to half a pint of water, is an efficient injection; it coagulates the albumen, and destroys the thread-worms.

It is an interesting and important question—How much iron is absorbed into the blood? Probably but little of the insoluble forms, as the quantity of acid in the stomach is not adequate to dissolve them; and as regards the soluble preparations, it is hard to say how much gets into the blood. The increase of the iron in the urine being very slight, after administering a soluble iron salt, it has been concluded that very little passes into the blood; and the fact that almost all the iron taken by the mouth may be re-obtained from the faeces, seems to strengthen this view; but an extended knowledge concerning the elimination of metals from the body shows this conclusion to be fallacious. Probably most metals, but certainly iron, are eliminated from the system through the intestines, and make their exit with the faeces; for, when iron salts are injected into the blood, almost all the metal is ultimately recoverable from the faeces. That much more is absorbed than is appropriated by the blood corpuscles, is shown by the coloration iron produces in all the albuminous secretions of the body, the fluids bathing the various cavities becoming coloured reddish-brown.

Oxide of iron possesses an ozonizing power. "Thus, a spot of iron mould, i.e., iron oxide, on linen, will, in time, destroy the
fabric. From a similar cause a fleck of rust on a bright surface of steel will steadily enlarge and deepen." (Horatio Wood). Hence it is argued that the iron of the blood corpuscles acts in the same way, converting oxygen into ozone, thus promoting oxidation; ozone being the active form of oxygen in the system.

In the treatment of anaemia, many physicians advocate the use of large doses of iron salts; others, instancing the beneficial effects of ferruginous waters, strenuously maintain that all the good effects are obtainable from very small doses. In many instances, no doubt, anaemia is curable by the employment of small quantities of iron, but it is likewise certain that large quantities, when they can be borne, act far more promptly. Half-drachm doses of the tincture, or six to eight grains of the sulphate, may be given two or three times daily. The following pill, originally employed by Blaud, and strongly recommended by Niemeyer, is, no doubt, very efficacious; but the iron without the carbonate appears to answer as well:—sulphate of iron, carbonate of potash, of each half an ounce; tragacanth, as much as is required to make ninety-six pills; three to be taken three times a day, an additional pill being added daily.

A convenient pill is made with five grains of the dried sulphate of iron, equal to about nine grains of the ordinary sulphate, with a drop of syrup. This sets into a firm pill, easily dissolved in the stomach; a small quantity of extract of belladonna may be added to prevent constipation, but when given alone this pill seldom constipates. Large doses of iron, while rarely upsetting the stomach, or producing headache, often cure anaemia with astonishing rapidity.

The experiments of Drs. Cutler and Bradford, conducted after Malassez’s method of counting the blood corpuscles, show that iron does not increase the number of blood corpuscles in health, though it does in anaemia.

In anaemia, iron salts possess other important properties than their influence over the growth of the corpuscles. They act bracingly on the relaxed mucous membrane of the digestive canal, and probably in this way tend to restore its functions. Moreover, it is highly probable that the iron, after its entrance into the blood, exerts an influence beyond that of merely increasing the quantity of red corpuscles; hence iron salts are useful not only as a food to promote the formation of blood discs, but likewise on account of their beneficial influence on the tissues. Iron, therefore, must be regarded as a food, and also as an important curative agent. Where it is desired to benefit tonically the mucous membrane of
the digestive canal and the tissues, large quantities of the soluble astringent preparations should be administered.

The experience of physicians of the last generation accorded with these views, and so does that of many highly practical men of the present day; but, on the introduction of the bland and almost tasteless preparations of iron, they were assumed to be in every way superior to the astringent forms. Their comparative tastelessness is certainly in their favour. It used to be considered, mainly on speculative grounds, that the astringent preparations must disorder digestion. These theoretical, and as I believe unfounded, opinions still prevail. In a certain class of anaemic patients, the astringent preparations, even in large doses, are preferable, and a large share of their efficacy is due to their direct action on the mucous membrane of the stomach and intestines, and on the organs which stud them. It has been experimentally shown that sulphate of iron does not check the solvent action of the gastric juice, and experience justifies the conclusion that in weak anaemic patients it does not lessen, but rather increases the formation of this secretion.

If the digestive mucous membrane is in an irritable state, then, as has been previously pointed out, the astringent iron preparations, in full doses, may do harm.

Individual peculiarities must be taken into account. Some persons cannot take iron in any form, not even a single dose of a weak ferruginous water. Iron upsets the digestive organs of some patients, or it induces fulness and pain in the head; others again take it not only without inconvenience, but with great benefit.

It is sometimes advisable to humour the stomach by changing occasionally the preparation of iron.

According to most authorities, the iron in the blood combines with albumen. Bernard thinks it exists in the blood as a protoside. Under certain conditions, iron increases the quantity of blood corpuscles, and in this way improves the general nutrition of the body.

Thus, iron salts are useful "in maladies attended with defect of the red corpuscles; as in anaemia, with or without irregularity of the uterine functions (chlorosis, amenorrhœa, dysmenorrhœa, and menorrhagia), whether occurring spontaneously and without any obvious cause, or resulting from profuse discharges (hæmorrhages, fluxes, as leucorrhœa, etc.), or from food defective in either quantity or quality, and from deficiency of light and pure air. If con-
joined with sufficient nourishing food, pure air, abundance of light, and, when necessary, the employment of purgatives, iron cures these anaemic cases. But, when the anæmia or hydræmia is dependent on organic disease, as cancer, granular degeneration of the kidney, or morbis cordis, iron at best is only palliative.

"In some chronic affections of the nervous system, iron is of great benefit. Chorea, in a large number of cases, may be relieved, and oftentimes cured, by chalybeates, though in general arsenic usually cures chorea much more speedily and certainly. Cases, however, sometimes occur in which the chalybeates are preferable, as where anæmia co-exists. Epilepsy and hysteria are sometimes benefited by a course of iron, especially when they are attended with anæmia or uterine obstructions." (Pereira.)

The long-continued use of iron is highly beneficial in scrofula and rickets.

Iron-salts are commonly administered in amenorrhœa; as there is usually much anæmia conjoined with this affection, the iron, in remedying the anæmia, assists in restoring the uterine functions.

It must be remembered that anæmia is dependent, not on deficiency in the supply of iron, but on its scanty assimilation; hence iron must be conjoined with well-regulated hygienic conditions, otherwise it does comparatively little good.

In a case of neuralgia with anæmia when no organic cause can be discovered, salts of iron are especially recommended, although it is true their action is uncertain. The huge doses of these salts sometimes given, especially of the sesquioxide, are probably injurious, and exert less influence over the disease than smaller ones.

Large doses of perchloride of iron are of great benefit in diphtheria. It is a good plan to use the solution rather than the tincture, and to give the medicine very frequently—every hour, or even oftener. It is uncertain whether the effects on the throat depend on the topical action of the medicine, or whether they take place after its entrance into the blood. The solution should be frequently painted on the throat, taking great pains to apply it very gently, lest by increasing the inflammation it may do more harm than good; this process appears to arrest the spread of the disease, and it is said to maintain the strength of the patient. The solution may be applied with the atomizer, so as to penetrate into the trachea and bronchial tubes. Large hourly doses of perchloride have been found of great use in erysipelas, though with some observers this treatment has altogether failed, a result perhaps due to the long intervals between the doses. The frequent repeti-
tion of the medicine is one of the most necessary conditions of success.

In the so-called hysteria of middle-aged women, occurring especially at the cessation of menstruation, they often experience distressing fluttering of the heart, a sensation of fulness of the head, with heat and weight on the vertex, frequent flushings of the face, and "hot and cold perspirations." This combination of symptoms is generally removed by considerable doses of the sesquichloride of iron, given three times a day. If the symptoms are limited to the head and face, other remedies are more successful, as nux vomica, opium, belladona, bromide of potassium, nitrite of amyl.

Salts of iron sometimes excite irritation of the bladder, with frequent desire to pass water, which may contain a considerable quantity of mucus. With children they may cause nocturnal incontinence of urine, yet iron salts not unfrequently cure this troublesome complaint, even when not dependent on worms in the rectum, or other irritation. Astringent preparations of iron are employed to arrest haemorrhages from the lungs and kidneys; the acetate is the best preparation, and the following is stated to be a very effectual way to administer it:—Add sufficient salt of iron to water to make it taste distinctly but not disagreeably, and let the patient constantly sip this solution. A sufficient quantity can thus be taken without exciting nausea or disgust; indeed, it is often liked.

Salts of iron appear to lessen profuse secretions, such as occur in chronic bronchitis and leucorrhrea. Dr. Graves gave the compound iron mixture, in doses of one or two fluid drachms, to check excessive bronchial secretion.

The iodide of iron may be given where both iron and iodide are indicated, for instance in syphilis complicated with anaemia. It is a question of much interest whether it is better to administer these two agents separately or combined in the iodide of iron, and whether they continue in combination in their course through the stomach and circulation, or whether the salt is decomposed. Viewing this question simply from a chemical point of view, it would seem that an iodide of sodium and albuminate of iron must be formed in the stomach or blood. Some observations, made I believe, by Bernard, throw much doubt on this conclusion; for it was found that if iodide of potassium and a salt of iron were injected, into the blood, no iron appeared in the saliva, but if an iodide of iron was injected, then both iodide and iron were found in this secretion.

The iron of the effete red corpuscles probably escapes with the bile; and when iron salts are swallowed, this fluid contains an ex-
cess of the metal. This, therefore, is one way by which iron may be separated from the body.

Its further separation takes place by means of the albuminous secretion of membranes; and as iron, like most other metals, very probably exists in the body only as an albuminate, it has been conjectured that it can be separated only by the secretions containing albumen; and certain facts and considerations favour this view. When iron is injected into the blood, much of it reappears in a short time on the surfaces yielding an albuminous secretion, as the mucous membrane of the intestines, of the bronchial tubes, of the gall-bladder, of the urinary bladder, and on the serous membranes, as the pericardium, peritoneum, and pleura. A small quantity escapes with the urine; but whether excreted by the kidneys, or separated by the mucous membrane lining the urinary passage, is uncertain. Some maintain that it is separated by the mucous membrane, and in support of this view it is urged that, when the iron of the urine is much increased, irritation of the mucous membrane always sets in, as is shown by the frequent desire to make water, and by the excess of mucus in the urine.

To Dr. Barnes we are indebted for having suggested the injection of perchloride of iron into the uterus in grave cases of flooding after delivery. In such cases, obstetricians are well-nigh agreed that this procedure is effective and life-saving. Dr. Barnes recommends four ounces of the liquor ferri perchloride mixed with twelve of water, to be slowly injected into the uterus with a Higginson's syringe, furnished with a long uterine tube, taking care to avoid the introduction of air.

In chronic uterine catarrh with clear white-of-egg-looking discharge issuing from a patulous uterus, Dr. Lloyd Roberts recommends the interior of the organ to be swabbed with a solution compound, one part of perchloride of iron to four of water; or the injection of a few drops of the solution.

The tincture of the perchloride of iron, in the proportion of half a drachm to half a pint of water, with a drachm of laudanum, makes a capital injection for gonorrhoea or gleet, often speedily checking the discharge, and easing the pain on micturition. The following injection is useful:—Sulphate of iron, twelve grains, tincture of opium, half an ounce; water, eight ounces, use three times a day.

The syrup of the phosphate of iron is a good form, if there are any indications for the employment of phosphoric acid. (See Phosphate of Lime).
NITRATE OF BISMUTH, CARBONATE OF BISMUTH.

These powders are commonly used as harmless cosmetics; they are useful in intertrigo, and sometimes in eczema, as dusting powder; but in eczema other remedies are to be preferred.

Applied to the broken or unbroken skin, these substances, being insoluble in any fluid they may then meet with, are not absorbed.

Trousseau employed equal parts of bismuth and Venetian calc in chronic non-syphilitic oæna, ordering the patient, after clearing the nasal passages by strongly blowing the nose, to snuff up some of this powder. He, however, prefers mercurial powders. (See Mercury).

Being insoluble, they are tasteless, but they sometimes occasion a disagreeable sensation of roughness, and sometimes blacken the tongue. This rough taste may be covered in a great degree by administering the drug in milk.

Little is known at present of the changes these medicines undergo, and of their behaviour in the stomach. Whether they are dissolved or not, or whether their efficacy depends on physical or chemical properties, are questions yet unsolved.

In many diseases of the stomach, these preparations, especially the nitrate, are very valuable, easing the pain incident to many affections of this organ, whether depending on organic or so-called functional disease. In cancer, chronic ulcers, and chronic inflammation of the stomach, bismuth is often serviceable, and is especially useful in the chronic gastritis of drunkards, subduing the pain, checking the vomiting, and enabling the stomach to tolerate food. It is also useful in gastrodynia, and cramp of the stomach. Many forms of vomiting in children, and notably that kind depending on acute or chronic catarrh of the stomach, yield speedily to bismuth. The various forms of pyrosis, whether acid, alkaline, or neutral, are very amenable to this drug, although our limited knowledge concerning the causes of this form of indigestion fails to enable us to lay down precise rules respecting the particular form of it most benefited by bismuth.

Dr. Graves treated acidity of the stomach successfully with nitrate of bismuth, and experience confirms his recommendation. He generally mixed it with opium or morphia, and sometimes magnesia. Flatulent dyspepsia, in some of its forms, yields more
or less to bismuth; and it is well sometimes to mix it with an equal quantity of vegetable charcoal.

These remedies often succeed in some forms of chronic diarrhoea, especially when other drugs fail, in the exhausting purging of phthisis. It is necessary to give as much as half a drachm to a drachm of the nitrate several times a day, and this large quantity, taken with milk, does not disturb the stomach. It often subdues intractable diarrhoea, effecting occasionally so great an improvement in the general health, that patients whose speedy death seemed inevitable rally and recover.

In the various forms of diarrhoea peculiar to young children, bismuth, in large doses, is freely used on the continent. Thirty to sixty grains hourly are recommended, milk being at the same time withheld. Much smaller doses, however, are often useful, and may be given with milk: a grain hourly is very efficacious, and the addition of a sixth of a grain of grey powder often enhances its good effects.

Bismuth preparations are not employed to act on the remote organs of the body.

A bismuth injection consisting of bismuth, half an ounce, glycerine, half an ounce, water, three ounces, is very useful in gonorrhoea, especially in its chronic state, and sometimes proves serviceable in gleet.

The chief part, if not all the bismuth swallowed, is evacuated with the faeces. A portion, indeed, may be absorbed, but the quantity entering the blood is probably extremely small.

LEAD SALTS.

Lead added to albuminous fluids, forms a precipitate composed of albuminate of lead. Like other metals, the soluble salts of this group, when applied to the abraded skin, or to sores, or to mucous membranes, coat them with an impermeable air-proof covering; if, however, a protecting covering is required, other metals are generally employed. Any excess of lead solution, after combination with the albuminous part of the secretion, will unite with the tissues themselves, in which manner, probably, lead salts condense these structures, and constringe the blood-vessels. The soluble lead salts are used as lotions to unhealthy and over-secreting sores, and to eczematous eruptions; lead lotions in some forms of eczema.
being very useful. When there is much inflammation, and when the surface is raw and weeps copiously, a lead lotion allays inflammation, checks the discharge, and quells the itching, burning, and tingling, so often accompanying eczema. Two or three drachms of liquor plumbi in ten ounces of water are generally sufficient; but a stronger lotion, consisting of two ounces of liquor plumbi, two ounces of glycerine, and four ounces of water, is sometimes more successful. When the inflammation is great, and the weeping abundant, the rash must be constantly covered with rags soaked in the lotion. In some cases it is useful to apply a poultice at night, and the lotion during the day. The stronger lotion is especially useful in diffused eczema, without weeping, but with excessive itching and tingling, and the diseased skin should be sponged with the lotion several times a day. A weak alkaline, or a sulphur bath greatly assists the action of the lotion. The fluid oozing so abundantly in eczema being strongly alkaline, the property of these lotions to check this discharge may be owing to their weak alkaline reaction (vide the Chapter on the Topical Influence of Acids and Alkalies on the Secretions). The stronger lotion very effectually allays the itching of pityriasis. Lead lotions occasionally ease the itching of urticaria.

A lead lotion is often of great service in pruritis pudendi, especially when the mucous membrane is red and excoriated. A weak lotion sometimes fails where a strong one succeeds. It may be necessary to use equal parts of liquor plumbi and glycerine, an application which may excite a little very temporary smarting. When pruritis pudendi depends on ascarides, haemorrhoids, or a tumour in the urethral passage, it is obvious that these applications are useless.

A lotion of one part of liquor plumbi, with one or two parts of glycerine, applied warm after the crusts have been entirely removed, is useful in the milder forms of lupus.

While lead salts have many properties in common with those of other metals, they are distinguished by their unirritating, soothing character, whence they are used only as astringent and calming applications. The soluble lead preparations may be used to check bleeding from small vessels; but other astringents are more effective.

Solutions of the acetate and diacetate are employed as injections and washes in chronic otorrhoea and vulvitis of children. They

* When liquor plumbi is mentioned, we refer to the strong solution.
LEAD SALTS.

lessen the production of pus, and ease pain, by virtue of their astrigency and their soothing qualities. They are of most use when the acute stage has just subsided, the tissues remaining irritable and painful. In the later stages stronger astringents are needed.

Bland, unirritating plasters made of lead are in common use.

These plasters, and lead applications generally, are sometimes objectionable, owing to the black discolouration they produce from the formation of the black sulphide, with the sulphuretted hydrogen gas evolved by the decomposition of the discharges.

A stout plaster often relieves pain in the loins, due to weakness. Burgundy pitch on leather, is generally used, but it is very liable to produce a crop of itching papules, which may spread over the greater part of the body, while lead plaster, though somewhat less adhesive, is comparatively free from this objection. Plasters sometimes relieve back pains due to uterine disease, or piles.

For sweating feet, Hebra employs an ointment composed of equal parts of lead plaster and linseed oil spread on linen, and wrapped round the feet, renewing the application every third day for nine days.

The same ointment applied on soft linen twice daily is sometimes invaluable in the subacute stage of eczema.

In ulceration and sloughing of the cornea, lead washes must be avoided, lest a white compound become deposited in the structures of the ulcer, leaving a permanent opacity.

Mr. Alfred Aspland recommends the local application of white paint for burns. He claims that it relieves pain in two minutes.

Lead injections are sometimes employed in gonorrhoea, gleet, and leucorrhoea.

Lead may be absorbed by the skin in quantity sufficient to produce lead poisoning, entering the blood probably as an albuminate, which is soluble in weak acids and alkalies. Lead poisoning occurs only when the solutions are applied continuously to large raw surfaces; moreover, this remote possibility should not in any way inhibit the use of lead lotions.

Insoluble lead salts are tasteless; the soluble have a sweetish acid and astringent taste.

The soluble preparations are astringent to the mucous membrane of the mouth, and combine with the albuminous substances they meet with there.

That portion of the soluble compounds of lead, which escapes combination with albumen in the mouth, is converted into an albuminate in the stomach.
The soluble lead preparations are sometimes used in hæmatemesis, and have been recommended to check pyrosis.

Albuminate of lead in the intestines is probably speedily decomposed into a sulphide of lead, an insoluble and inert compound. The soluble salts act powerfully as astringents of the intestines, and cause constipation; they control many forms of diarrhœa, even that dependent on disease of the lower part of the small or even of the large intestine.

The effects of lead on the parts of the intestines distant from the stomach and duodenum, can be manifested only through the nervous system; and we know the intimate sympathy existing between the different parts of this canal.

In summer diarrhœa, a few grains of the acetate with a small dose of morphia is a sure and speedy remedy.

The acetate has been recommended in cholera, especially in its early stages. In the purging from dysentery and typhoid fever, and from tubercular disease of the intestines, few remedies are so useful. The acetate should then be combined with opium.

It increases the efficacy of a starch injection, used to check various forms of diarrhœa; and it may be used for a similar purpose as a suppository.

In large doses, the acetate acts as a weak irritant poison, but the symptoms it produces differ from those of other irritants, chiefly by constipating instead of purging.

It is by no means common to meet with a case of acute poisoning with lead salts, and even the most soluble salts rarely cause death.

Acute poisoning by the acetate induces the following symptoms:—Dry burning sensation in the throat, thirst, vomiting, colic (the pain of which is generally relieved by firm pressure), tenderness of the abdomen, obstinate constipation, dark slate-colour motions from the presence of plumbic sulphide, great prostration of strength, cramps of the extremities, cold sweats, giddiness, numbness, and even paralysis of the lower limbs; sometimes coma; and high-coloured scanty urine. In one case, it is reported that in less than five hours, the extensor muscles of the extremities became paralyzed, and the flexors rigidly contracted. The sub-acetate is even more powerful than the acetate. The carbonate has no irritant action.

The treatment of acute poisoning is to promote vomiting by lukewarm drinks, to give sulphate of soda, or sulphate of magnesia, or fresh precipitated sulphide of iron, which is rarely at
LEAD SALTS.

hand; the stomach-pump should be used, and milk, with white of egg, may be given with advantage.

Small, nay, even minute quantities, taken for a long time, will produce chronic lead poisoning, which may occur in various ways, owing to the manifold uses of lead compounds. Oxide of lead is used to sweeten wines, the soluble salts are used as hair-dyes, and wafers are often coloured with red lead. In grinding the carbonate, the basis of all paints, unless great care is taken, the finer particles are inhaled. Snuff is sometimes adulterated with lead, and sufficient may be snuffed into the system to produce chronic poisoning. Dr. Garrod has lately narrated an instructive case of chronic lead poisoning, through the decomposition of the leaden envelope of a packet of snuff. Painters become poisoned by eating their meals with unwashed hands, and so introducing lead into the system. Drinking-water sometimes becomes contaminated with lead dissolved from the lining of tanks. Certain conditions of the water either favour or retard the solution of lead. Thus, pure water, and waters containing carbonic acid, carbonate of lime, and sulphate of lime, act but little on lead. But, on the other hand, waters containing much oxygen, organic matters, nitrites, nitrates, and chlorides, act freely on this metal. Carbonic acid is very protective of lead; it crusts the metal with an insoluble covering of carbonate, and protects it from the further action of the water.

A very small quantity of lead in water is adequate to produce all or some of the symptoms of lead poisoning; even one-fourtieth to one-fiftieth of a grain per gallon. But there appear to be individual differences in respect to the action of lead, some persons becoming sooner affected by it than others, differences susceptible of explanation, as will be shortly shown. Acetate of lead, in five-grain doses, may be given for weeks, or even months, without inducing lead poisoning, as has been abundantly proved at the Brompton Hospital, where the acetate is largely employed to check the diarrhoea of consumption; yet it is extremely rare to meet with any lead symptoms, even after the medicine has been continued for months.

The symptoms indicative of chronic lead poisoning are briefly—constipation, and it may be, impaired digestion, accompanied with a sweetish taste. A blue line is soon observed at the edges of the gums, produced by the sulphured hydrogen, developed from the tartar of the teeth penetrating the tissues of the gums and uniting with the lead, forming a black sulphide, consequently the blue line
is most marked in persons who do not clean their teeth. It is seen only at the edge of the gums, where they come in contact with the teeth; where the teeth are absent, the blue line is absent. It is first observed and is always most marked in the gums, in the neighbourhood of the incisors. This blue line is one of the earliest indications of the effect of lead, and is one of the slowest to disappear. Dr. Garrod says this blue line is never absent if there are any teeth, and that it may extend to the whole gums, and sometimes it is observed on the parts of the lips and cheeks corresponding to the gums. The nutrition is impaired, the skin becomes very sallow, and sooner or later, severe colic, with obstinate constipation, and sometimes vomiting, sets in. Colic may occur without any premonitory signs. In lead colic the abdominal walls are retracted, and very rigid. The pain, as in acute lead poisoning, is mostly eased, though it is sometimes aggravated, by firm pressure.

Frequent and often severe cramps occur in the calves, sometimes in the uterus, penis, and scrotum; and sometimes the patient is harrassed with pains about the joints, generally of the extremities, increased by movement or wet weather, and closely simulating rheumatic pains.

Sometimes paralysis takes place, generally affecting the upper extremities and the extensors of the arm.

The muscles first affected are those supplied by the musculo-spiral nerves (posterior interosseous) in the forearm, and especially the extensor communis digitorum. The supinator longus therefore escapes. The supinator longus is almost always supplied by a branch from the musculo-spiral nerve before it divides into the posterior interosseous and radial nerve. This fact often enables us at once to discriminate between lead-poisoning and paralysis, from disease of the musculo-spiral nerve. If the supinator longus is paralysed, this fact points to the disease of the musculo-spiral nerve, and then the paralysis is not due to lead. If this muscle is not paralysed, this fact shows that the disease is limited to the posterior interosseous, and that the paralysis is probably due to the action of lead. The condition of the supinator longus is easily tested in the following way. Extend the paralysed forearm on the table, with the radius upwards, then press down the wrist and tell the patient to try to raise it from the table. The supinator longus, if not paralysed immediately becomes hard, contracted, and stands out prominently. (Erh.)

The muscles of the ball of the thumb waste greatly, and in severer cases, the deltoid, and even the muscles of the neck and trunk are similarly affected. Indeed, in the worst cases, general paralysis may occur, with wasting of the muscles of the whole body, even the voice becoming weak. The paralysis mostly affects
LEAD SALTS.

motion only, but sometimes there is also loss of sensation, and ultimately great loss of electric excitability in the muscles. Epilepsy, delirium, convulsions, or coma, may destroy the patient; but death from chronic lead poisoning is uncommon.

The muscles are wasted, greyish-red or whitish and tough, with considerable increase of the interstitial connective tissue. These changes are similar to those which occur in injury to nerves, in progressive muscular atrophy, and in spinal paralysis of children.

How does lead produce paralysis? On this point various views are held. Some maintain that lead directly affects the muscles; others, that it arrests nutrition by exciting strong contraction of the blood-vessels supplying the wasted muscles. The existence of the "reaction of degeneration," as tested by electricity, shows that the affection is seated either in the nerves or in the spinal cord; and probably in the spinal cord, for the reaction of degeneration and atrophy pursue exactly the same course as in the spinal paralysis of children.

The cramps are not confined to the muscles of the extremities. The intestines are also affected, sometimes almost throughout their length, but generally only a limited extent is involved. If the finger is passed up the rectum, the contractions can sometimes be felt. The blood-vessels, like other parts of the body, are said to be subject to cramps.

The colic is generally dependent on constipation; for when this is set right the colic generally disappears.

The influence of lead on the urates in the blood is most singular. Dr. Garrod, in his remarkable investigations concerning gout, has elucidated this subject, and shown the intimate connection existing between lead poisoning and gout. In gout, as this philosophical observer has shown, the urates, probably with increased formation, are retained in the blood. In gout, especially during the acute attacks, scarcely any uric acid is to be found in the urine, while an abundant quantity is detectable in the blood. The urates dissolved in the blood manifest special affinity for particular structures, as the cartilages, bursæ, and fibrous tissues, particularly of certain parts, and during the deposition of the urates in the joints, acute inflammation is excited, and this constitutes gout. (See Colchicum.)

Now, lead checks the separation of urates from the blood by the kidneys, diminishes the uric acid of the urine, thus greatly augmenting that of the blood, and thus we have the pathological condition which excites the gouty inflammation. Dr. Garrod has further shown—and his experience is corroborated by all who have investigated this subject—that gout very frequently occurs among
lead-workers, and that gouty patients often exhibit the characteristic blue lead line on their gums.

There, too, is the fact, in further confirmation of Dr. Garrod’s discoveries, that if to a gouty person, free at the time from an acute attack, a salt of lead is administered, it develops acute gout, with its accompanying symptoms of severe pain and high fever. The author has repeatedly verified this fact, first pointed out by Dr. Garrod, which affords an explanation, in part at least, of the good effects of iodide of potassium on gout, since, as we have shown already, this salt promotes the excretion of lead.

Lead is used for a variety of purposes, but chiefly for its astringent action on the tissues, as in profuse discharges of the mucous membrane, from the lungs in bronchitis, and to check bleeding from the nose, lungs, kidneys and uterus.

It has been conjectured that lead in Bright’s disease might check the escape of albumen from the blood, and, therefore, lessen the the amount of it in the urine, and George Lewald has published some experiments instituted with the view of testing this point. He does not mention the form of kidney disease his patients suffered from, but it was probably the pale, flabby, fatty kind. He observed at the same time the influence of the lead on the amount of urine voided. These experiments, too few perhaps to decide the question, showed that lead constantly diminished the albumen of the urine, though only to a very small extent, namely, to about nine or ten grains to the twenty-four hours. The diminution appeared to hold no relation in the quantity of lead administered. The quantity of water was simultaneously increased on an average by 200 c.c. in the twenty-four hours. Here again, the increase held no proportion to the quantity of lead employed.

Lead has been found in the lungs, kidneys, spleen, liver, and brain, but there is no evidence of its possessing an especial affinity for these parts.

M. Paul, who has investigated the influence of lead poisoning on the foetus, says that women working in lead factories frequently abort; and that the father may cause abortion, even when the mother is not a lead-worker. In 123 pregnancies, seventy-three children were born dead; and of these, sixty-four were abortions, four premature births, and five born at the full time. Of the fifty born alive, twenty died the first year, eight the second, seven the third; one later; and only fourteen reached the age of ten.

We know but little concerning the elimination of lead. Only a little lead passes off with the urine: iodide of potassium, however, increases its elimination.
It is a further question whether the metal is separated by the kidneys with the urine, or by the mucous membrane of the urinary tract. On theoretical grounds it is difficult to imagine how metals, existing in the body as albuminate, can be eliminated with a non-albuminous secretion; moreover, after the administration of lead, as after that of iron and other metals, an increased quantity of the metal is detectable in the urine; an increased amount of mucus too, simultaneously with signs of irritation of the lining membrane of the bladder, even to the extent of inducing a catarrhal condition; whence it has been inferred that the metal is separated with the mucus secreted by the mucous membrane.

NITRATE OF SILVER, OXIDE OF SILVER.

The soluble preparation of silver, when painted on the skin, colours it first an opaque white, which changes gradually to brown and black. The application of a strong solution will produce vesication. Nitrate of silver is sometimes applied as a destructive caustic to warts and other excresences, but its action being too superficial it is useless for this purpose.

Applied to the abraded skin or to sores, the soluble silver salts form an albuminate which coats the surface with a thin layer and protects the tissue beneath from the irritation of the air. The nitrate of silver acts as a powerful excitant of the tissues and destroys them, but only very superficially. It is frequently applied to induce healthier growth in unhealthy and unclean ulcers, giving much smarting pain, which however, soon passes away.

Like most other soluble metallic preparations, the nitrate causes condensation of the tissues as well as contraction of the blood-vessels, on which account it is used to stay haemorrhage; being liable, however, to excite much inflammation and pain, other blander astringents should first be tried. Sometimes it is used to check the bleeding from leech-bites by touching them with a stick of nitrate of silver.

Nitrate of silver will prevent the pitting of small-pox, if each vesicle is opened as soon as formed, and the raw surface beneath touched with a solution of the salt. Dr. F. Bowen has recorded an instructive case showing the efficacy of this treatment. He treated the vesicles on one side of the face and neck in the way described leaving untouched the vesicles on the opposite side, with the result
that on recovery the untreated side was deeply pitted, while the opposite side remained smooth and scarless. Dr. Bowen, who has devoted much attention to this subject, states that a nurse can easily carry out the process. At an early stage of the eruption, at the latest on the fourth or fifth day, he punctures the vesicles with a fine needle dipped in a solution containing twenty grains of nitrate of silver to an ounce of water. Mr. Higginbottom finds it unnecessary to puncture the vesicles, and says it is enough to paint the skin in the manner recommended by him in erysipelas, which subdues inflammation and prevents suppuration.

Bed-sores are best prevented by painting the threatened but unbroken skin, as soon as it becomes red, with a solution of nitrate of silver (20 grains to an ounce), with the effect of dispersing the redness, hardening the skin, and preventing the bed-sore, unless, as in the case of paralysis, there is a great proneness to this lesion.

That species of boil which, beginning first as a papule, matures into a pustule, and inflames and extends till a large dead core is produced, may, it is said, be arrested in its early pustular stage, by painting it over at its very commencement with a strong solution of nitrate of silver. I have had no experience of this method; but of the beneficial influence of collodion on similar boils, to be mentioned in another place, I can speak with great confidence.

Nitrate of silver will arrest herpes labialis and the vesication of shingles, if the warning patch of erythema is painted over, before, or as soon as the vesicles begin to form.

We sometimes meet with a patient with a patch of lichen, the size of the palm of the hand, affecting almost any part of the body, the irritation from this patch being sometimes so excessive as even to break the sleep, and injure the health. The painting the patch with the nitrous ether solution of silver every day, or second day, as the itching may require, will generally cure this affection.

Limited patches of eczema are sometimes benefitted in the same way. Nitrate of silver proves most serviceable after the weeping stage.

The occasional application of nitrate of silver or sulphate of copper, is serviceable in psoriasis of the tongue and mucous membrane of the mouth; but if it depends on syphilis, mercurial applications are best. A weak solution of nitrate of silver, gradually strengthened, is stated to be useful in the superficial kinds of lupus.

Higginbottom very strongly recommends the local application of nitrate of silver in erysipelas. No agent, he says, is so safe or so
efficacious in subduing external inflammations; but he points out that the success of this treatment depends entirely on the manner of conducting it. He directs the skin to be well washed with soap and water; then with simple water; then to be wiped quite dry; next, a solution of four scruples of the brittle stick of nitrate of silver, in four drachms of water, is to be applied two or three times to the inflamed surface, extending two or three inches beyond it.

Nitrate of silver often cures the intolerable itching of pruritus pudendi. A large camel-hair brush, saturated in a solution containing from two to five grains to the ounce, should be painted three or four times a day over the vulva, and be thrust up to the os uteri. A stronger solution used less frequently will not answer so well.

A weak solution of nitrate of silver often relieves pruritus ani.

Pruritus cutaneous of the meatus auditorius, occurring without any eruption, should be treated by the application of a strong solution of nitrate of silver, carefully avoiding the membrana tympani. If the itching arises from undue dryness of the ear, from deficient secretion of wax, almond oil or glycerine should first be tried.

When used as an outward application, nitrous ether is by far the best solvent of nitrate of silver, for, by dissolving the fatty matters of the skin, this solution forms a uniform layer over the surface, unlike a watery one, which runs into drops, leaving the intermediate skin dry. This solution is not available in erysipelas, as nitrous ether will not dissolve the quantity of silver required. It is important to bear in mind that a nitrous ether solution acts much more strongly, than an aqueous solution of corresponding strength. The ether solution must, therefore, be made weaker, five to ten grains to the ounce being generally strong enough. Five grains to the ounce is sufficiently strong for threatened bedsore, a stronger solution often blistering, particularly on applying several coats.

Solutions of nitrate of silver are used to blacken the hair of the head. The hair is first washed with the solution of nitrate of silver, and then a comb, dipped into a solution of sulphide of potassium, is passed through it; a process resulting in the production of a dull, lustreless, ghastly, black-blush colour.

In obstinate tinea tarsi, the solid nitrate of silver stick is sometimes passed over the edges of the eyelids, first removing the eyelashes and the scabs.
In conjunctivitis, a few drops of a solution of nitrate of silver, varying in strength, is inserted with the aid of a quill several times a day into the eye, exciting in the membrane a healthier inflammation, which soon subsides.

The nitrate may be applied to ulcers of the mouth. When a milder application than the ordinary caustic is required, it is convenient to use the sticks composed of equal parts of nitrate of silver and nitrate of potash.

The soluble salts have an astringent metallic taste.

In the early stages of inflammation of the throat, when the inflammation is superficial, and there is only a little swelling, the application of a strong solution, or of the solid stick of nitrate of silver, subdues and sometimes even extinguishes the inflammation.

In chronic sore throats, when the tissues are relaxed and covered with pus, solutions of the nitrate are serviceable, but the author does not think they are superior in any way to strong astringent and unirritating applications. Even ulcers are best treated by the glycerine of tannin; but if in a sloughing and unhealthy condition, then the irritant nitrate must be preferred. The nitrate of silver is also applied with doubtful benefit in diphtheria. Most authorities are agreed that the application should be limited to the inflamed patches; for if applied beyond their area, it excites an extension of the inflammation, on which the false membrane may readily implant itself.

Nitrate of silver, in powder or solution, is sometimes applied by means of a probang, brush, or sponge, to the chronically inflamed larynx, as in phthisis; or solutions of nitrate of silver, in the proportion of gr. $\frac{1}{3}$ to gr. v., to the ounce of water, may be brought to bear on the pharynx and larynx by the spray-producer.

Dr. Horace Green, injects a solution of nitrate of silver into the trachea in asthma, bronchitis, and phthisis, after deadening the sensibility of the glottis, by applying to it for one or two weeks a solution of nitrate of silver. He passes a No. 10 or 12 catheter, which produces only a sensation of warmth, through the rima glottidis, down even to the bifurcation of the trachea, and injects the solution. The late Dr. Hughes Bennett, who endorsed this treatment, injected either two drachms of a solution containing half a drachm of nitrate of silver, to an ounce of water, or even half an ounce of a solution consisting of forty grains of nitrate of silver, to an ounce of water. While introducing the catheter, the head is thrown back, and the tongue drawn forward, when the instrument glides along the laryngeal surface of
the epiglottis, which is nearly insensible, through the rima glottidis itself.

Sponging out the throat with a solution of nitrate of silver, greatly diminishes the violence and frequency of the paroxysm in whooping-cough, renders the cough but half as frequent, makes the fits much less severe, and enables a child harassed with broken sleep to obtain a good night's rest. But there is a formidable drawback to this treatment; for the application generally produces, especially with very young children, so violent an attack of coughing, as to excite fears lest suffocation should ensue. Instead of sponging the throat, the nitrate of silver may be applied in the form of spray by the atomizer. Very young children, however, cannot be induced to open their mouths, and allow the inhalation of the spray; hence its use is restricted to children more than two or three years old. These applications, being apt to excite retching, should be employed when the stomach is empty.

Any part of the salt having escaped conversion in the mouth is changed into an albuminate when it enters the stomach; and if sufficient albumen is not present to effect this, the salt attacks the mucous membrane, and excites active inflammation. The best antidote for a poisonous dose is common salt, a fact useful to bear in mind, if, as sometimes happens, the solid stick of nitrate breaks off and is swallowed.

Nitrate of silver acts as an irritant in the stomach, and may be used in precisely the same class of cases for which arsenic is applicable. It often checks the pain and vomiting of chronic inflammation, of chronic ulcer, and even of cancer of this organ. It should not be given in the form of a pill, but in solution.

The nitrate acts as an astringent in the intestines, and, in common with several other metallic preparations, may be used in diarrhoea, both of the acute and chronic kind.

Peptones readily dissolve the nitrate, and the solution does not coagulate albumen. Probably it enters the blood in this form and collects in the red corpuscles as other metals tend to do, if not speedily deposited in the organs or separated by the secretions. These salts, being absorbed, are supposed to be astringent to the tissues to which they are conveyed, but this is a doubtful supposition, and they are never used to check either bleeding or secretion from the distant organs of the body.

In poisonous doses nitrate of silver excites in animals convulsions and paralysis, probably central in origin; the convulsions, being very similar to those produced by strychnia, are excited by the least peripheral irritation.
Chronic poisoning by nitrate of silver produces general fatty degeneration, especially of the kidneys, liver, and heart.

Both the oxide and nitrate are employed in chorea and epilepsy, apparently with occasional benefit. The oxide has been given to check profuse sweating. If administered too long, these substances, in some form, probably as the reduced metal, are deposited in the deeper parts of the skin, and most abundantly where the skin is finest and most vascular; but, once deposited, the metal remains as a permanent discoloration, of a deep leaden hue, either by time or treatment irremovable, unless it should prove true that large doses of iodide of potassium, as has been lately stated, will wash out this stain. Silver appears to be chiefly eliminated by the intestines and bile, very little escaping by the urine.

The nitrate, in solutions of various strength, is used as an injection in gonorrhœa. Some advocate a very strong solution (twenty grains to the ounce), averring that in many instances the disease may at once be cut short by it; others prefer a much weaker solution of one or two grains to the ounce of water, repeating the injection several times a day.

A solution of glycerine of tannin, half the strength of the pharmacopœial preparation, is, I believe, a better injection for both gonorrhœa and gleet, than nitrate of silver.

MERCURY AND ITS PREPARATIONS.

The salts of mercury possess very various physical as well as chemical properties; but as in every instance their effect on the system is well-nigh the same, probably all mercury compounds ultimately assume the same form in the blood.

The nitrates of the oxide and suboxide are escharotic; but much of this action is due to the free nitric acid of the salt. They are used to remove warts, condylomata, and other slight excrescences. Mercurial applications will completely allay the annoying itching of certain skin affections. Solutions of bichloride, black-wash, yellow-wash, or mercurial ointment, may each prove useful, but the application must be a strong one. Trousseau highly recommends bathing the part with a solution of about twelve grains of bichloride in a pint of very warm water. After much experience of these applications, I believe that far the best application is an ointment,
composed of a drachm of calomel to an ounce of lard; but this ointment, in common with other mercurial applications, is not useful in all kinds of itching; for instance, it is unavailing in the irritation of urticaria.

Calomel ointment often immediately removes the itching of pruritus ani. This irritation may be due to rashes, as psoriasis, lichen or eczema, or no eruption may be visible, yet the ointment will prove equally efficacious. Sometimes the itching is felt along the raphe between the anus and scrotum, and may be due to little round spots looking like psoriasis, with the scales washed off. This form also yields to the ointment. This application is less frequently useful in pruritus pudendi. In obstinate cases of pruritus ani and pruritus pudendi, blisters to the thighs, or the application of a few leeches, sometimes afford relief.

The ointment in many instances improves the rashes themselves, but this is in some measure due to the cessation of the scratching, on the disappearance of the itching.

Sometimes a little scabbing of the head, looking like mild eczema, occurs in children, accompanied by a degree of itching, sufficient to prevent sleep, and to cause constant restlessness. The calomel ointment speedily appeases this irritation.

The inunction with calomel ointment, allays the distressing itching of the scalp sometimes accompanying pityriasis. It may be profitably added to other ointments used for the removal of pityriasis, as oxide of mercury or of tar.

It may be objected that so strong an application of mercury, especially when applied to soft and absorbing parts, as the inner surface of the vulva, and the skin around the anus, must surely produce salivation. No doubt care should be exercised, and no more ointment used than is needed. Yet the risk of salivation seems to be extremely slight; for, with a very large experience of the ointment, I have never seen salivation produced by it. Properly applied, a very small piece of ointment is generally sufficient to allay the irritation at once, and even to remove it altogether in a few days, although it is very apt, after a variable time, to return, when it again yields to a renewed employment of the unguent. Its grateful effects are often almost instantaneous, though sometimes it takes a few days to give ease. Having many times seen it succeed when other remedies have entirely failed, I am convinced of the value of this application in these harassing and perverse diseases.

The white precipitate, or nitrate of mercury ointment, or cor-
rosive-sublimate wash, will destroy the various kinds of lice and their nits, which infest different parts of the body. For lice on the pubes, it is necessary to apply the ointment or lotion to the scrotum, hair on the perineum, and around the anus. The nits can be dislodged by washing the hairs with spirits of wine, which dissolves the gluey matter so strongly attaching the nit to the hair. The body-louse may be killed by the essential oils, as the oil of rosemary, or by powdered pyrethrum, or by an ointment of staphisagria. Through the groundless fear of inducing salivation, some prefer these to mercurial applications. The under linen should be boiled to destroy any hidden lice.

The irritant ointments of mercury are useful in that obstinate and disfiguring affection, tinea ciliaris. The eyelashes should be cut short, and the ointment, either of nitrate or oxide of mercury, applied night and morning, picking off the scabs before each dressing. It is a common practice to dilute the ugiuentum hydrargyri nitritatis with from four to six parts of simple ointment, whether used for rashes or tinea ciliaris, but in many instances the undiluted ointment is best, and it seldom requires to be reduced more than half the official strength, for the failure of the ointment in eczema, psoriasis, lichen, tinea ciliaris, is often due to its employment in too weak a form. Mr. Hutchinson, and others, assert that epilation ensures the speediest cure. Should these stimulating applications fail, others more powerful should be tried, as nitrate of silver, or sulphate of copper, the last-named salt being preferable, as it gives less pain.

Patches of obstinate lichen and psoriasis, especially of the hands, even when not syphilitic, will sometimes yield to mercury ointment when milder treatment fails. The calomel and nitrate of mercury ointment may be mixed, and the addition of tar ointment sometimes increases the efficacy of this combination.

Citrine ointment is also very useful in some cases of eczema, even in the weeping stage, if there is but little inflammation, but it is especially useful in the stage of desquamation when the skin has healed. It is markedly serviceable when eczema affects the hairy parts of the face, often curing this obstinate form when other remedies have been tried in vain, and even when it fails to cure, it generally in great part subdues the disease. The same ointment is very beneficial too in pityriasis of the hairy parts of the face. In both eczema and pityriasis it is better to mix it with tar ointment, though this combination is sometimes more irritating than the simple citrine ointment; not unfrequently this mixture cannot be
borne, whilst the citrine ointment, pure or diluted, proves very useful.

In the early stages of acne, a lotion composed of corrosive sublimate, one part; alcohol, enough to dissolve it; water, 100 parts, is said to be of use. A teaspoonful is to be added to a quarter of a pint of water, and the face sponged with the lotion night and morning. The bichloride lotion, after a time, produces a "scaliness and hardness of the cuticle."

Bichloride of mercury, one of the best parasiticides, is useful in favus, tinea sycosis; tinea tonsurans, eczema marginatum, and pityriasis versicolor (chloasma). A lotion containing two grains of bichloride to an ounce of water is generally sufficiently strong. In favus and tinea sycosis, and tinea tonsurans, the lotion should be applied after each epilation, and should be continued for some time after epilation is discontinued. This treatment is highly spoken of by McCall Anderson.

It is taught, on high authority, that the application of mercury ointment in paronychia is very useful, repeated for ten minutes every hour, applying poultices at other times. Dr. Scott and Mr. McCormac both report several striking cases of cures by dusting nitrate of lead on the diseased tissues night and morning.

Mercurial preparations are used as local applications in chronic inflammation; for instance, Scott's ointment is often employed in chronic inflammation of the knee-joint. Mr. John Marshall has recently introduced a new mercurial preparation, oleate of mercury, varying in strength according to the needs of the case, and variously combined with other remedies. Mr. Marshall's paper is so practical and valuable, and so insusceptible of condensation or abridgment that we have deemed it best to reproduce the larger portion of it. These preparations, he says, "are cleanly and economical, and have a much greater diffusibility or penetrating power than the old mercurial ointments, for they are absorbed by the skin with remarkable facility, and manifest the remedial effects with great promptitude."

"They should not be rubbed in like ordinary liniments or embrocations, but should be merely applied with a brush, or be spread lightly over the part with one finger; otherwise they may cause cutaneous irritation, or even produce a few pustules on the skin, especially in certain persons. The result may, however, be obviated by the addition of a small quantity of olive oil, or purified lard, according as an oleaginous or an unctuous preparation is required. Any of these forms may be scented by the addition of essential oils.

"In employing these mercurial solutions for combating persistent inflammation
of joints, I soon found that the addition of morphia was of very great advantage. For this purpose the simple alkaloid must be used, as neither the hydrochlorate, the acetate, nor the meconate, is soluble in oleic acid. For every drachm of the solution of oleate of mercury in oleic acid, one grain of morphia may be added. Being, as well as the mercury, completely dissolved, it quite as rapidly penetrates the skin, comes quickly into contact with the extremities of the nerves, and thus, even within a few minutes, acts upon them at their most sensitive points, and speedily produces a soothing effect.

The oleates of mercury and morphia, thus united in one preparation, represent, as it were, a liniment, ointment, or plaster of mercury and opium; but they are far more elegant, economical, and efficacious. As a rule, according to the size of the part affected, from ten to thirty drops are sufficient for one application. This should be repeated twice daily for four or five days, then at night only for four or five other days, and afterwards every other day until a cure is obtained. The morphia immediately begins to relieve pain, allays the nervous irritation, and consequent vascular turgescence; and thus arrests the progress or 'persistence' of the inflammatory process; whilst the mercury probably promotes the death and degeneration of the morbid products, and so facilitates their subsequent removal by absorption. Unless used in excessive quantity, the oleate of mercury does not salivate, or produce any marked constitutional disorder."

Mr. Marshall says "their applicability and utility appear to me to be almost co-extensive with the occurrence of 'persistent' or chronic inflammations, provided only that the seat of the disease be in, or sufficiently near to, the skin."

"I may first mention that not only in persistent articular inflammation, but also in simple synovitis, these remedies rapidly relieve the tenderness and pain, and promote the absorption of the fluid effused into a joint. They are also of decided benefit in the rheumatic, the arthritic, and the mixed forms of joint disease; but in these they do not, of course, supersede the necessity for general treatment. In inflammation of the mammary gland, occurring during or after lactation, or altogether independently of that secreting process, their efficacy is unequivocal; for I have seen, not only the induration left after previous abscesses speedily disappear under their use, but a tendency to recurrent suppuration in the site of old abscesses, and the threatened formation of new ones, entirely controlled and arrested. I have also seen a threatened abscess in the perineum from inflammation of one of Cowper's glands, and likewise the troublesome indurations left after ordinary perianal abscess, rapidly disappear on the use of these preparations. In obstinate and painful tonsillitis, in epididymitis, in periostitis, and in inflammation with imminent or actual suppuration in or around lymphatic glands, I have similarly employed them with decided advantage. In hydrocele they have not appeared to be useful. I have used equal parts of the 20 per cent. ointment and purified lard applied outside the eyelid, with success, in hordeolum, and in palpebral conjunctivitis.

"In many cutaneous affections the oleate of mercury solutions, without morphia, form elegant and powerful remedies. It was in a case of obstinate sycoсsis menti that I first used, and with excellent results, an ethereal solution of the perchloride of mercury mixed with oleic acid; but I now much prefer, as equally efficacious, and far less irritating, the 5 per cent. solution of oleate of mercury in
oleic acid, with the addition of an eighth part of ether. (Dr. Alder Smith employs a 10 per cent. solution). This, when applied to the skin with a camel-hair pencil, is a most diffusent and penetrating remedy. It enters the hair-follicles and the sebaceous glands, penetrates the hairs themselves, and carries everywhere with it its powerful metallic constituent. Besides sycoisis, it will cure chloasma and the various forms of tinea; it is useful in porrigio, and in pruritis ani et pudendi; but I have not found it serviceable in non-specific psoriasis, or in eczema. The solution of oleate of mercury destroys pediculi immediately; and, owing to its singular power of permeation, simultaneously kills the ova—a result not always certain when ointments containing undissolved mercury are used.

"Again, in many of these syphilitic affections, for the cure of which mercury is applicable, the oleate of mercury preparations offer some advantages. Thus, in congenital syphilis, a piece of the 20 per cent. ointment, about the size of a pea or bean, placed in the child’s axillae night and morning for five or six days, rapidly and easily, and without any sign of uncleanliness, produces constitutional effects. Even in the adult this mode of introducing mercury into the system, either for the cure of syphilis or other disease, may often be preferable to, and less troublesome than, the bath, and it certainly gets rid of the objections to the ordinary mode of inunction. As a topical remedy for certain local manifestations of syphilis, such as the non-ulcerated forms of syphiloderma, especially when these disfigure the head, face, neck, or hands, the 10 per cent. solution is a most valuable adjunct to other treatment, the spots rapidly disappearing under its use. This, or the 20 per cent. preparation, diluted with equal parts of purified lard, may also be applied to non-ulcerated syphilitic indurations and condylomata, but it gives pain if applied to surfaces much excoriated or ulcerated, to moist warts, or to mucous membranes. In syphilitic iritis, and also in non-specific forms of that disease, this diluted oleate ointment smeared over, not within, the eyelid, evidently promotes the absorption of the effused lymph. Lastly, in some of the remoter kinds of syphilitic affections, which iodide of potassium will usually cure, such as very hard nodes and certain forms of syphilitic testicle, the external application of the oleate of mercury is very valuable. I have seen a case of enlarged testicle epididymis, the syphilitic origin of which had not been suspected, and for which no mercurial course had been prescribed, but which, during a period of six years, had been, from time to time, relieved by enormous doses of iodide of potassium, speedily and decidedly benefited by the inunction of the 20 per cent. mercurial oleate.

"In reference to other uses of the combined oleates of mercury and morphia, I may remark that I cannot doubt their value in the treatment of persistent inflammation of certain internal parts and organs—as, for example, of obstinate pleurisy, pneumonia, pericarditis, and endocarditis; for they would here also allay pain and nervous irritation, would thus contribute towards the arrest of progressive disease, and would likewise promote the process of absorption. Moreover, I may state that a solution of morphia in oleic acid (one or two grains to the dram without mercury), is an excellent topical remedy in neuralgia, and in that exquisitely painful affection, herpes zoster, care being taken not to produce cutaneous irritation by friction. I have also used, endermically, with advantage, a solution of atropia in oleic acid, and have had prepared for me the oleates of zinc and copper. Each of these preparations will probably come to have its uses, to which, however, I have now only time thus generally to refer. Oleic acid is likewise a ready solvent of cantharidine and croton oil. It is itself aperient, and permeates faces more readily than olive oil. Indeed, I fully anticipate that this acid, as well
as its compounds with mercury and with morphia, besides other preparations made by its aid, will eventually be admitted into the Pharmacopoeia. An ointment of the oleate of mercury would almost supersede the old-fashioned blue ointment, whilst the solutions of the oleates might replace the liniment of mercury. The remaining mercurial ointments of the Pharmacopoeia, of which the nitrate may contain a little oleate or some allied salt, will, however, still have their special uses.

"The oleate must be prepared with the oxide precipitated by caustic potash or soda from a solution of the metal in nitric acid recently made and well-dried. The solution of mercury by oleic acid is assisted by a temperature of 300° Fah.

"The 5 per cent. solution is a perfectly clear, pale-yellow liquid, resembling olive oil, but thinner; the 10 per cent. solution is also fluid and perfectly clear, but as dark as linseed oil; whilst the 20 per cent. preparation is an opaque, yellowish, unctuous substance, closely resembling in appearance resin ointment, melting very readily at the temperature of the body, and forming a kind of transparent, viscid, colourless varnish when applied to the skin. The chief care to be observed in the manufacture of these solutions is not to hurry the process, and not to employ a high temperature, or the mercury will be immediately reduced."

Baths of corrosive sublimate and chloride of ammonium, in the proportion of half an ounce of sublimate to one ounce of the chloride, are sometimes useful in the treatment of obstinate syphilitic and non-syphilitic rashes.

An ointment of binioidi of mercury has been largely employed in India with remarkable success in the treatment of goitre. The action of the ointment is aided by the effects of the sun's rays, to which the tumour is exposed after inunction. The ointment is prepared in the following way:—Melt three pounds of lard or mutton suet, strain, and clean; when nearly cool, add nine drachms of binioidi of mercury, finely triturated; work the mixture well in a mortar till no grains of red are visible, and keep it in pots, protected from the light. In India this ointment is applied to the swelling at sunrise by means of an ivory spatula, and is then well rubbed in for at least ten minutes.

The patient then sits with the goitre held up to the sun as long as he can endure it. In six or eight hours there will probably be some pain from the blistering action of the application, although no pustules will have arisen. At about two o'clock in the afternoon a second application is made, the ointment being rubbed in with a light hand; the ointment is then allowed to remain, and its absorption is completed about the third day. In ordinary cases one such course cures the patient, but in bad cases it may be necessary to repeat the treatment in six or twelve months. In countries where the sun is less powerful, the patient sits before a fierce fire; or the ointment may be rubbed over the swelling night and morning, afterwards covering it with oil-skin. The full effect is pro-
duced in a few days, when a mild ointment like spermaceti is substituted. (Stainthorpe).

Mercurial ointments are useful in erythematous lupus (Moriz Kohn). I have seen great advantage result from the use of calomel ointment or black-wash in scrofulous and tubercular lupus of children, and in open scrofulous sores.

In tubercular lupus Nayler advises touching the summit of the tubercles with the solution of acid nitrate of mercury, repeating the application till they are reduced to the level of the skin, but not deeper, or a scar will result. Each application excites a good deal of inflammation and pain; but the pain may be allayed by covering the spot with collodion. Nayler uses the mercuria vapour bath in general eczema.

Mercurial preparations, especially black-wash, are very useful applications to syphilitic sores. Thus mucous tubercles soon yield to black-wash. Black-wash is useful, too, for those elevated inductions occurring at the anus of children, differing from mucous tubercles, being of much larger size, of irregular shape, often limited to one side, and generally extending some way up the rectum. This eruption, which may bleed and smart severely each time a motion passes, often disappears but slowly under the influence of mercury administered by the mouth, and may, in spite of it, continue increasing slightly for months; while, if kept constantly moist with black-wash, its removal may be assured in ten days or a fortnight. Black-wash is very useful in other syphilitic sores.

When it is not convenient to apply black-wash, calomel or citrine ointment well rubbed in may be substituted.

Calomel, dusted over syphilitic condylomata, generally removes them.

Cyanide of mercury in solution, in the proportion of ten or fifteen grains to an ounce of water, is useful as a local application to syphilitic rashes and sores, as those of the throat, tongue, anus, penis, etc. For sores on the prepuce or glands, a weaker solution of five grains to the ounce is generally strong enough, and even this strength sometimes excites a good deal of smarting. It should be well rubbed in with a camel-hair brush, once, or at most twice a day, carefully avoiding the neighbouring healthy tissues. In case of chancre it is a good plan to apply this lotion daily, and to keep the sore moist with lint soaked in black-wash. Mercurial ointments rubbed into the skin of the penis are often apt to bring out a crop of eczema, with considerable swelling.

Mercurial applications mixed with other substances, as tar, are very useful in syphilitic psoriasis.
Mr. Lee strongly recommends mercurial fumigations in the treatment of syphilis, preferring calomel which is undestroyed by heat or moisture, and gives constant results. Some employ dry fumigation; others maintain that the therapeutic effects of mercury are increased by steam. This mode of administering mercury is considered the best, and surest way of eradicating syphilis. Moreover, it affects the general health less deleteriously, disturbing neither the functions of the stomach nor the intestines. Ten to twenty grains of calomel are used at each fumigation. The fumigations sometimes produce a good deal of weakness and prostration, so that they cannot be continued. There can be no doubt that many cases of syphilis, rebellious to other treatment, yield to these fumigations. Sometimes only a portion of the body affected with syphilitic rash is subjected to calomel fumigation.

Mercurial applications, but especially the mercurial and calomel ointments, are rubbed into delicate parts of the skin, so as to mercurialize the system by their absorption. This method has the advantage of not disordered the digestive canal.

Bichloride of mercury has been injected under the skin, and a much smaller quantity affects the system than when administered by the mouth; but this painful mode of treating syphilis is not likely to become general.

At one time the application to the face of mercurial ointment or of mercurial plaster was in vogue to prevent the pitting of smallpox. It is a question of interest, whether the mercury itself plays any part in arresting the maturation of the pustules, or whether other applications are not as effective. A good deal has been said on each side of this question, but I think that, since several instances of very severe salivation have followed this plastering in smallpox, other safer remedies may be used, perhaps not with equal benefit, yet with sufficiently good results to render it desirable to employ them in preference to the mercurial compounds.

The exclusion of light and air probably thwarts the development of the pustules and prevents pitting. The exclusion of air and light can be perfectly effected by collodion and india-rubber dissolved in chloroform; this, or other means, should therefore be employed in preference to mercury compounds. (Vide Nitrate of Silver.)

In non-syphilitic ozena Trousseau employs the following snuff-powders:—White precipitate, 4 grains, sugar in fine powder, 232 grains; or red precipitate, 4 grains, sugar in fine powder, 232 grains. The nose is first cleared by blowing it strongly, and then
a pinch of either powder is snuffed up a few times daily for a few days. They quickly remove the stench, and modify the state of the mucous membrane, though sometimes they produce a rather powerful irritating effect on the mucous membrane, and, unfortunately, they do not cure this very intractable complaint.

In the syphilitic ozena of children, mercurial ointments, as nitrate of mercury ointment, partially melted, applied twice a day after the nose has been well cleared, will arrest the secretion, remove the obstruction, and improve the condition of the mucous membrane; the child's health improves, for the nasal obstruction prevents sucking, during which the child is unable to breathe. It is well known that a child, especially in sleep, breathes only through the nose; consequently the health must suffer through inability to sleep when the nasal passages are blocked.

Mercurial medicines, if administered an undue time, severely injure the mucous membrane of the mouth and salivary glands. The first symptom is a disagreeable metallic taste; the gums around the teeth become swollen and tender, of a dark-red colour, the mucous membrane investing the incisor teeth being the first affected, whence the inflammation spreads; the tongue swells, the breath is excessively foetid, the secretion from the buccal mucous membrane is augmented, and the saliva is increased in quantity even to the extent of one or two pints daily. At first the saliva is richer than natural in epithelium and solid constituents, but after a time becomes clearer, more watery, and contains fat and mucous corpuscles. The salivary glands become swollen and painful; at last the inflammation of the mouth reaches such a point that ulceration sets in, and progresses till large portions of the gums and cheeks may be destroyed, the teeth becoming loose, and the bones of the jaw carious. Some are much more prone to become salivated than others; weak persons are more easily affected than strong; children are rarely salivated. Disease, too, influences the operation of mercury; for in inflammation it is often well borne, while in granular disease of the kidneys or in scrofula, patients are very liable to become salivated. It is stated that salivation has occurred three hours after a dose of mercury, that it may last a few hours only, or endure for several years, and even disappear for a time and then return.

There are persons who can never take even a small dose of mercury without provoking toothache, generally in a carious tooth.

In a certain stage of tonsillitis the influence of mercury is most marked, owing probably to its absorption in the circulation. In
quinsy or scarlatina, when the enlarged tonsils almost meet and block the passage, and when the difficulty in swallowing is nearly insuperable, with even danger of suffocation, at such a crisis a third of a grain of grey powder taken every hour, greatly reduces the swelling in a few hours, and obviates the distress and danger; and, even if an abscess has formed, its maturation and evacuation appear to be effected more quickly.

The same powder, administered in the same dose three or four times daily, is useful in mumps, speedily relieving the swelling and pain. Probably, as in the last case, the drug acts only after its absorption.

The soluble preparations of mercury combine with the albuminous matters in the mouth, and any portion left uncombined attacks the mucous membrane, and may excite in it acute inflammation.

They act in a similar manner in the stomach.

A form of vomiting is sometimes met with in very young children—generally only a few weeks old—which yields in many instances to grey powder or calomel, but especially to grey powder. The chief, and to a great extent characteristic, feature of this vomiting is its suddenness and instantaneousness, for immediately the milk is swallowed it is forcibly expelled, curdled or uncurdled, apparently without any retching or effort on the part of the child. The milk literally shoots out of both mouth and nose. Diarrhoea may exist, but more generally there is constipation. This affection often proves both obstinate and dangerous, as all the food is ejected, till the child, reduced almost to a skeleton, dies actually of starvation. At the post mortem it often happens, either that nothing is found to account for death or the mucous membrane may be much softened, and like water arrowroot in consistency and appearance. One-third of a grain of grey powder, repeated every two or three hours, will in many instances quickly stay this vomiting, which resists all other remedies. A twelfth of a grain of calomel also every two hours sometimes succeeds.

The soluble preparations act as purgatives, increasing the secretion from the mucous lining and the contractions of the muscular coat of the intestines. Not all, however, are employed as purgatives; and when purgation is needed, our choice falls either on calomel or grey powder; either, being tasteless, is a useful preparation for children.

Most purgatives act more efficiently when given in frequent small doses, at every hour; but this does not hold with calomel.
Moreover, according to my experience, we do not much increase the purgative effect by augmenting the size of the dose, a grain acting as energetically as five grains. Again, where a nightly purgative is needed, calomel does not answer, for the dose adequate to produce four or five motions, the first night, will act only twice or three times the second, and often not at all the third.

The influence of mercury salts on the pancreatic and biliary secretion is still undecided. Seeing the influence of mercury on the salivary glands, some conceive it probable that it exerts a similar influence on the pancreas, a gland with a structure and a secretion very similar to those of the salivary glands.

Most opposite statements have been made concerning the action of mercury on the secretion of bile. From experiments on animals it has been concluded, though not without dissentients, that mercury in health diminishes the secretion of bile. In his report, as secretary of the Edinburgh Committee appointed to investigate this matter, the late Dr. Hughes Bennett arrived at somewhat the same conclusion. This report states: (1) That neither blue pill, calomel, nor corrosive sublimate, affect the bile unless they purge or impair the health, when the quantity of bile is diminished. (2) That during an attack of dysentery, both the solid and fluid constituents of the bile are diminished. (3) Purgation from any cause lessens the amount of bile and the proportion of its solid constituents. (See Podophyllum).

Röhrig and Rutherford have re-investigated this subject, and they conclude that calomel does not increase the secretion of bile, nay, in purgative doses, it may even decrease it. Rutherford finds that bichloride of mercury does increase the secretion of bile.

Dr. H. Bennett's committee experimented on dogs regularly fed. Rutherford and Röhrig, on fasting dogs, in every instance first paralysing the animal with curare. They first inserted a glass cannula into the common bile duct near its junction with the duodenum; then compressed the gall bladder to fill the tube with bile, and clamped the cystic duct. They then closed the wound in the abdomen, and collected the bile as it flowed through the cannula.

In some experiments Rutherford placed the calomel in the duodenum unmixed with bile, in others mixed with it; and in others he administered the calomel by the stomach.

Yet the experience of generations strongly supports the general conviction that in some diseases calomel, as well as other preparations of mercury, does increase the bile. Moreover, it is not difficult to conceive that in a given disease mercury may set aside some condition hindering the formation of bile, and thus act as a cholao-
gogue, though possibly in health it may even check this secretion.

When given to promote the secretion of bile, the common practice is to give a purgative dose for one or two nights; but if there is no constipation there is no need to purge, and a small dose, say one-sixth to one-half grain of grey powder twice or three times a day, will answer better. The administration of small doses frequently is especially advantageous in cases where the illness is apt to recur frequently from slight and scarcely preventible causes, and where the frequent employment of purgative doses would favour after-constipation and produce depression and possibly salivation. For these reasons it is common to hear highly practical doctors decry mercurial preparations, whereas were they to employ the minute doses now recommended they would obtain the desired effect and exclude the bad results they fear. Given in the doses just mentioned, mercurial preparations in certain cases which I will indicate are signally useful:—

I. A patient voids pale clayey stools and suffers from acidity, flatulence, or vomiting, occurring sometimes only before breakfast. Half a grain of grey powder given three times a day will often restore colour to the stools, when the dyspeptic symptoms cease at once.

II. Small doses of mercury yield excellent results in a form of diarrhoea common in children. The child’s health is bad; the digestion is imperfect, generally with annoying flatulent distension; and three or four pale, clayey, pasty, stinking motions are passed in the day. A single grain of bichloride dissolved in half a pint of water, and a teaspoonful of this solution given each hour; or, still better, one-third of a grain of grey powder every hour or two hours, will in one or two days limit the number of the stools, and restore their natural bilious colour, even though they have been clay-coloured for weeks.

III. Again, we frequently meet with a case like this:—A patient, generally of nervous temperament, on exposure to cold, or after fatigue or excitement, or even without any discoverable cause, feels sick, perhaps vomits, has a coated tongue, and in a few hours becomes jaundiced, the discoloration sometimes affecting only the conjunctiva, in other cases dyeing the skin of the whole body yellow. The stools are pale or colourless. The attack lasts three or four days, and is accompanied by great depression. The patient may undergo many attacks, so frequently indeed, that before the discoloration of one attack has passed away, another has begun to
assail him. Here one-sixth or one-third of a grain of grey powder, taken at the very onset and repeated three or four times a day, allays the sickness, cuts short the illness, increases the intervals between the attacks, and after a time cures the patient, though he may have suffered thus for several years. If, however, there is obstinate constipation, a course of Carlsbad waters is then sometimes more efficacious.

IV. The same weak bichloride of mercury solution of a single grain in ten ounces of water in doses of a teaspoonful, is very efficient in another serious form of diarrhoea, common in children. The characteristics of this form are very slimy stools, especially if mixed with blood, accompanied by pain and straining. The salient indication for employing the bichloride is the slimy character of the motions. Sometimes the slime is very tenacious, and, being coloured with blood, is described by the mother as "lumps of flesh." This affection may be acute, or it may be chronic and last for months; but in either case the bichloride cures with remarkable speed and certainty.

V. A similar treatment relieves the dysentery, acute or chronic, of adults, provided the stools are slimy and bloody. A hundredth of a grain of the bichloride given hourly, or every two hours, according to the severity of the case, is generally sufficient, rarely failing to free the stools from blood and slime, although in some cases a diarrhoea of a different character may continue for a short time longer, requiring perhaps other treatment to control it.

VI. A sixth of a grain of grey powder given hourly is of great service in infantile cholera, characterized by incessant sickness, with profuse and almost continuous diarrhoea, very offensive and copious motions, watery, almost colourless, or of a dirty muddy aspect. Under this treatment the vomiting generally soon ceases, and the diarrhoea shortly afterwards. Infantile cholera is an extremely fatal disease, running so rapid a course that in a very brief space a child is reduced to a death-like aspect and dangerous condition. It is essential then to check the diarrhoea as speedily as possible. In urgent cases a starch injection, with a minute quantity of laudanum, assists the action of grey powder.

VII. We often see in infants a chronic diarrhoea, characterized by watery, very offensive, muddy-looking, or green-coloured stools, often to the number of ten or twelve daily. This diarrhoea will generally yield to grey powder, in doses of a sixth of a grain, given at first hourly, and then every two or three hours, according to the frequency of the stools. Vomiting is an additional indica-
tion for this treatment. Although this drug may check the diarrhoea and vomiting, yet, if the disease has endured a long time, so serious may be the injury inflicted on the mucous membrane of the stomach, that food can neither be digested nor absorbed, and the child gradually wastes away. The appearance of thrush in the mouth is an unfavourable sign, as it generally indicates profound damage to the mucous membrane of the digestive canal. So also it is a bad sign always in the chronic diarrhoea of children, when the stools change in character from time to time—now watery, then slimy, at another time curdy, and at another green. It is far easier to cure a diarrhoea when the motions are always of a uniform character.

It is important to treat the severe forms of infantile diarrhoea promptly, for being generally inflammatory, the mucous membrane of the large, and even that of the small, intestine, soon becomes seriously affected, the mucous membrane of the large intestine extensively ulcerated or considerably thickened and granular-looking, whilst the mucous membrane of the small intestine, a part of the tube less commonly affected, may be much softened. It will be readily understood that disease so extensive must take some time to cure.

Mercury, as we have seen proves very serviceable in most of the forms of infantile diarrhoea, both acute and chronic. I have endeavoured to point out categorically the circumstances when one mercurial preparation is preferable to another. It may be urged that, as in both severe acute and chronic diarrhoea the same pathological conditions are found, that the same form of mercury suitable for one case would equally benefit another. But, though the pathological state is held to be identical, still some hitherto undetected differences there must be, either in the nature of the disease itself or of the part it affects, for surely it requires a different pathological condition to produce in one case slimy stools, in another watery, and in another green curdy stools. These differences displayed in the symptoms, though at present not discriminated pathologically, require somewhat different treatment. Hence, though in each kind of diarrhoea all forms of mercury are useful, it is found that in some cases bichloride of mercury is greatly to be preferred, and in other cases grey powder. In the treatment of chronic diarrhoea, mercurial preparations are often required for many days, and it frequently happens that, though they alter the character and lessen the frequency of the motions, yet the diarrhoea may persist and may require for its cure other
remedies, like lime, arsenic, and nux vomica. In the treatment of chronic, as well as in that of acute diarrhoea, too much attention cannot be paid both to the quality and quantity of the food. Acute diarrhoea is often aggravated, and made chronic, by over-feeding; a short time after each meal, the child is violently purged, and the mother seeing it wasting rapidly is apt to think she can sustain her child by giving as much food as possible, but it must be borne in mind that digestion is greatly impaired, so that but little food is digested; the excess, lodging in the intestinal canal, undergoes decomposition, and, acting as an irritant, increases the disease. Not only should the quantity of food be small, but it should be given frequently in very small portions. It is also important to clothe the child warmly, and to put a flannel roller round the belly.

There is a form of diarrhoea, in which the child passes large acid offensive curdy stools, evidently consisting of decomposing curds. Mercurial preparations, and, indeed, the other usual remedies for diarrhoea are of little avail in this form of diarrhoea, which is best treated by withholding milk entirely and substituting animal food.

The chronic diarrhoea of adults, independent of serious organic change of the intestines, with watery pale stools, often yields to the hundredth of a grain of corrosive sublimate every two or three hours. The same treatment answers sometimes in the diarrhoea of typhoid fever and phthisis.

With one-third of a grain of grey powder three or four times a day, a thickly-coated creamy tongue occurring in dyspepsia, in the course of chronic disease, or in early commencement of convalescence from an acute illness, will generally rapidly get clean, with simultaneous improvement of the appetite and digestion, and removal of disagreeable taste in the mouth. If there is constipation then it is better to give half a grain of calomel with three grains of extract of hyoscyamus repeated for three nights. The first pill generally purges twice or thrice, the second less, and the third not at all. Grey powder should be given if there is either diarrhoea or tendency to it, for, besides its effect on the tongue and stomach, it will generally control the diarrhoea, at the same time restoring their natural colour to the motions, if too light or too dark.

With the exception of the sulphide, all mercury compounds enter the blood, and are employed in a variety of diseases on account of their action on distant organs.

Ligeois (Gaz. des Hop. 1869) states that small doses of corrosive sublimate increase the weight of healthy men and animals.
and Grassi say that mercury diminishes the red corpuscles. On the other hand, Wilbouchewitch (Archives de Phys. 1874) found that in recent syphilis small doses of mercury at first increase the number of red corpuscles and slightly diminish the white, and that if the mercury is continued beyond a certain point, it then lessens the red corpuscles, an indication to discontinue the drug. Dr. Keyes (American Journal of the Medical Sciences, Jan. 1876) points out that the doses given by Wilbouchewitch were by no means small. Dr. Keyes has himself thoroughly and philosophically investigated this subject and I subjoin the conclusions he arrives at:—

1. That 5,000,000 red blood-corpuscles in the cubic m.m. is an average for healthy adult man. In anemia the number rarely falls below 3,000,000. In fine conditions of physical health the number may reach 6,000,000.
2. Mercury when given in excess decreases the number of red corpuscles especially in hospital patients.
3. Syphilis diminishes the number of red corpuscles below the healthy standard.
4. Mercury in syphilis in small doses continued for a short or long time, alone or with iodide of potassium, increases the number of red corpuscles, and maintains this improvement.
5. Mercury in small doses acts as a tonic upon healthy animals, increasing their weight; but in larger doses it is debilitating.
6. Mercury in small doses is a tonic, for a time at least, to individuals in fair health, and it increases the number of red corpuscles.

The prolonged and undue employment of mercury produces serious mischief, the body wastes, the blood becomes much impoverished, and “mercurial fever” may be induced, sometimes accompanied by pustular or vesicular eruptions. In mercurial tremors, weakness in the upper extremities is first noticed, then voluntary movements begin to lack their usual precision, and soon slight tremors set in, and gradually increase in severity and extent till the whole body becomes affected, the legs being attacked before the trunk. These tremors are easily excited, cannot be controlled, and persist for some time. In severe cases, almost every part of the body is affected by severe spasmodic movements, so that respiration is spasmodic, and the sufferer may be unable to walk, talk, or masticate. Loss of memory, headache, delirium, and even convulsions may occur. Salivation is sometimes absent; for the mode of poisoning greatly influences the effect of mercury, inhalation generally producing tremors, inunction producing salivation. Inunction, however, has produced tremors. Complete recovery generally takes place, provided the patient is removed from the influence of mercury before the disease has greatly advanced. The treatment of mercurial poisoning consists in the use
of simple or sulphurous baths, and of iodide of potassium. The
influence of iodide of potassium on mercury in the system has been
spoken of elsewhere. (Vide Iodide of Potassium).

Mercury was formerly indiscriminately administered in all the
forms and stages of syphilis. Given in enormous quantity, the con-
stitutional effects sought to be produced were very serious. The
bad effects undoubtedly resulting from the too free administration
of this drug have led many to discontinue its use in syphilis, and
even to attribute to the pernicious influence of mercury many of
the more serious diseases, as destruction of the bone, etc., formerly
met with in syphilitic patients. It has even been denied that these
greater lesions are ever produced by syphilis.

An influential, though declining school of the present day, main-
tain that mercury is powerless over syphilis, and that the drug is
simply harmful; there is, however, a larger and more prevailing
school firmly convinced of the usefulness of mercury when judi-
ciously employed.

The believers in the efficacy of mercury hold generally:—
 That it is good in both primary and secondary syphilis.
 That it is of use in the treatment of the hard chancre only, and
does harm in the soft chancre.
 That by the aid of mercury the hard chancre is more speedily
cured, and the patient is less liable to secondary symptoms which,
when they do occur, are milder in character.

That most forms of secondary syphilis yield quickly to mercury.
The following propositions are extracted from the admirable
lectures by Mr. Jonathan Hutchinson, to whom medical science is
in so many ways indebted:—

"That mercury is probably a true vital antidote against the syphilitic virus, and
that it is capable of bringing about a real cure.

"That in practice, a good many cases are really cured by mercury; the cure
being proved by the restoration to good health, and in some cases by renewed sus-
cceptibility to contagion.

"That the probability of cure depends upon the stage of development attained
by the disease when the remedy is resorted to, and upon the perseverance with
which it is used.

"That in order to secure the antitodal efficacy of mercury against syphilis, it is
desirable to introduce a considerable quantity into the system, and to protract its
use over a very long time.

"That ptysialism and other evidences of the physiological action of mercury, so
far from being beneficial, are, if possible, to be carefully avoided, since they prevent
the sufficiently prolonged use of the remedy.

"That in cases in which the patient shows an idiosyncrasy, peculiarly suscep-
tible to mercury, the indication is to reduce the dose, rather than to omit the drug.
"That it is impossible to begin the administration of mercury too soon, and that it should be resorted to, without loss of time, in all cases in which a chancre shows a tendency to indurate."

"That many cases of indurated chancre, treated early by mercury, never show any of the characteristic symptoms of the secondary stage."

"That in other cases of mercurial cure of the chancre, in which yet secondary symptoms do occur, they are usually milder than if allowed to develope without specific treatment."

"That when mercury does not wholly abrogate the secondary stage, it exhibits a remarkable power in delaying it."

"That delayed outbreaks of secondary syphilis are to be regarded rather as proof that the administration had not been sufficiently persevering, than that the remedy was not efficient."

"That it is probable that the risk of tertiary symptoms is in ratio with the severity and prolonged duration of the secondary stage."

"That there are some grounds for believing that the tertiary symptoms of syphilis are both less frequent and less severe in those who have been efficiently treated by mercury, than in others."

"That mercury, cautiously given, does not, in a great majority of cases, do any injury to the general health, and that its local inconveniences may usually be prevented."

"That the doctrine of the real antidotal character of mercury in respect to syphilis, ought to lead to much more prolonged administration of it, with the hope of destroying utterly all lingering germs of the malady."

"That most collected statistics as to the duration of treatment and freedom from relapse, are misleading and worse than useless, because usually the treatment was far too short to be effectual."

"That it has not yet been proved that there are any special forms of syphilitic disease in which mercury ought to be avoided, although, as a rule, it is acknowledged that it must be used with more caution in all forms which are attended with ulceration, than in others."

"That iodide of potassium possesses little or no efficacy against either the primary or secondary forms of syphilis."

"That the efficacy of mercury is often most signally proved in cases which have utterly resisted the action of iodide of potassium."

"That it does not much matter whether the mercury is given by the mouth, by injection, or by the vapour bath, provided that whatever method is selected, care is taken to avoid salivation, purging, etc."

"That the doses usually resorted to for internal administration, are for the most part too large, and thus often necessitate a premature discontinuance of the remedy."

"That if one method of administration does not proceed satisfactorily, another should be tried; and that in no case of difficulty should the vapor bath be forgotten."

Many other writers agree with Mr. Hutchinson. Dr. Keyes of New York recommends the unremitting use of mercury for at least two years, and sometimes longer in small doses incapable of producing physiological effects. Dr. Keyes entertains the belief that syphilis can be eradicated.
Most of the forms of congenital syphilis of children succumb to mercury with singular rapidity. It is a common practice to give to children small doses, as a quarter of a grain of grey powder, and to add to it a small portion of Dover's powder to prevent relaxation of the bowels. But I am convinced that much larger doses of grey powder are more beneficial, and remove the disease far more quickly, and succeed, indeed, where the smaller dose fails. Thus one or even two grains of grey powder may be given three times a day, unguarded with opium, for it is the rarest thing for even these doses to purge; nay, if any diarrhoea exists, a not uncommon complication, these doses check it. Moreover, they may be continued for a considerable time, till every symptom has vanished, without producing any of the toxic effects of the drug. As a rule, however, one grain of grey powder thrice daily is sufficient. Those comparatively rare forms of congenital disease, where the periosteum is affected, usually near the articulation of some of the long bones, yield best to iodide of potassium (see this drug), though, as far as my experience goes, it is still necessary in most cases to resort to mercury to remove the other evidences of syphilis.

While admitting the validity of these views, it is necessary to say that sometimes syphilitic patients are apparently completely cured without mercury, by mere general treatment tending to improve the health; and further, if the health is kept in good order, the secondary symptoms will be of a mild character. Cases of syphilis occur, which are entirely uninfluenced by mercury, and are curable only by diligent attention to those hygienic circumstances which mend the general health.

When other means fail, mercurial fumigations, with steam, often cure certain obstinate syphilitic rashes.

The firmest believers in the efficacy of mercury in syphilis, are unanimously agreed that to give it in quantities sufficient to produce salivation, is not only undesirable, but pernicious; yet it appears that those preparations which salivate quickest, manifest the greatest power over the disease, and hence the metallic and mercurous preparations, as grey powder and calomel, are preferred by some to the mercuric, as corrosive sublimate.

To prevent or to mitigate an attack of sick headache, it is a common and often successful practice, to take a mercurial purge, generally in the form of a blue pill. For further suggestions as to the employment of mercury in this troublesome affection, the reader is referred to the section in podophyllum.
COPPER.

It was formerly thought that mercury salts were endowed with the power of controlling inflammation, and to this end they were constantly given, even to salivation; now, however, their use under such circumstances is much less general. Bichloride of mercury certainly appears to be of great use in iritis and inflammations of the deep-seated parts of the eye, and in other inflammations, especially of the serous membranes, it is probably of service, in checking the inflammation and promoting the absorption of effused products.

According to very high authorities, among whom may be mentioned Dr. Parkes, small doses of calomel may be most beneficially given in typhoid fever. It should be given at the commencement; some think it useless after the ninth or tenth day. It is considered to lessen the height of the fever, to shorten its course, to render the intestinal derangement much milder, and to check the diarrhœa. Some push the medicine till the gums are slightly touched; but this practice, not only unnecessary, but harmful, should be carefully avoided.

There are some observations, in part made by Dr. Harley, which tend to show that corrosive sublimate is a "heart-poison;" for the heart of an animal destroyed by corrosive sublimate soon ceases to contract after death; and the heart of a frog suspended in a solution of this salt, ceases to beat much sooner than a heart suspended in pure water.

Mercury remains a long time in the body, and may accumulate, so it is said, in globules in the cancellous structures of bone.

Mercury salts are to some extent eliminated by the urine, but chiefly by the mucous membrane of the intestines, and with the bile.

PREPARATIONS OF COPPER.

Applied to the unbroken skin, the soluble salts of copper produce no visible effect. They unite with the soluble albuminous substances on sores, forming an insoluble albuminate, which coats the surface, and, in an imperfect manner, may take the place of the lost cuticle. The thin pellicle thus formed, protects the delicate structures from the air, and the substances floating in it, and so promotes the healing process. Like many other metals, these salts condense the structures and constringe the blood-vessels,
and so lessen the supply of blood to the part, and may even arrest hæmorrhage from the smaller vessels. They act as irritants to the delicate tissues, producing slight inflammation, with some smarting pain.

To arrest bleeding, and as an irritant to indolent sores, the sulphate is most employed, either in stick or solution, or as an ointment.

Indolent forms of impetigo, after resisting the more usual applications, will sometimes yield to sulphate of copper.

In tinea tarsi the solid sulphate may be rubbed, often with conspicuous advantage, along the edges of the eyelids, the eyelashes having been previously cut off closely, and the scabs carefully removed. Indeed, in every case where slight stimulation is required, this salt may be used. Milder in its action than nitrate of silver, it excites much less pain.

The soluble salts combine in the mouth with the liquid albuminous substances of this cavity, and precipitate them more or less completely; but, if used in quantity more than sufficient to do this, the mucous membrane itself is attacked in a manner altogether similar to the abraded skin. These salts possess a metallic styptic taste. The sulphate, in the solid form, may be applied with advantage to the spots of psoriasis, simple or specific, or to indolent sores affecting the tongue. Painted in solution over the edges of the gums in ulcerative stomatitis, it generally quickly heals the ulcerated surfaces; but on the whole, dried alum is to be preferred.

A weak solution of this salt painted over the mucous membrane, will remove the white curdy-looking coating of thrush, and prevent its renewal.

The soluble salts in the stomach behave in the same manner as in the mouth, and if taken in large quantities, act as powerful irritant poisons.

These salts are emetic; the sulphate being speedy, and mostly effectual, is not unfrequently prescribed. A good way to give this salt as a vomit, is to administer it in small and frequently-repeated doses. It generally produces one copious evacuation, neither purging nor producing much nausea or prostration. It is supposed to exert an especial action on the larynx, hence it is sometimes given in croup, and when it is necessary to expel any obstructive substances from the glottis by the mechanical efforts of vomiting.

In moderate doses, the salts are astringent to the mucous membrane of the intestines. The sulphate, administered either by the
moutb or by injection into the rectum, is often effectual in staying severe chronic or acute diarrhoea, whether or not depending on serious organic disease.

Copper salts, taken for a considerable time in small quantities, are said to give rise to a condition not unlike that produced by lead; for example, colic, with alternating constipation and diarrhoea; and it is even said, paralysis of the upper extremities, undistinguishable from that of lead.

Salts of copper find their way into the blood, existing there probably as albuminates.

Drs. Levi and Barduzzi find that small doses of sulphate of copper promote assimilation, and increase strength and “flesh” in man and animals. They are used with benefit in erythema, eczema, scrofula, tuberculosis. Copper, therefore, appears to act physiologically and therapeutically much like arsenic, and like it, should be taken with, or soon after, food.

Copper salts have been given in cholera and epilepsy.

Solutions of the sulphate are employed in gonorrhoea, gleet, and leucorrhoea.

Copper is eliminated both by the urine and faeces.

PREPARATIONS OF ZINC.

The members of this group are employed in various ways as external applications.

Their common action is astringent and irritant; but on account of their different degrees of solubility, their varying affinity for water, and perhaps for the tissues, the several members of this group manifest these properties in unequal degrees.

The chloride and iodide, from their high diffusion-power and great affinity for water, are the most energetic, yet even these remain almost inert on the skin, unless the cuticle is first removed, when they permeate the tissues, and destroy them for a considerable depth. The chloride at first produces a sensation of warmth, which increases to a burning pain, lasting seven or eight hours, by which time the tissues are destroyed, and a white eschar is formed, which separates in from seven to twelve days. The chloride and iodide, as we have just said, have hitherto been regarded as the most energetic salts of this series, but recently Mr. Marshall, of
University College, has shown by experiments that the nitrate penetrates deeper than the chloride, destroying the tissues to a greater depth, and, according to the same authority, possesses the further advantage of producing less pain than the chloride. These three preparations, but especially the chloride, are applied to naevi, warts, condylomata, the skin affected with lupus, and the tissue of syphilitic ulcers.

The sulphate having a lower diffusion-power, its action is much more superficial. In common with the other soluble salts of zinc, it forms an insoluble compound with albumen, and by virtue of its astringency condenses the tissues and contracts the blood-vessels. As a stimulant and astringent it lessens the secretions, and promotes healthier growth of ill-conditioned, free-secreting sores or eruptions. In common with the chloride it is used as an injection in gonorrhoea or gleet.

A grain or two grains of chloride of zinc dissolved in a pint of water, and a little of this solution injected hourly during the day, is often useful in gonorrhoea, if treated at its very beginning, removing the disease in twenty-four to forty-eight hours. Rest, if possible, should be observed; but this is not indispensable. If the frequent injection causes any pain in the testicles, they should be suspended, and frequently fomented with hot water; if, notwithstanding, the pain continues and the swelling increases, the injection must be employed less often.

A solution so weak as the one recommended is no better, it may be said, than simple water; but the fact is, simple water does not cure with anything like the same rapidity. If some of this solution is taken into the mouth, and retained there a few seconds, it will produce a decided roughness of the mucous membrane; now, if the solution is strong enough to affect the mucous membrane of the mouth, it can certainly influence, in at least an equal degree, a similar, but more sensitive, structure in the urethra.

The carbonate and oxide are insoluble, or but very slightly soluble, in the animal fluids; and as these salts possess no affinity for water, their action on the tissues is very weak. They are, however, slightly astringent, and are useful on account of this property, in ointment, or in powder. The ointment of the oxide is used as a mild stimulating application in eczema and impetigo, when inflammation having subsided the raw surface is left in an indolent state, with very little disposition to heal. Both the oxide and carbonate are used as dusting powder, and are, perhaps, the best powders for this purpose; but, as a rule, greasy applications
are preferable. In inflamed conjunctiva, a weak solution of the sulphate dropped into the eye several times a day is often very useful. The same salt is occasionally employed as a gargle in relaxed sore throat, and is sometimes added to alum injections for leucorrhœa.

The more soluble preparations possess a metallic styptic taste. None are employed in diseases of the mouth. The chloride has been used to destroy the exposed painful pulp of decayed teeth.

The carbonate in large doses produces some nausea and vomiting; but a full dose of the sulphate acts much more speedily, is a safe emetic, producing little prostration or nausea, and generally empties the stomach in one complete evacuation. It is, therefore, the best emetic in cases of poisoning, being far preferable to the slow and unsure action of ipecacuanha. It may be employed as an emetic in bronchitis or croup; in bronchitis, to expel the mucus from the bronchial tubes; in croup, the false membrane from the larynx; but other emetics are mostly preferred. The sulphate may be employed as an emetic, or in doses short of the induction of vomiting, in painful affections of the stomach, dependent on chronic inflammation of the mucous membrane. No satisfactory explanation has yet been given of the action of zinc salts as emetics. They vomit even if mixed with albumen. Injected into the blood, the sulphate excites vomiting.

On account of its slight solubility, the oxide exerts but slight action on the stomach, little being dissolved unless much acid is present.

Dr. Brackenridge strongly recommends oxide of zinc in two to four grain doses every three hours in the diarrhœa of children.

The chloride is a corrosive poison. The sulphate, on account of its astringency, like most other metallic salts, may be employed in diarrhœa. Its action must take effect on the upper part of the canal, since the portion escaping absorption must be speedily converted into an inert sulphide. The stomach may become habituated to the ingestion of very large doses of the sulphate, to the extent even of forty grains thrice daily, without obvious bad results, or without inducing either nausea or vomiting, or apparently any alteration in the mucous membrane of the digestive canal. As it has been shown that superficial ulceration of the stomach may be produced, the prolonged employment of such doses is imprudent.

Zinc colic has been described with symptoms including constipation, vomiting, prostration with disagreeable taste in the mouth.
Zinc finds its way into the blood, and exists there probably as an albuminate.

The oxide and sulphate have been employed with advantage in epilepsy and whooping-cough. In bromide of potassium we now possess a better remedy for epilepsy.

Sulphate of zinc is often very useful in chorea. Like tartar-emetic, it succeeds best when given in doses sufficient to produce nausea, or even vomiting daily. To effect this, however, the dose must be rapidly increased, sometimes to the extent of two grains every two hours daily, and it is astonishing how much of this drug can be borne, for I have given fifteen and sometimes twenty-two grains every two hours without producing nausea. Thus administered this salt often effects striking improvement, but these heroic doses after a time excite pain at the pit of the stomach with loss of appetite, and when this happens, another emetic, like tartar-emetic, may be substituted. When given to excite nausea, it is a good plan to administer a dose before breakfast.

It is a noteworthy fact that most emetics are useful in chorea. Do they act by exciting the physiological state of nausea, or by their operation on the nervous centres through which emetics produce nausea? As improvement occurs in many cases independently of the induction of nausea, the latter suggestion is probably the more feasible.

Zinc salts are reputed to be powerful "nervine tonics," a somewhat vague expression, meant, I suppose, to imply that they promote the nutrition of the nervous system, and some authorities attribute to this property the influence of these salts in chorea. In certain forms of hysteria zinc salts are useful, especially in the shape of the valerianate.

These substances are reputed to be antispasmodic. When they produce nausea no doubt they indirectly act thus; but it is doubtful whether non-emetic doses are efficient antispasmodics.

The oxide in two to four grain nightly doses often controls profuse colliquative sweating. It is said also to check the profuse secretion from the bronchial mucous membrane in some forms of bronchitis.

Dr. Hammond recommends oxide of zinc, in two to five grain doses, for nervous headache.

This metal does not become fixed in the body, nor does it, like lead or mercury, produce chronic affection. Zinc salts are eliminated from the body less rapidly than some other metals, passing out in small quantities only by the urine. It has been asserted that
very little of the salts pass into the blood, which may be true; but
the fact that the chief part may be re-obtained from the faeces is no
proof of this statement, as zinc, like many other metals, is proba-
bly excreted by the mucous membrane of the intestines, and with
the bile.

PREPARATIONS OF ANTIMONY.

Tartar-ematic, in the form of ointment, excites in the skin a char-
acteristic inflammation, at first papular, then vesicular, and lastly
pustular. The rash thus runs the course of the eruption of small-
pox, and in each stage simulates it very closely, though there are
points of difference distinguishable to a practised eye. Like small-
pox eruption, this rash often scars; moreover, the capricious and
painful action of this ointment renders it an unsuitable external
application.

Tartar-ematic ointment used years ago to be employed, though
now very rarely, as a counter-irritant to obtain a powerful persist-
tent action; for instance, to the scalp in tubercular meningitis.

Chloride of antimony is a powerful escharotic, but it produces
an ill-conditioned, slow-healing sore.

Tartar-ematic being the most used member of this group, our
remarks, except when the contrary is stated, will apply to this
preparation.

After small medicinal doses the stomach experiences a slight
sensation of soreness—a sensation easily mistaken for hunger.
Pushed yet further, the drug produces increased secretion of
mucus from the stomach and intestines, to the extent of inducing
numerous moist motions; and diarrhea with colic may set in.
The bronchial mucous membrane also yields an increased secre-
tion, and probably the secretion of the whole mucous tract is aug-
mented.

Antimony is never used as a purgative; in fact, opium is fre-
quently given in combination with tartar-ematic, expressly to pre-
vent purgation. Large doses excite nausea and vomiting. As an
emetic, tartarized antimony produces considerable depression, with
much nausea in a greater degree than most other emetics; and
the repeated vomiting is accompanied by great straining. Its
action is somewhat tardy, sometimes twenty minutes to half an hour, hence in cases of poisoning it is an unsuitable emetic.

Majendie has shown that when injected into the veins tartar-emitic excites nausea even after the removal of the stomach and its substitution by a pig's bladder; hence it has generally been held that this salt produces vomiting, not by its effects on the stomach, but on the nervous centres. Grimm, who is confirmed by Kleimann and Simonowitsch, finds that when injected into a vein, it excites vomiting more slowly, and a larger dose is required than when administered by the stomach, whence he concludes that it produces vomiting by its effects on the termination of the nerves of the stomach. He disposes of the difficulty raised against this view by Majendie's experiment, by assuming that tartar-emitic excites nausea, by its effects on the termination of the nerves of the oesophagus and intestines. Other observers explain the foregoing facts by the supposition that tartar-emitic acts both through the terminations of the nerves of the stomach and directly on the centre for vomiting.

Tartar-emitic was formerly employed to induce muscular weakness and relaxation of spasm, to facilitate the reductions of dislocations and hernia, but in such cases chloroform has now completely superseded it.

Trousseau taught that food influences greatly the action of antimony, a low diet favouring the production of its constitutional effects, and a full diet its emetic and purgative effects. Its action is further modified by the quantity of water administered with it; this being small, vomiting takes place, if large, diarrhoea. Trousseau further observed that certain substances modify the effects of antimony; for wine and acid fruits, both fresh and preserved, develop its emetic and purgative properties.

The soluble antimony compounds easily enter the blood, but the form they assume there is unknown. Possibly the oxide of the metal, either in the stomach, intestines, or blood, combines with albumen, forming an albuminate. Antimony compounds, it is said, do not combine with albumen, except in acid solutions, when an insoluble compound is formed.

In antimonial poisoning there is great motor and sensory paralysis, and loss of reflex action. The loss of reflex action and motor power Radziejewski shows is due to the effect of the tartar-emitic on the cord. This salt also powerfully affects the heart, in the frog slowing and then arresting it in diastole; and it affects the heart of warm-blooded animals in the same way. The arterial
pressure falls greatly. Whilst the pulse is slow the diastolic pauses are long, but each beat influences the mercurial column of the cardiometer five times more than normal. After a large dose the pulse at last becomes very frequent and feeble, and the heart stops in diastole. Tartar-ematic directly affects the heart; affects it even when the heart is removed from the body. Radziejewski has shown that the ends of the vagi are paralyzed, and Ackermann that the contractility of the cardiac muscle is destroyed (Wood).

In the *Journal of Physiology* I have published in conjunction with Mr. Murrell some experiments showing that tartar-ematic, like potash salts, arsenious acid, aconitia and hydrocyanic acid, is a protoplasmic poison which destroys the functions of all the organs of the body in the order of their vital endowments. We have shown that the general paralysis which ensues in a frog in the hypodermic injection of tartar-ematic, is due to the action of the drug on the spinal cord, thus confirming previous experimenters; and that tartar-ematic is also a direct paralyzer of the motor nerves, and of the muscles. Our experiments confirm the conclusions of previous observers concerning the action of tartar-ematic on the muscular substance of the heart.

We have thus shown that tartar-ematic paralyzes the central nervous system, the motor nerves, the muscles, and destroys sensation, and therefore we are led to infer that probably tartar-ematic is a protoplasmic poison, destroying function in all nitrogenous tissue. Our experiments, however, fail to show whether it manifests for all nitrogenous tissues an equal affinity, or whether it has a special action on some.

As in the case of potash salts, arsenious acid and aconitia, tartar-ematic, we suggest, weakens or paralyzes the heart through its action on all the tissues, ganglia, nerves, and muscular substance of this organ, affecting first the ganglia, then the nerves, and last the muscular substances.

Tartar-ematic is a general as well as a cardiac depressant. The general depression is usually attributed to the action of the drug on the heart, but, as antimony is a poison to all nitrogenous tissues, I would suggest that its depressing action is due also to its effects on the central nervous system, the nerves, and the muscles.

We noticed a peculiar effect of tartar-ematic on the skin. In a few hours the cuticle of a poisoned frog became softened and gelatiniform, too soft to be stripped off, though it could be easily scraped off every part of the body. Even small doses soon produce this remarkable effect, for in one experiment the skin, after a small
dose, became in this condition even whilst the animal could still crawl pretty well.

Miss Nunn, under the direction of Dr. Michael Foster, has carefully worked out the effect of tartar-ematic on the skin, and the results are published in the *Journal of Physiology*, 1878. I shall refer to her investigation in the article on arsenic.

It has been proved experimentally that the administration of tartar-ematic increases both the insensible perspiration and the vapour from the lungs, but chiefly the secretion from the skin; and since at the stage of nausea all emetics increase the sweat, it is difficult at present to decide whether tartar-ematic has in this respect any special influence. Tartar-ematic wine is commonly given as a diaphoretic in fevers.

Under the influence of tartar-ematic, carbonic acid and urea are both eliminated in greatly increased quantity. Whether the antimony is to be considered a mere eliminator of these excrementitious substances, or whether it likewise increases their formation, is not determined, as the experimental evidence is as yet inadequate to decide this question.

In common with other emetics, antimony is sometimes given in large doses, to produce profuse nausea and vomiting, and many eminent authorities, among whom ranks Dr. Graves, hold that the strong impression thus made on the system will cut short acute specific fevers and inflammations. Graves held that typhus might be thus summarily checked. The period for the exhibition of emetics, he states, is very short; for they will not succeed after the lapse of twenty-four or thirty-six hours from the occurrence of the rigor.

Many cases of ague may be cured by the impression emetics make on the system. An emetic administered each morning will help the action of quinine, for cases, rebellious to quinine alone, often yield immediately to the joint action of quinine and emetics. Ipecacuanha and other emetics should be preferred to antimony.

Antimony will not lower the temperature of the body of a healthy person, if one experiment may be accepted as sufficient to settle this point. To a strong young man I gave tartar-ematic in half-grain doses every ten minutes for nearly seven hours, inducing great nausea and vomiting, with profuse perspiration; but during the whole time his temperature remained remarkably constant, varying not more than 0.4 Fahrenheit, an amount of deviation frequently observed in health.

Tartar-ematic acts in many respects like aconite given in \(\frac{3}{10} \) to \(\frac{1}{2} \)
\(\frac{1}{3}\) grain doses each hour to a fever patient it produces copious perspirations and slows the pulse, and with the perspiration restlessness, etc. disappear. In \(\frac{1}{3}\) grain doses it often excites troublesome sickness, even in adults, and it is better therefore to begin with a \(\frac{1}{3}\) to \(\frac{1}{6}\) grain. In my experience aconite, tartar-emetic and carbonate of ammonia are the most powerful diaphoretics in fever, and next though a long way inferior acetate of ammonia.

Of late years antimony has been much employed in acute pneumonia, and the general experience of the profession is strong in its favour. Discretion, however, must be used in adapting the dose to the strength of the patient, who if weak, must meanwhile take alcoholic stimulants. Under the influence of antimony, the pain in the side gives way, the expectoration from rusty, changes to bronchitic, the pulse and breathing become reduced in frequency, and in many cases the further spread of the inflammation is checked.

Other kinds of acute inflammation may be similarly treated, although the good results are not so apparent as in pneumonia. Unless the tartar-emetic is given at the very beginning, its power to control pneumonia is much less marked.

Antimony will shorten and moderate attacks of feverish cold, tonsillitis, pleurisy, orchitis, bronchitis, puerperal peritonitis inflammation of the breast, whitlow, and other inflammatory affections.

Antimony is serviceable in chronic bronchitis, when the expectoration is copious, frothy, and difficult to expel.

In the following disease tartar-emetic is invaluable:—

A child six to twelve years old, on the slightest exposure to cold, is attacked with much wheezing and some difficulty of breathing, sometimes so urgent as to compel him to sit all night propped with pillows. The expectoration may be pretty abundant, but a child of this age does not generally expectorate. On listening to the chest, there is heard much sonorous and sibilant with perhaps a little bubbling, rhoncus; but this last is often absent. The wheezing is audible for a considerable distance, and sometimes the noise is so great as to be heard many rooms off. Occasionally the cough is troublesome, and on each exposure to cold the voice may become hoarse, and the cough hollow and barking. Some children become thus afflicted whenever the weather is cold, even in summer, and may not be free the whole winter; with others the attack lasts only a few weeks or days. This affection sometimes follows measles. It is compared by the mother to asthma, with which if not identical, it is certainly allied.
ANTIMONY.

The best way to administer this salt is to dissolve a grain of it in half a pint of water and to give a teaspoonful of the solution every quarter of an hour for the first hour, afterwards hourly. If the wheezing comes on at night, it is sufficient to give the medicine at this time only. The good effects of the medicine become speedily evident; for on the very first night it often greatly benefits the child. So small a dose, it may be thought, must be inefficacious, but when first given it generally produces vomiting once or twice in the day, and, as it is not necessary to produce sickness, the dose in this case must be still smaller.

There is, however, an affection unaffected by tartar-ematic some-what similar to that just described, which it is necessary to discriminate from it. It occurs in children a few months old, and consists of a loud rattling, which is obviously caused by mucus in the throat or larynx. In some cases the rattling is worse in the day, but is usually worse at night. There is no bronchitis, or if there is, this is a mere coincidence; nay, sometimes on the occurrence of bronchitis the complaint in question ceases for a time. It is brought on and aggravated by cold, and may last, with some fluctuations, many months.

Antimony in small hourly doses is very useful in the acute catarrh of children, sometimes accompanied by vomiting and diarrhoea, probably due to catarrh of the intestines. The intestinal canal is sometimes the first attacked, but most frequently the lungs are first implicated. The tartar-ematic generally quickly stays the vomiting and diarrhoea, but often takes a longer time to control the bronchitis.

Antimony acts as a depressant on the heart partly through its nauseating influence weakening and increasing the frequency of the contractions.

Graves employed antimony in typhus and other fevers, when there is much excitement and furious delirium, symptoms which are generally subdued by the exhibition of this drug. As wakefulness is a concomitant symptom, being indeed the cause of the excitement and delirium, opium should be added to the antimony. The combined influence of these remedies calms the excitement, and induces refreshing sleep, out of which the patient wakes refreshed and free from delusions. Judiciously employed, these remedies may save an almost hopeless life. Each drug appears to assist the action of the other; and the relative doses must be determined by the circumstances of the case. In furious delirium the tartar-ematic must be given in full, and the opium in small
quantities; while, if wakefulness predominates with not very boisterous delirium, the dose of tartar-emetie must be reduced, and the opium increased.

Graves advises one fourth to one-half a grain of the salt every hour or two hours, to be discontinued when it produces bilious stools. This treatment is very useful in the delirium which usually sets in about the ninth or tenth day of typhus.

The mania and sleeplessness of delirium tremens generally gives way to the same treatment.

Puerperal mania may be treated in the same way, although probably bromide of potassium and chloral give better results.

Tartar-emetie given to the extent of producing nausea and vomiting once or twice a day is sometimes useful in chorea. (See Sulphate of Zinc.) Increasing doses must be given, as the system appears soon to tolerate it. Other remedies, however, are more efficient.

In strumous ophthalmia, tartar-emetie may be given with advantage, in doses of 1-36th to 1-48th of a grain three or four times a day. Sharp purgation at the commencement of the treatment is highly useful.

In acute poisoning by tartar-emetie, violent and continuous vomiting occurs, accompanied with a diarrhoea of bilious and bloody stools, and sometimes the common symptoms of gastro-enteritis, and sometimes of peritonitis, are present. The prostration is intense, and profound and repeated faintings take place. The respirations and the pulse are said to be reduced both in frequency and in strength; others assert that the pulse is more frequent.

The post-mortem appearances are inflammation of the stomach and intestines, but not often of the gullet. The peritoneum may be, and, according to Harley, the rectum often is, inflamed, and some inflammation of the lungs is usually observable, tending to make it probable that tartar-emetie exerts an especial action on these organs.

In the treatment of poisoning by tartar-emetie, the vomiting should be promoted by warm demulcent drinks, while strong tea or coffee, tannin, or decoction of oak bark, should be diligently administered.

The statements concerning the influence of antimony on the urine are conflicting. The probable effect of tartar-emetie on this excretion is to lessen the amount of water and of chloride of sodium, owing to increased perspiration. The urea is greatly increased,
ARSENIC.

apparently in proportion to the dose of the antimony, so is the pigment and uric acid, but in a less degree.

The golden sulphuret increases all the constituents of the urine, especially the urea and sulphuric acid. (Parkes on Urine).

Antimony is separated chiefly by the kidneys; some, however, passes with the bile, and perhaps by the intestines. A portion is retained in the body.

PREPARATIONS OF ARSENIC.

Since all arsenic salts produce the same symptoms, it is probable that in the blood they ultimately assume the same form.

Dry arsenious acid produces no changes in the unbroken skin, but in wounds or sores it excites very active inflammation, sufficient, if the application is a strong one, to destroy the tissues for some depth. Arsenious acid has long been used to destroy warts, condylomata, cancerous growths, the nerve of a carious tooth, &c.

It may be applied pure, or mixed in variable quantities with some bland powder, as starch. At times this application has enjoyed a high reputation, whilst at other times it has fallen into almost complete disuse. Some have fallen victims to this treatment, it is said, through the absorption of arsenic in sufficient quantity to destroy life, but an untoward result like this can occur only when certain well-known precautions are disregarded. Absorption can be effectually prevented if sufficient arsenic is employed to excite active inflammation; for inflamed tissue loses the power of absorption more or less completely. Produce active inflammation, and the patient is safe; but if, through fear of poisoning, too little arsenic is used, that is the most efficacious way of doing what it is desired to avoid. Surgeons, experienced in the employment of arsenic, recommend that, if the tissues to be destroyed are extensive, the arsenic should be applied to a part only of the surface at a time. When employed to remove large growths like cancer, the skin being unbroken, incisions are first made, and into these the arsenical paste is laid, which soon stirs up active and deep-seated inflammation, and the growth dies for a considerable depth. The whole tumour often sloughs away from the healthy tissues—is in fact enucleated—leaving a clean and healthy sore, which heals without trouble in fifteen to thirty days.

Lupus and other obstinate skin affections may be treated in the same way.
Arsenious acid and powdered acacia, of each an ounce, blended with five fluid drachms of water, form an arsenical mucilage much used by Dr. Marsden to remove epitheliomatous growths. Some of this arsenical mucilage is to be painted over the tumour night and morning; great care being taken to limit its employment to the diseased tissues. Each application, covering not more than a square inch, is to be several times repeated, and the separation of the sloughs aided by poulticing.

The following powder may also be used:—Fresh lime, half an ounce; yellow sulphide of arsenic, 20 grains; starch, 180 grains. The arsenic should constitute one-fifth or one-sixth part of the arsenical powder, so as to insure the excitation of sufficient inflammation to prevent poisonous absorption. This powder may be also cautiously used as a depilatory.

Liquor arsenicalis painted over warts is said to cause them to disappear, and a limited experience leads me to believe that the arsenic does appear to disintegrate the wart, so that pieces of it drop off, or can be picked out. If very large it must first be dissolved away with strong nitric acid, to allow the liquor arsenicalis to come in contact with the softer tissues below. It has appeared to me to be also a useful application to corns. The corn should be well pared down and the liquor arsenicalis applied thrice daily. This treatment I have seen greatly improve even hard corns on the sole of the foot.

An arsenical bath is useful in some forms of rheumatoid arthritis. It is made by adding to the water in an ordinary general bath four ounces of common washing soda and twenty grains of arseniate of soda.

Arsenic has a sweetish taste. In moderate doses it apparently neither undergoes nor produces any changes in the mouth. Dentists employ it as an escharotic to destroy the exposed sensitive pulp of decayed teeth, or to destroy the pulp before stopping the tooth. If used to quell pain, the arsenic may be mixed with opium; it sometimes at first aggravates the pain.

We see chiefly in children and occasionally in adults a circular rash on the tongue, which begins at a point, then enlarges, and separate rings may coalesce. Sometimes the edges are not raised, and the patch looks as if due merely to separation of epithelium, leaving the surface unduly clean and smooth; in other cases the edges are raised, and have a gelatinous aspect. This affection is often very obstinate, frequently recurring, and is generally connected with stomach or intestinal disturbance; some cases being
always associated with diarrhœa. Other cases are associated with a rash over the body like lichen urticatus. In this affection of the tongue, arsenia has appeared to me to be useful.

The vapour of arsenical cigarettes drawn into the lungs is sometimes useful to prevent or to lessen attacks of asthma. -Care, of course, must be exercised in their manufacture. Trousseau advised the smoking of cigarettes made of paper "saturated with a solution containing half a drachm or a drachm of arsenite of soda in three drachms of water. Such inhalations, we should suppose, might be mischievous, unless closely watched. (Stillé).

These cigarettes may be used in chronic pulmonary affection.

Arsenic given in medicinal doses is very effective in sloughing of the mouth or throat, malignant sores, as cancrum oris, malignant sore throat, and the like. It is also useful in chronic coryza.

There are certain curious complaints of the respiratory tract more or less allied to asthma, which I will now refer to. In these cases of quasi-asthma a dose of one, two, or three drops of the solution of arsenic three times a day often proves serviceable.

I. A patient is seized perhaps, daily, or even several times a day, generally in the morning directly on rising or soon after, with an attack of persistent sneezing, with profuse running from the eyes and nose, accompanied sometimes with severe frontal headache. Each attack may last several hours. Several days sometimes elapse before the recurrence of an attack, which is then usually severe, lasting twenty-four hours, or even longer. The sneezing is generally accompanied, and sometimes preceded, by itching at a small spot situated inside one or both nostrils, not far from the orifice, but in some cases the itching affects the whole of the inside and outside of the nose, extending even to the face. These attacks are excited by exposure to cold, by dust, and sometimes from unascertainable causes. The disease may endure for years.

II. We occasionally meet with cases, apparently identical with that just described, but with this difference—the attack is excited by food, is most severe after the larger meal, and lasts from twenty to forty minutes. One patient felt itching in the nose, throat, and ears, in distinctly periodic monthly attacks, worse in summer. This attack was brought on by food, but a chill sometimes brought on a paroxysm.

III. Arsenic is invaluable too in another more developed and severer form. We not seldom find a patient, prone to catch cold, attacked with severe and repeated fits of sneezing, accompanied with profuse clear nasal discharge, and severe frontal headache.
Each attack, generally worse in the morning, lasts a few days; but, owing to the great susceptibility to cold, it frequently recurs. Severe itching of the ala of one or both nostrils often forewarns the patient of an approaching attack. A simple irritant like dust may be adequate to excite a paroxysm. Continuing in this form for some time, occasionally for years, the affection may then extend from the nose, along the throat, to the lungs, producing sore throat, soon followed by much difficulty of breathing, great wheezing, and free expectoration. The lung affection may last for some weeks. When this severe form has become established, the lungs may be attacked without any preliminary affection of the nose or throat.

IV. Again, among children, we not uncommonly meet with a similar, and perhaps, identical disease. A child, perhaps six months old, undergoes a severe attack of bronchitis, and thenceforth becomes very prone to catch cold. Then, on catching cold, he is seized with frequent and incessant sneezing, lasting a variable time, sometimes a few hours, sometimes three or four days, and resulting in bronchitis, accompanied by much fever, wheezing, and great embarrassment of breathing, severe enough even to compel the patient to sit up in bed. The coryza may sometimes precede the dyspnoea three or four days, the shortness of breath continuing for many days or even weeks after the cessation of the coryza. It is, indeed, a form of asthma. The child encounters many attacks in the year, especially during the winter, and may continue liable to them for years, and then, perhaps, lose them, or they may engender life-long asthma.

V. Or we meet with cases like the following:—A patient suffers from asthma for several years, and then is seized with severe attacks of sneezing. These attacks, strange to say, may not occur coincidently with the paroxysm of dyspnoea, the sneezing takes place in the morning on rising, whilst the difficulty in breathing comes on in the afternoon, or at night.

These cases appear related on the one hand to bronchitic and dyspeptic asthma, and on the other hand to hay fever. They are allied to the bronchitic form of asthma, being excited by dust, cold, and direct irritants; and to bronchitic asthma through those cases where the paroxysmal coryza is always accompanied by bronchial asthma; and again, to bronchitic asthma, through those cases commencing as paroxysmal coryza, the disease extending and becoming complicated with bronchial asthma, or vice versâ. To the peptic forms of asthma this paroxysmal sneezing is re-
lated, through those cases where the attack is excited by food; and those where the patient, a confirmed asthmatic for many years, then becomes afflicted with paroxysmal coryza, induced by food, the asthma at last ceasing, the coryza alone remaining. This typical case further illustrates the connection between paroxysmal sneezing and dyspeptic asthma; a child since six months old, is subject to attacks occurring every few months, most common in winter, beginning with not very severe sneezing, lasting from a day to a week, often, but not invariably, followed by an attack of bronchitis, with much difficulty of breathing, and fever. Even when free from an attack, the child, after a full meal, suffers from stuffy breathing.

The following cases, occurring in the course of four generations in the same family, show the intimate connection between the intermittent sneezing and asthma, for asthma was followed in the grandson by hay-asthma, and he begot an asthmatic child, who suffers all the year round from severe attacks of itching and sneezing, not due to pollen, as was the case with his father; one patient showing that even hay-asthma may be influenced by climate, whilst his son especially exemplified the intimate connection between intermittent sneezing and asthma, for in his case, both co-existed, and both were peptic in kind, being each greatly and mainly influenced by diet, and in the case of his father also by climate.

Mr. H., aged 35. His grandfather was asthmatic for years, dying, close upon 80 years of age. Mr. H. himself suffered from hay-asthma from babyhood. The attacks occur only in the spring during the hay season, and last six weeks. If he goes into a hay-field, nay, near one, he is stricken immediately with a severe attack of intense itching of the whole inside of the nose, and of the entire conjunctiva of both eyes, (though not over the frontal sinus), and of the throat, accompanied by violent sneezing, and profuse discharge from the eyes and nose. His eyes become bloodshot, and the lids swell sometimes to such an extent that he can scarcely see. His breathing is very difficult, and without expectoration. So intensely susceptible is he, that a field a great distance off will affect him; nay, if his children play in a hay-field, and then come indoors, he will have an attack. Other flowers besides grass or roses, etc., at this time will bring on a mild attack, but at no other time of the year. Strong sunlight also induces them unless protected by large dark-glassed spectacles. Strange to say, that whilst severely affected in Sussex, his native county, he is quite free in Windermere, in Scotland, and in Devonshire, even though the grass is in full bloom. Thus, on one occasion when suffering from a severe attack, he started for Linton, in North Devon, and after leaving Barnstaple, he began to improve more and more, and while at Linton he was quite free, though the house he lived in was close to a grass field in full blossom. On one occasion, whilst yachting in St. George's Channel, but not till the fourth day from land, he was seized with a severe attack. For the last four years he has inhaled quinine spray through his nose with marked benefit. His sister, 24 years old, has had hay-asthma for the last four years. His son, aged 10, has suffered from severe asthma since a sharp attack of bronchitis when three years old. He suffers all the year round almost continuously from severe itching
inside the nose, in the eyes, throat, ears, and under the chin. When these symptoms are aggravated, he has severe sneezing, with rather free discharge of clear fluid from his nose. Any kind of dust aggravates the symptoms, but not especially pollen. He suffers also from wheezing, and when the itching and sneezing are aggravated from much difficulty of breathing and violent cough.

All these symptoms are very greatly influenced by food: thus, the itching, etc., and the dyspnoea, are always aggravated by pastry, sweets, and especially by a heavy meal taken in the evening or late at night. He has been much worse since an attack of the measles three months ago, and subsequently, any food, even bread and butter, increases both the itching and the difficulty of breathing. He does not easily catch cold at Brighton, where he is always free from all his troubles, and on one visit to Linton he lost all his symptoms during his sojourn there. His stomach has lately been very delicate, so that he vomits very readily. He is very flat-chested and round-shouldered, he wheezes loudly, and his expiration is very greatly prolonged.

The following interesting and instructive family history, throws much light on the affinities of these curious complaints. A woman, when young, suffered from bronchial asthma, which left her for some years, and then she became affected with hay-asthma. She bore two sons. One, aged nineteen, has suffered for two years every morning during the summer, from violent attacks of sneezing, and profuse watery discharge. These attacks are not excited by hay nor the smell of flowers.

Another son, aged thirty, has been subject to asthma and bronchitis since five years of age. It began, and for a long time continued, of the same character as that so often seen in the commencement of asthma, especially in young children, beginning by an attack of cold in the head, with fever, lasting about three days, followed by about nine days of asthma. (See Aconite.)

The bronchial asthma of the mother was most severe in the winter. From this she quite recovered, and remained well for several years; but during the last ten years, she has suffered from well-marked hay-asthma, the attacks being apparently solely due to hay.

Her son, aged 19, for two years has suffered from violent attacks of sneezing and much running from the nose, the paroxysm lasting sometimes for hours. They are accompanied by much itching of the whole inside of the nose. There is no dyspnoea or wheezing. These attacks occur chiefly in the morning, directly he gets up, but they may seize him at any hour of the day. He can go into a hay-field, or smell flowers, without producing the slightest trace of an attack. They are brought on by dust and strong sunlight; these being the only causes he has detected, but he cannot account for those attacks beginning directly he gets out of bed. The complaint lasts the whole summer, leaving him in the winter. The attacks are not affected by food.

His brother, aged 30, has suffered from bronchitis and asthma since five years old. At first the attacks began with cold in the head and fever, without much sneezing. This stage lasted about three days, when his throat became slightly
sore, and next, bronchitis set in. To use his own words, he has generally three
days' cold in the head, and nine days' asthma, though sometimes the asthma
lasted much longer, indeed, sometimes continuing for months. As he has grown
older, the attacks have undergone considerable modification. The chest symp-
toms begin with a cold in the head, or may occur without it. He is obliged to
take the greatest care, for the chill brings on an attack. Strange to say, con-
ditions which at one time induce an attack, are inoperative at another. Thus,
he can sometimes join a hay party without being affected, yet at other times,
going into a stable, or passing a hay cart, not to mention going into a hay-field,
brings on a violent attack. Dust, as house dust, builders' dust, excite an attack;
so does strong sunlight or flowers. An attack induced by any of these agents,
consists in itching of the nose, violent sneezing, with profuse discharge from eyes
and nose, the itching and discharge being usually most marked in the left nostril,
though sometimes the right nostril is implicated. In addition, he suffers from
dyspnoea. The coryzal symptoms always occur in the day, the dyspnoea at
night. When troubled with asthma, the dyspnoea is considerably aggravated
by food, which, however, at any other time, does not produce any tightness of
the breath.

Strong black coffee, even the smell of it, immediately relieves the dyspnoea, but
is without effect on his coryza.

The fumes from Himrod's powder, wonderfully relieve both the coryza and
dyspnoea. All inhalations with the foregoing exception, "tighten him up every-
where, even in his nose and throat."

In some cases, sneezing, with its complications, appears to be
limited to the nasal part of the fifth nerve, or even to a very limited
portion of it. In other cases, after continuing in this form for some
time, the throat branches of the fifth may become involved, and
subsequently the vagus; or vice versa, beginning at the vagus, it
may involve the fifth; and in either case the disease may quit the
nerve originally affected, an incident most common when the attack
first affects the fifth nerve. Indeed, in my experience, this is not
an unusual way for asthma to begin in children; and as they grow
up, the coryzal symptoms cease, and ordinary bronchitic asthma
alone remains.

On the other hand, these cases of paroxysmal coryza are related
to hay-asthma, which, indeed, appears to be the same disease, but,
owing to the patient's idiosyncrasy, the attack is induced only by
the pollen of plants; the similarity between these affections being
shown by the fact, that in each the mischief may be limited to the
nose, frontal sinuses, and eyes, or extending further, may involve
the lungs.

Mr. Blackley, in an admirable paper, shows, that in his own
case, and in some other instances, hay-asthma is solely due to the
irritant effects of the pollen of plants. He conducted an extensive
series of experiments with the pollen of many grasses, cereals, etc.,
and found that all are capable of exciting an attack, although some kinds of pollen are more active than others. The pollen of poisonous plants is not more virulent than that of harmless plants; indeed, he finds that pollen of solanaceous plants will excite a slight fit, while the pollen of wheat excites a very severe attack. In his own person, and some other cases, he clearly shows that all the agents hitherto supposed to be severally productive of asthma, as ozone, heat, strong sunlight, the volatile principle on which the odour of plants depends, oleo-resins, dust, unless it contains pollen, are powerless to produce a paroxysm. In other cases, it appears that one or more kinds of pollen only will produce the attack. Thus, rose-pollen excites the attack only in some patients; and it is said that in America, Roman wormwood is a frequent cause. Hay-asthma and the diseases just described are indeed identical, but owing to individual idiosyncrasy, the attack is induced in one person by one irritant, and in another by a different irritant. In some cases, the attack, as we have seen, is induced by pollen, in other cases, by ipecacuanha, or by animal emanations, as from rabbits, cats, horses, the smell of mustard, feathers, or a privet hedge, etc. Dr. W. Smith, of Preston, narrates a case in which a linseed poultice provoked the symptoms of hay-asthma. Simple dust will occasionally excite these symptoms, and sometimes one kind of dust only. Thus, a middle-aged man, an ironmonger, had suffered from paroxysmal coryza and asthma for two years, the attacks being brought on only by the dust of his shop; whilst other kinds of dust, as that of a road, failed to affect him; nor did flowers, grasses, etc., nor sunlight. This case was singular in this respect, that whilst only the dust of his shop excited coryza and asthma, yet in certain localities he suffered at night from simple asthma without coryza. Notwithstanding Mr. Blackley’s careful and elaborate experiments, I cannot help believing that sunlight and great heat will in some persons bring on an attack without the intervention of pollen. It is well known, of course, that strong sunlight and great heat will much aggravate the attack induced by pollen.

The itching and tingling which generally accompany paroxysmal sneezing, no matter what their exciting cause, may affect the whole or any part of the nose. Sometimes the tingling and itching are felt near the orifice, or inside under the bridge, and may extend to the cheek or to the eyes, now and then only to the inner canthus, and may be limited to this part, or they may affect also the palate or throat. I remember the coryza in one case was accompanied...
and probably excited by itching of the nose and soft palate, and that iodine inhalations at once removed the coryza and nasal itching, but left unaffected the itching of the palate, which ceased at once on the application of a little nitrate of silver.

It is interesting to observe the very different degrees of development of the disease. In certain cases, the attack in some seasons appears to be limited to paroxysmal severe itching of the inner canthus. In other cases, even of true "hay fever," the irritant excites only this itching of the inner canthus; though at other times it also excites paroxysmal sneezing; or the attack may at first be limited to the itching, but as it goes on, sneezing and profuse watery discharge are superadded. In other instances, besides the itching and sneezing, the patient suffers from bronchitis and dyspnœa. In another group of cases the irritant only excites bronchitis and dyspnœa. In yet another set of cases, a patient has violent attacks of sneezing, generally occurring in the morning without any itching; and in one instance, a lady had each morning profuse watery discharge literally running from her nose, lasting half an hour, without itching or sneezing, this discharge always ceasing immediately her bowels were relieved. This itching generally yields to iodine inhalation, even when it fails to arrest the paroxysmal sneezing.

This affection may be likened to neuralgia of the branches of the fifth, supplying the inside of the nose, but instead of pain, there is intense tingling or itching, which induces violent sneezing and profuse discharge. As in the case of a neuralgia, we can imagine the affection in question to depend on (1) an excitable condition of the termination of the nerve; (2) of its trunk; or (3) of part of its centre. In the first category, a normal stimulation produces a very powerful effect on the terminations of the nerve; in the second, a natural impression becomes intensified in its passage along the nerve; in the third, it becomes intensified on reaching the excitable nucleus, (see remarks on neuralgia in section treating on counter-irritation), and the resulting urgent tingling induces sneezing and the accompanying phenomena. It is also conceivable, that in certain cases the fault lies in the centre for sneezing, this being in an excitable state, so that a normal stimulation of the nasal branches of the fifth, induces violent sneezing. It is often difficult to decide where the fault lies, whether in the termination of the fifth, its trunk, or its nucleus, or in the centre for sneezing. When the attack is provoked by pollen dust, smoke, animal emanations, or the smell of a linseed poultice, it is impossible to localize
the seat of the disease, but sometimes this must be in the central nervous system itself, as the following case illustrates:—

Mrs. M., aged 32, has suffered from attacks of sneezing for three years. These attacks occur at intervals all the year round, but are worse in winter, and are brought on chiefly by cold air or draught. Directly she gets out of bed, whether in the middle of the night or in the morning, then on comes the attack and lasts two or three hours. The least draught will bring it on at any time of the day. Dust or smoke induces an attack, and the dust, on sweeping her room, brings on a violent fit. Strong sunlight, or certain flowers, as lilies, induce a milder attack, very slight compared to one caused by dust. Excitement, fatigue, or worry bring on an attack. The sneezing is very violent, and almost incessant; the discharge from the nose, chiefly from the right nostril, is profuse, and her eyes run copiously. The attack is always accompanied by intense "tickling" of the whole inside of her nose, much more severe in the right nostril, and always commences on that side. The itching extends to the inner part of her eyes, but is not felt in the eyelids. She has the same tickling, but slighter, on the right side of the face, and extending to the right ear, with a sensation of cold water in the ear. During an attack she has a sensation of constriction, but only on the right side of the chest. Brushing or combing, or pulling out a hair just above the right frontal eminence, or especially picking a pimple on the portion of the forehead just below this, brings on "a dreadful prickling sensation," extending over an area about two inches in diameter, involving the right side of the forehead and the adjacent scalp, on which the hair is getting grey. This prickling over the area always brings on a severe attack of sneezing, with all the concomitant symptoms. On the other hand, attacks induced by smoke or dust also produce this prickling sensation in the forehead, but to a less degree. Sight, hearing, and taste are unaffected. There is some periodicity in her illness; thus, for two or three weeks she will be better, and will then relapse. There is no hereditary tendency to any neurosis, and no instance of asthma in her family.

A strong mental impression will arrest the attack, as a fright about her children. The paroxysms are not worse during the menstrual period. During pregnancy she is quite well, especially after quickening, when she grows much stronger, but, after suckling, she very soon becomes weak, and then the attacks return. They are not influenced by food.

Once when at Brighton for a week, she was entirely free from attacks, though subject to them up to the time of going there, and they returned immediately she came home.

During her last pregnancy the sneezing, as usual, left her till she caught a cold, when the irritation was limited to the left nostril, and inner canthus of left eye, and during the attacks of severe sneezing, she had a discharge only from the left nostril.

In Mrs. M.'s case, the irritation of a spot near the right frontal eminence supplied by branches of the fifth, produced a violent attack of sneezing, lasting several hours, with prickling pain over the spot itself; also throughout the inside of the nose, and the right side of her throat. Thus, the irritation produces an abnormal sensation in a limited number of the supra-orbital branches of
the right fifth nerves, and this abnormal sensation, involving molecular changes in the nucleus connected with these nerves, spreads through that part of the nucleus in connection with the nerves supplying the mucous membrane of the nose and throat, gives rise to a sensation of pricking in the nose—a referred sensation—which physiologically excites violent sneezing, with its natural accompaniment—discharge of tears and mucus from the nose; further, this molecular change extends to the pneumogastric nucleus of the right side, and hence excites some difficulty of breathing, and wheezing on the right side of the chest.

Again, in those curious cases where the itching and sneezing are caused or increased by food, we must admit that the affection is central. In such cases we must assume that an impression conveyed from the stomach through the vagus, and reaching its centre, will, through diminished resistance in this part of the central nervous system, spread from thence to that part of the fifth nucleus in connection with the nerves proceeding from the mucous membrane of the nose, inducing in this part of the nervous centre these molecular changes which impress on the sensorium the sensation of tingling or pricking, and this condition of the nervous centre of the fifth excites physiologically violent sneezing.

In other cases, as I have said, the fault is probably due to an excitable condition of the centre for sneezing, as when the tingling or itching is limited to a very small spot, and is at first sight far too slight, both in extent and intensity, to produce that violent sneezing which accompanies this tingling. We must admit, too, I think, that in those cases of severe morning sneezing, accompanying attacks of bronchial asthma, but without any itching, as exemplified in the following case, the disorder is, in part, situated in the centre for sneezing. In such a case, one would think the asthma must be central, and dependent on an excitable condition of the pneumogastric centre in connection with the lungs, and that through loss of resistance, the nervous discharge in this centre would spread to the centre for sneezing; but this view is, I think, untenable in those cases where the attack of sneezing does not occur during the paroxysm of asthma, that is, when the nervous discharge is greatest in the pneumogastric centre, but at some other time.

A young woman, asthmatic for eight years, though only in winter, on catching a cold, when she suffers from a violent attack lasting three or four days, growing less on the occurrence of expectoration. When asthmatic, food of any kind tightens her breathing, so that during these days she takes no food. Whilst under
the attacks she has paroxysms of sneezing every morning, without nasal itching or tingling, when free from asthma she has no sneezing, and can eat anything without affecting her breathing.

This case shows the close relationship between both bronchial and peptic asthma, and these attacks of sneezing.

Again, in some cases, the affection would seem to be seated in that part of the central nervous system which controls the formation of mucus in the nose, as in the instance of the lady already referred to, who, every morning so suffered for about half an hour from a profuse watery discharge from the nostrils, without any nasal itching or sneezing.

The case I am about to narrate shows the connection between intermittent sneezing and asthma. This patient for some years suffered from severe intermittent sneezing, which then became complicated with asthma, the asthma meanwhile increasing, whilst the sneezing grew less and less, till it almost ceased. The asthma was peptic in kind, and unassociated with bronchitis. Bed-dust would always induce severe attacks of sneezing, and subsequently of asthma. Now, as bed-dust is quite insoluble, it would appear that the part affected was either the mucous membrane, or the terminations of the nerves, first of the mucous membrane of the nose, next of the lungs, whilst the change of the disease, from intermittent sneezing to well-marked peptic asthma, favours the idea that the affection was situated in the nervous centres; possibly both the nerve terminations and the nerve centres were affected.

Mr. B., about 35 years old, chemist, has been ill twelve years.

At first he suffered from attacks of sneezing, with profuse watery discharge from the nose, accompanied by very distressing and intense itching over a small spot on the inner surface of each ala of the nose near its orifice. There was no itching of the nose beyond the spots indicated, nor of the eyes, nor fauces, but the soft palate felt "rough." The attacks always occurred in the morning, not on first rising, but about nine, and lasted till eleven. He usually attributed their onset to exposure to cold. He sometimes soaked four, usually three pocket-handkerchiefs, with the watery nasal discharge. His eyes during the attacks were much bloodshot. They occurred at any time of the year, though more frequently during spring and autumn.

Bed-dust always brought on a very severe attack. Dust of shop also excited a paroxysm, but not other kinds of dust, as road dust. Smoke did not affect him, nor hay fields, for he has often passed them while the grass was flowering without incurring an attack, so with other flowers. Neither strong sunlight nor strong heat induced an attack, nor ipecacuanha, nor animal emanations, nor linseed poultices. The attacks were not excited through the stomach, for he might eat what he liked at any time without bringing on sneezing, though before this illness he noticed that a few nuts, or a glass of sherry, would cause a peculiar, indescribable sensation of the chest, leading him to take deep breaths. The attacks of
sneezing were so violent that he feared he should "burst some internal vessel," and they left him exhausted. During the attacks he had no dypsnaea. August last, whilst mixing chalk, orris root and myrrh, the powder brought on a severe attack.

About five years ago a singular change came over his illness. He became rather asthmatical, and as the asthma became more pronounced, the sneezing attacks grew less, till they have all but left him. There was a period when he was troubled both with asthma and sneezing, but they did not occur simultaneously; indeed, without any question, he said the one took the place of the other, for if he had an attack of asthma, he knew he should not have the sneezing, or if he had an attack of sneezing, he felt insured against asthma. The asthmatic attack begins at 4 A.M., and lasts two hours, sometimes ending with a few outbursts of sneezing, but never a paroxysm compared to his earlier attacks, or those alternating with asthma. His asthma is mainly of the peptic character, and is inevitably brought on by a late and especially by an indigestible meal.

Bed-dust formerly excited the asthmatic paroxysm immediately. Cold weather does not cause the asthma, nor fog, nor even when he gets a severe catarrh. Only late meals excite the attack. A dose of colchicum always causes an attack, but not till the third nightly dose, occurring "on getting into bed, and for an hour just before rising," so long as the colchicum is continued. This effect of colchicum he has noticed on three separate occasions, as he never had occasion to take colchicum during the sneezing period, it is impossible to say whether it would have produced a paroxysm. Ipecacuanha brings on a very slight spasmodic sensation in the throat. Spreading a pitch plaster will always bring on an attack, but never induces an attack of sneezing. The asthmatic paroxysm ends in profuse expectoration, with a violent cough and profuse perspiration, possibly due to the cough. During an asthmatic attack he experiences no itching under the chin, nor over the chest, nor between the shoulders. His grandfather had asthma, but there is no history of hay fever in his family, and his children are free from both complaints. Arsenic does him good. Strong coffee relieves his attacks; so does nitr paper for a time.

Arsenic in many of these cases is most efficacious, quickly affording relief in some, but in others requiring ten days or a fortnight to manifest its remedial effect, while in yet other cases it altogether fails. I find it of little or no value in true hay fever, that is, where the paroxysmal sneezing is excited by pollen. Where there is fever, aconite (see Aconite), if given early, curtails the course of the attack considerably. Cases unyielding to arsenic are sometimes benefitted by iodine inhalation, by the administration of iodide of potassium, or by veratrum viride. The case of a young woman, twenty-two years of age, who for several years had suffered with attacks of sneezing like those described, well illustrates the value of local applications. The fits occurred in the morning, lasted several hours, were accompanied by considerable pain over the forehead, and the sneezing was so violent that she became quite exhausted, and so
remained the greater part of the day. She complained also of
great itching over the whole of the inside and outside of the nose
and part of the face, which continued as long as the sneezing.
Her health was failing her, and her hair was growing very thin.
Arsenic benefitted her very slightly, while iodine inhalations, the
internal administration of veratrum viride, pulsatilla, iodide of
potassium, bromide of potassium, and cod-liver oil were found use-
less. Then aconite liniment to the outside of the nose and itching
part of her face, immediately subdued the attack, removing both
the itching and the sneezing. The attacks of sneezing recurred
very slightly, and a fortnight’s persistence with the treatment
cured them.

The changes which arsenical compounds undergo in the stomach
are at present unknown. There is no proof that, like most other
metals, arsenic combines with albumen to form an albuminate.
The uniformity of action of all soluble arsenical compounds renders
it probable that either in the stomach or the blood, they ultimately
become identical in composition.

Metallic arsenic, like the oxide, is poisonous; it is probably first
oxidized before it becomes active. Pure sulphide of the metal is
inert, but, as it generally contains a not inconsiderable quantity of
the oxide, this admixture renders it poisonous.

The condition of the stomach is said to control the action of
arsenic; for example, when food is present, the medicine becomes
absorbed by the lacteals, and through them mixed with the blood,
while, if the stomach is empty, the arsenic is absorbed by the
veins, and, passing into the liver, is separated with the bile.

In small, medicinal doses, arsenic excites a sensation of warmth
at the epigastrium, and gives rise to a sensation of hunger; indeed
many maintain that arsenic, while increasing appetite, promotes
digestion, which others as strenuously deny. Arsenic, as we shall
see hereafter, by removing or lessening a morbid condition of the
stomach, promotes digestion and appetite.

In certain diseases of the stomach few remedies are more useful
than arsenic. In the so-called irritative dyspepsia, where the
tongue is furred, and its papillae red and prominent, a drop of the
solution of arsenic, taken shortly before food, will be found of
great benefit. Administered in the same manner, it will arrest the
distressing vomiting of drunkards with almost unfailing certainty,
and simultaneously improve the state of the stomach, and restore
both appetite and digestion. This vomiting, accompanied by great
straining and distress, usually occurs in the morning before break-
fast; and mostly very little, and sometimes nothing, is ejected, and then it is called dry vomiting. The vomit is generally intensely bitter, sour, and of a green colour.

Arsenic is valuable in chronic ulcer and cancer of the stomach, allaying the pain and checking the vomiting; and I have seen this metal give relief in chronic ulcer, after failure of the commonly-used remedies.

Arsenic sometimes removes heartburn, and other distressing sensations of the stomach, and is very useful in gastralgia.

Small doses of arsenic are serviceable in that form of chronic vomiting, when, after eating, the patient mostly rejects his meal without pain, and with scarcely any nausea, the food simply regurgitating into the mouth.

It has been recommended in the vomiting of cholera.

The solution of arsenic is always of service in that form of chronic dyspepsia and diarrhoea characterized by the following symptoms:—A sinking at the pit of the stomach, which is relieved by food; but immediately on taking it, nay, even during mastication, an urgent desire seizes the patient to relieve the bowels, which may constrain him to quit the table. The motions are solid, or semi-solid, usually containing lumps of half-digested food. The disease appears to depend on excessive peristaltic action of the stomach and intestines, whereby the food, before it is digested, is driven from the stomach to the intestines, and thence expelled. This form of diarrhoea is common with children, eight to twelve years of age, and may last many months. Arsenic in a few days will prolong the interval between the meal and the evacuation, and in a week or ten days the disease will give way. I always give one or two drops shortly before each meal. (See Opium). Arsenic often proves useful in other chronic forms of diarrhoea, even when due to serious organic disease, as the bowel ulceration of phthisis, etc.

Arsenic has been strongly recommended in cholera; especially in the later stages, when there is much collapse.

Arsenic enters the blood freely, but the effects of this metal on it are unknown. It has been detected not only in this fluid, but in most of the organs of the body.

In frogs, according to Sklarek, in about five minutes after poisoning by arsenic acid, the animal lies flat, with extended extremities and without breathing. Pinching, or other irritation, excites neither reflex action nor voluntary motion, though much voluntary power remains, since, on lifting the animal, or with-
drawing a leg, or turning the frog on its back, it displays active voluntary movements. In a short time, however, the animal becomes completely paralysed. Arsenic, therefore, paralyses first sensation and reflex action, and some time afterwards voluntary power. This account of Sklarek's corresponds with my observation of the order in which the symptoms occur after poisoning by potash, or in mechanical arrest of the circulation during the summer months. My experiments with arsenious acid, dissolved with the aid of a small quantity of soda, made in October, do not agree with Sklarek's account; for I found that sensation and reflex action persisted as long, or longer, than voluntary power. The reconcilement of this difference is, perhaps, to be found in the time of year the experiments were made—Sklarek's probably being made in the summer months.

Sklarek attributes the general paralysis to the action of arsenious acid on the cord. My own experiments, conducted with Mr. Murrell, confirm this statement; but they show also that arsenious acid is a paralyzer of the motor and sensory nerves, and of the muscles; in fact, like potash, tartar-emetic and aconitia, it is a protoplasmic poison, destroying the functional activity, first of the central nervous system, next of the nerves, and last of the muscles.

Arsenious acid quickly arrests the heart of cats and frogs, and probably of other animals when administered in large doses. This effect is due to the direct action on the heart; for arsenious acid arrests the frog's heart when removed from the body. As arsenious acid is a protoplasmic poison, I suggest that it stops the heart by affecting all its structures, its ganglia, its nerves, and its muscle. Arsenious acid lowers arterial tension; partly it is thought, by its influence on the vaso-motor nerves, but also owing to its action on the heart.

Lesser concludes from his experiments that paralysis of the heart is preceded by slight and transient increased irritability, accelerating the heart's beats in warm-blooded animals. Large doses, however, at once decrease the heart's action, and the blood-pressure at once falls in the aorta. He attributes the increased frequency of the pulse to depression of the vagi and stimulation of the cardiac ganglia. The depression from large doses he ascribes to depression of cardiac ganglia and stimulation of vagi. The vagi, he believes, are first stimulated and then depressed. Arsenic he finds does not affect the accelerator nerves, nor the vaso-motor centre, nor vaso-motor nerves, nor the muscular tissues of the vessels.

Arsenic at first stimulates, but larger doses soon extinguish the irritability of the respiratory centre. The primary stimulation is never great. Small doses stimulate
the terminations of the pulmonary vagi. Arsenic increases peristalsis of the intestines by direct action on the ganglia in the intestinal walls.

He finds also that arsenic diminishes the irritability of the motor nerves and muscles, and first stimulates and then paralyzes the spinal cord. His experiments then for the most part confirm my conclusions that arsenic is a protoplasmic poison, but he finds that it first slightly and transiently stimulates many structures.

Mr. Murrell and I noticed that in ten to twenty minutes after injecting a small quantity of arsenic under the skin of a frog the animal gapes, keeps its mouth open, and sometimes puts its paws into its mouth; it looks as if sick, and some frogs actually vomit. Arsenic, therefore, acts as an emetic to frogs.

Mr. Murrell and I were astonished to find how very fatal arsenious acid is to frogs, for \(\frac{1}{1000} \) of the weight of the animal produced complete paralysis in 108 minutes, and \(\frac{1}{2000} \) killed the frog on the third day. We found that frogs are much more influenced by arsenious acid dissolved in a small quantity of soda than by arseniate of soda; one-fifth of a grain of arseniate of soda requires eleven hours to produce complete paralysis.

The statements as to the effects of arsenic when taken for a prolonged period are strangely conflicting; yet probably all are true, though at present it is impossible to reconcile the opposing statements.

Some animals, as the horse and sheep, can take considerable quantities of arsenic, not only without harm, but with apparent benefit.

It is now established beyond reasonable doubt, that in some parts of Lower Austria, as Styria, many of the inhabitants, are accustomed to take considerable quantities of arsenic, sometimes as a condiment with food. It is said they often eat it with cheese. They usually begin with a small dose, once or twice a week, the quantity being gradually increased, until half a grain, or a grain, or even more, is taken at one time. This habit seems to induce no untoward symptoms. Arsenic is eaten for a twofold purpose. The women, and even the men, take it to clear the complexion, and to improve the personal appearance; and it is said to effect these objects. The men more frequently use it to enable them to undergo great exertion without fatigue, and they maintain that it enables them to climb mountains and accomplish fatiguing tasks, impossible to accomplish without it. The experience of most countries is opposed to the Styrian practice; for it is generally found that the long-sustained administration of arsenic fails to induce tolerance of
the drug; but, on the contrary, entails serious consequences. Even in the arsenic-eating countries, the habit is not without risk; for there it is a general opinion that many fall victims to the drug. It has been supposed that, taken in an insoluble form, the arsenic is not absorbed at all, but passes out with the motions, leaving the system unaffected by it; but Dr. Maclagan's investigations effectually dispose of this supposition, for after witnessing a well-known arsenic-eater eat arsenic and afterwards collecting his urine, a considerably quantity of the poison was obtained from it.

Ordinary experience, however, shows that the long-continued use of arsenic produces serious symptoms, evidenced first in the eyes and stomach. The eyelids become slightly edematous, the lower before the upper; while usually at the same time, or soon after, slight conjunctivitis occurs with suffusion and smarting of the eyes, and sometimes dimness of sight. The mucous membrane of the nose, mouth and throat may be reddened and inflamed, giving rise to thirst and dryness of the mouth and throat. In some, the digestion becomes deranged much sooner than in others. The appetite fails, and at the pit of the stomach a sensation of weight or soreness is felt, aggravated each time on taking food or the arsenic. Sometimes the stomach is affected before the eyes. On the appearance of any of these symptoms the drug must be given in smaller quantities, or be discontinued. The skin becomes dry and dirty-looking, and a slight "branniness" may be noticed, most marked where the skin is covered with clothes. Eczema or urticaria may arise, or perhaps vesication or mere desquamation with tenderness of the palms of the hands or soles of the feet. Arsenic is said to have produced pityriasis and lichen and aching pains in the head, and swelling and inflammation of the joints. Sleep may be much broken, or disturbed by dreams. Still more serious symptoms set in. The voice becomes rough, and in some cases salivation takes place. Ulcers may form in the mouth. Nausea, vomiting, and diarrhoea, set in, with slimy and bloody motions, voided with much straining and pain. The hair, and even the nails, sometimes fall off. Cough, with bloody expectoration, may occur. With these serious symptoms the patient wastes away, the skin becomes dry and hot, the pulse frequent, especially at night. Pains in the limbs, neuralgic pains, anaesthesia, tremblings, and even paralysis, come on; till at last the memory fails, sensation is lost, and death soon follows. The susceptibility to arsenic varies; some being speedily affected by two-drop doses of
the arsenical solution, while others can take ten to twenty drops without injury for a considerable time. Dr. McCall Anderson states that patients while taking arsenic are liable to bronchitis, and should therefore be cautioned against exposure to cold.

Gies finds that the prolonged use of arsenic in increasing doses, continued for months, has the same effect on the bones of rabbits, pigs, and fowls, as phosphorus. The bones become more compact; these changes beginning in about three weeks. The animals became heavier and fatter, and there occurred fatty degeneration of the heart, liver, kidneys, and spleen.

A large dose induces the symptoms of acute poisoning. The arsenic acts as an irritant to the whole digestive canal, exciting very active inflammation in its delicate mucous membrane; accordingly the symptoms to be expected from severe inflammation of this tract set in. But, strange to say, the symptoms following a large poisonous dose are not invariable; the symptoms arising from acute inflammation of the digestive canal are most common, and prove fatal in four or five days; but sometimes these symptoms are almost or entirely absent, and instead of the patient running the usual course of arsenical poisoning, profound coma sets in, from which he never wakes, but dies in a few hours, the mucous membrane of the stomach and intestines being free from all inflammation. Sometimes the symptoms are very like those of English cholera. (Virchow).

Dr. Blachez describes another form of arsenical poisoning characterized by choleraic symptoms of the intestinal canal, with suppression of urine, cramps, and progressive coldness of the body, convulsions, and localized paralysis especially attacking the extensors. If the patient survives long enough, a petechial papular vesicular and wheal-like rash often appears from the second to the fifth day.

A fatal dose of arsenic lowers the temperature of dogs and rabbits 4° to 7° Fah.

Even when injected into the blood, or applied to a wound, arsenic produces its local effects on the digestive canal, being found in the intestines, showing that this is one outlet by which the poison is eliminated. When the metal is injected into the blood, or absorbed by a wound, the effects on the stomach and intestines are said to be as severe as when it is swallowed. This is perhaps hardly true. It is evident from the foregoing facts that arsenic manifests an especial affinity for the mucous membrane of the intestinal canal,
The post-mortem examination in acute arsenical poisoning shows much inflammation of the stomach, often in patches, in which arsenic powder is visible, imbedded in the thick viscid mucus, and, according to Harley, the arsenical mischief is most marked at the cardiac end. Spots of ecchymosis are sometimes seen, and less commonly ulcerations. Perforation is rare. The oesophagus and intestines may undergo inflammation, often most severe in the rectum. Occasionally the mouth, throat, and even windpipe and bladder, become inflamed. The curious fact has been pointed out, that notwithstanding the existence of symptoms of inflammation, yet sometimes no traces of it are apparent after death. This absence of inflammation cannot be explained by want of time for the arsenic to act; for in cases ending in death yet more rapidly, severe structural changes are to be found. Death may occur in two hours. Ecchymosis is commonly met with under the lining of the cavities of the heart, and if the patient survives long enough, a petechial, papular, or pustular rash, or wheals of urticaria may occur. Neuralgic pains, anaesthesia, and paralysis are sometimes seen. Like phosphorus, it produces extreme fatty degeneration of the liver, heart, kidneys, and other structures. Ether, and even chloroform are said to produce similar effects. Both in arsenical and antimonial poisoning the glycogenic function of the liver is said to be destroyed.

Frogs become apparently paralyzed after poisonous doses. For instance, they remain motionless, but when placed on their backs they struggle violently to regain their habitual position, showing that there is no paralysis of the voluntary muscles or motor nerves. At the same time they lose all sensation, for they may be pinched, cut, or burned without exhibiting signs of pain. This loss of sensation is proved to be due to the action of the drug on the spinal cord, and not on the sensory nerves. The apparent paralysis is supposed to be due to this loss of sensation.

Drs. Cutler and Bradford, from their experiments conducted according to Malassez's method, are led to conclude that "arsenic given in health causes a progressive decrease of the number of the red and especially of the white corpuscles. In simple anaemia, on the contrary, there seems to be an increase at first of both red and white corpuscles. After a certain point there is a steady diminution of both."

Arsenic, in moderate doses, it is said, gives fulness and increased strength to the pulse. Sklarek finds that arsenic given to frogs and cats slows and weakens and at last arrests the heart, and that
then galvanic stimulation excites it only to imperfect contraction. This result is probably due to the direct action of the arsenic on the heart, for both Sklarek and Harley find that it produces the same effect on the extirpated organ. From Harley's observations, it appears that after death the heart of an animal poisoned with arsenic ceases to beat sooner than that of one destroyed by mechanical means.

Some give arsenic in prostrating acute febrile diseases, with the effect, so they aver, of strengthening the pulse, moistening the skin, and invigorating the patient.

Dr. Bayes recommends arsenic for the swelled feet of old or weakly persons; or for old people with a weakly acting heart and feeble circulation, who often suffer from breathlessness on exertion.

Arsenic has long been recommended as an excellent remedy in spasmodic diseases of the lungs; it is often useful in asthma, whether or not dependent on emphysema.

Arsenic often gives great relief to a class of emphysematous persons who, on catching cold, are troubled with a slight wheezing at the chest, difficulty of breathing, especially on exertion, or at night time, and are obliged to be partially propped up in bed; it appears, however, to be of little service when there is very much bronchitis, or when the paroxysms of dyspnea are very urgent. In this contingency lobelia or belladonna answers better. Arsenic is especially useful in the foregoing cases, where the difficulty of breathing can be connected with the retrocession of a rash, as eczema. Arsenic generally relieves the wheezing with oppressed breathing, which affects some children for months and even years.

Arsenic lessens the carbonic acid of respiration.

The beneficial influence of arsenic in certain skin diseases, particularly in the scaly eruptions and in chronic eczema, is universally recognized. Lepra almost always yields to it, and its efficacy over other forms of psoriasis is hardly less marked. Many cases it cures, others it improves, but a few it leaves unbefited.

Hunt, who has had more experience of this remedy than perhaps any other person, laid down excellent rules for guidance. He recommends small doses as capable of effecting all that is possible by arsenic, and discountenances the practice of gradually increasing the dose. If toxical effects arise, he advises, not the discontinuance but the diminution of the dose.

Arsenic is hurtful during the inflammatory stages of eruptions. Children above five years will bear a dose nearly as large as adults; and it is curious that girls often require a larger dose than boys.
The largest dose ever required is five minims, repeated three times a day; but some practitioners give double or even treble this quantity. As a rule it should never be given on an empty stomach.

Arsenic, if mixed with food, does not usually irritate the bowels. In the course of a few days or weeks it will produce an itching or smarting in the conjunctiva, and this membrane will appear slightly inflamed, the lower eyelid becoming a little puffed or swollen at this point. The cutaneous disease will now begin to decline, and the dose must be reduced one-fifth.

Should the conjunctiva continue much inflamed, the dose must be still further reduced, but the conjunctiva should be kept affected throughout the whole course.

If the skin become more inflamed, the course must not be interrupted, but an occasional aperient must be taken.

The arsenical treatment must be continued for as many months after the final disappearance of the eruption as it has existed years before.

These rules closely correspond to the advice given by Dr. Graves in his clinical lectures. With two statements made in this "code of regulations" my experience does not quite correspond, for I have not found that smarting of the eyes and swelling of the lower lid occur so often as Mr. Hunt implies; nor do I find it necessary to induce these toxic symptoms to insure the beneficial influence of the remedy.

The first influence of arsenic on psoriasis is to make it redder, more inflamed, and to look worse than before treatment, a fact which, if not known, would lead to the suspension of the drug just when it commenced to do good; but the exaggerated redness soon declines, the eruption heals in the centre, leaving in a short time only a slight redness.

Chronic eczema, although perhaps not so amenable to arsenic as psoriasis, is generally benefited by it, especially the obstinate chronic forms. It sometimes removes the rebellious eczema which infests the vulva, the verge of the anus, and the scrotum.

Arsenic will generally cure that troublesome disease pemphigus, as Mr. Hutchinson has shown; and although after a variable interval the eruption is liable to recur, it will again yield to a renewed course of the drug.

Arsenic sometimes relieves lichen and other obstinate skin affections.

In our experiments on arsenious acid and tartar-emetic, published in the Journal of Physiology for 1878, Dr. Murrell and I found that these two substances produced desquamation in frogs. Thus, after poisoning by arsenic acid, even with only 1/1000 part of the weight of the animal, desquamation begins on the trunk in about five hours, in the legs in about eight hours. The cuticle strips off in large pieces so readily, that mere handling the animal detaches
it. Tartar-ematic affects the cuticle apparently in a somewhat different way; it changes the cuticle into a pulp or jelly, so that even whilst the frog is alive it can be scraped but not torn off. We conclusively showed that these effects are due to the direct action of arsenious acid and tartar-ematic on the skin.

Does arsenious acid affect all epithelial structures in this way? I think so. Miss Nunn has shown that it affects the cornea. And after acute poisoning, the bowels are found filled with a rice-water fluid, consisting of epithelial flakes, and the epithelial cells are choked with granules, and some in a state of advanced fatty degeneration, and these changes occur even when the poison is injected into a vein.

Miss A. Nunn, Lecturer on Biology in the Wellesley College, Boston, U.S.A., under the direction of Dr. Michael Foster, kindly investigated microscopically the action of arsenious acid and of tartar-ematic on the skin. Miss Nunn shows that the peculiar effect of these substances is limited to the epidermis and leaves unaffected the corium, with the exception of increasing the quantity of blood it contains. Miss Nunn says:—

"An examination of a series of sections taken from different parts of the body at different intervals after the (hypodermic) introduction of the poison, shows that the general effect of arsenious acid on the epidermis is to cause a degeneration, and partial solution of the protoplasm of the cells, whereby (1) the whole epiderm becomes loosened from the subjacent derm, (2) the cells of the malpighian become incoherent, so that the whole layer collapses, and its well-known architectural features become obscured, and (3) the intermediate layer separates from the malpighian layer below, and at times from the corneous layer above. The corneous and intermediate layers are thus desquamated, sometimes separately, sometimes, and perhaps most frequently, together. In no case, even in those of most extreme or most lengthened poisoning, have I ever seen the malpighian layer actually cast off during life; it always remains attached (though loosely) to the derm in a manner which I shall presently describe. In preparing sections, however, it frequently becomes wholly detached.

"It is obvious, from the foregoing account, that the arsenic first attacks the lowermost or innermost portions of the epiderm, and that its action advances from the derm outwards. This may be in part due to the simple fact that the innermost cells are those which are nearest to the blood-vessels carrying the poison; but this can hardly be the whole reason, since diffusion must be very rapid
through a thin membrane of such a nature as the epidermis. It seems more natural to attribute the phenomena to the fact that the cells of the malpighian layer next to the derm (the columnar layer) are composed of more active, more irritable protoplasm than that of the rest of the derm, the irritability diminishing in the series of cells from within outwards in proportion as the metamorphosis of the protoplasm into keratin becomes more and more pronounced.

"I never observed any excess in the fluids excreted by the skin generally as the result of arsenic poisoning, and it is impossible to explain the changes described above as merely due or as chiefly due to an excessive discharge of fluid from the cutaneous bloodvessels or lymphatics loosening and separating the cells. All the facts go to prove that the changes are the result of the arsenic acting directly on the epidermic cells themselves. The arsenic-poisoned epidermic cell, with its diminished cell-substance and shrunken nucleus, presents a striking analogy with the secreting cell (of a salivary gland) which has been stimulated to exhaustion; and I shall probably not go far wrong in regarding the changes of the former as the consequences of an action of the poison not wholly unlike an excessive, in fact, a lethal stimulation, by which the destructive stages of the metabolism of the cells are hurried on beyond the reparative power of the constructive stages.

"The stimulation is obviously of a peculiar kind. One marked effect of the stimulation of undifferentiated protoplasm is to forward and accelerate processes of growth. I have looked diligently for indications, such as double nuclei, &c., of multiplication in the epidermic cells, but always in vain. One would naturally expect that the changes which I had described would, if the animal lived and recovered from the poison, be followed by a rapid renewal of the epidermis, but I have not as yet succeeded in keeping the animals long enough to see even the first trace of it. I may remark incidentally, that the fact of the columnar layer being the first to be attacked by the poison may perhaps be regarded as an indication that the growth of the epidermis does take place from this layer, and not, as recent researches on the structure of the mammalian epiderm have suggested, from the cells of the intermediate part.

"The characteristic vertical arrangement of the undermost cells, the columnar layer of the epiderm, is a phenomenon for which it is very difficult to account. Embryologically considered, this feature seems to be a continuation of the condition of the primary epiblast, the cells of which are always vertical; but it is difficult to see what
purpose is served by the preservation of this ancestral feature. It is obvious, however, from the results which I have given, that this vertical position is maintained (for whatever reason) by some exertion of the protoplasm of the constituent cells. Immediately that the arsenic damages the protoplasm, the vertical arrangement is lost: indeed this is the most obvious effect of the arsenic, and the one most readily recognized."

Concerning the action of antimony she says: "The structural changes in the epidermis brought about by antimony are essentially the same as those produced by arsenic. There is (1) the same marked degeneration and partial solution of the columnar layer which causes the epidermis to be held less firmly to the dermis; though previous to the hardening, the extreme softness of the cells prevents it from being stripped away as can be done in the case of arsenic. There is (2) the same degeneration and separation of all the cells of the malpighian layer, and (3) the same desquamation of the corneous and intermediate layers. The principal difference is the greater softness, or more complete isolation of the cells, and the somewhat more marked change in the intermediate layer. The cells of this layer appear more thoroughly detached from one another, and hence cavities are more frequently found between them; but their protoplasm is never formed with threads and processes enclosing spaces, as in the columnar cells. It is this separation of the constituent cells of the intermediate and also of the malpighian layer which is the chief determining cause of the pulpy or mucilaginous condition of skin in antimony poisoning mentioned by Ringer and Murrell. Altogether, the action of antimony is more rapid than that of arsenic, and the changes produced by it bear evidence of more violence. But the marked change in the columnar cells remains the most characteristic feature among the structural changes produced by both arsenic and antimony poisoning.

"Both these drugs, then, have a specific effect upon the cells of the epidermis, the one differing slightly only from the other in their fundamental action, though the results appear to the naked eye to diverge so largely. The skin, under the influence of either drug, presents a striking contrast to one which has been left to disintegrate in a natural manner after death. I have examined the skin of frogs at intervals of one to seven days after death, but I have never observed the peculiar changes which I have described above as taking place in the columnar cells. The cells of the whole epidermis become granular and more opaque, and the outlines of the
cells become indistinct; the corneous layer may be thrown off, and
the features of the malpighian layer become, eventually, very diffi-
cult to recognize, but at no stage does either the protoplasm of the
cells become softened in the peculiar manner described, nor do the
nuclei become shrunken. The desquamation under antimony and
arsenic is obviously a specific effect."

Miss Nunn finds that arsensious acid and tartar-emetic affect the
cornea in a similar manner to the skin, but the effects are never so
marked as in the skin.

It is interesting to observe how these experiments confirm the
conclusions previously arrived at by clinical study. These investiga-
tions show that arsenic affects the epidermis mainly, if not exclu-
sively, and leaves the dermis unaffected. Dr. Duhring, in
Wood’s “Therapeutics,” says, that diseases affecting the more
superficial parts of the skin are most amenable to the influence of
arsenic, and that it possesses little or no influence upon diseases
seated in the deeper structures of the skin. It has no effect upon
infiltrations of the corium.

Few, if any, remedies are so successful in chorea as arsenic. If
there is much anaemia, iron is required; if fever or rheumatism,
these must be subdued by appropriate treatment. But, in simple
uncomplicated cases of cholera, arsenic is far the best remedy.
Its occasional non-success is sometimes owing to the undue small-
ness of the dose, and decided improvement often begins simulta-
eously with a freer administration of the medicine. When
chorea has resisted smaller quantities, children may take four,
five, or more minims of the solution. Dr. E. Smith recommends
larger doses, and I have found these highly successful. In one
case which rapidly improved, I quickly increased the dose till the
boy took twenty minims of liquor arsenicalis six times a day, and
in another successful case the girl took fifty minims of liquor daily.
Perorid uses arsenic hypodermically with great success. Arsenic
is well borne this way and does not derange the stomach.

Dr. Hughes and Dr. Cooper highly commend small doses of
arsenic in neuralgia. Dr. Anstie also speaks highly of it in various
neuralgias; and in angina pectoris, a disease he regarded as a
neuralgia, he states that it will lessen the severity of the attacks,
reducing them in time to mere “tightness of the chest.”

Arsenic has been found serviceable in epilepsy. It not unfre-
quently cures dull throbbing pain affecting one brow.

With the exception of quinia, no drug subdues intermittent fever
like arsenic. Some indeed with large experience count arsenic-
equal, if not superior, to bark in ague. The greater number of observers, however, do not credit arsenic with such pre-eminent virtues, maintaining that cinchona cures the disease more quickly and more certainly, and that it is especially to be preferred in those malignant forms which, unless at once arrested, speedily destroy life. A concurrence of testimony tends to show that arsenic is most useful in long-standing agues, especially of the quartan type.

Arsenic has lately been extolled in phthisis and tuberculosis. It is said to improve the appetite, increase assimilation, lessen expectoration and cough, and to promote the cicatrization of cavities. It is stated that it will reduce the temperature in tuberculosis, and after carefully investigating this subject, I am inclined to believe so; at least I have frequently observed a steady and sustained fall of the thermometer follow the use of arsenic in cases where the undue temperature had continued unchanged for a considerable time, and this I have known happen twice or three times in the same case on reverting to arsenic after it had been discontinued. The decline generally takes place gradually, and may begin soon after taking the arsenic, or the fall may be postponed for ten or twelve days. Moreover, I have seen children in a hopeless state, with severe tuberculosis involving lungs, intestines, and peritoneum, steadily and slowly improve and ultimately recover under arsenic treatment, and I have observed a like result in adults with phthisis, in the subacute and chronic forms. It must, however, be admitted that this is a very intricate subject, seeing how irregular a course the fever of tuberculosis runs, and how sometimes cases the most desperate recover by means of other treatment, or indeed through little or no treatment. Still, I am sure that the action of arsenic in phthisis and tuberculosis is well worthy investigation. I have generally given from two to four minims every two to four hours. In a few cases it is ill borne, producing sickness and pain in the stomach and bowels.

Arsenic is often serviceable in rheumatoid arthritis and nodosity of the joints, but the indications for its employment are unknown. The pains of this troublesome affection are sometimes increased, sometimes benefited, by heat, some cases being worse in summer, others in winter; some are worse during the day, others at night. All these forms arsenic will sometimes cure, yet its action is capricious, for in cases apparently identical it sometimes fails and sometimes cures. Its effects are sometimes astonishing, for stiffened joints, for a long time considerably enlarged, become reduced to
their natural size, and regain their suppleness. Large doses are necessary, given for a considerable time, and it must be borne in mind that if improvement does not speedily ensue it must not be concluded that the medicine will fail. Some consider it necessary to produce the toxic effect of arsenic; but in many cases improvement certainly results without pushing the remedy to this extent.

Dr. Simpson employed arsenic in that peculiar affection of the bowels prevalent among women, characterized by the copious discharge of membranous shreds, accompanied by much emaciation, and a long train of neuralgic and other nervous symptoms—an affection occasionally co-existing with dysmenorrhœa, the membranous shreds being discharged both from the bowels and uterus.

Like other metals, arsenic, though more quickly eliminated than some metals, as lead, is retained a long time in the body. Some maintain that arsenic is to be found in the bones as arseniate of lime, a statement denied by others. It may be detected in the milk.

It is found in the blood chiefly with the red corpuscles. It is separated from the body by the urine, the stomach, and intestines, and perhaps by the liver. After arsenical poisoning, the metal is found in the liver in quantities larger than elsewhere. It may be that, like many other metals, it is separated from the body with the bile.

We know nothing of its influence on the composition of the urine. Some experimenters assert that the urea is lessened, and, as the carbonic acid separated by the lungs is diminished, they conclude that arsenic diminishes tissue metamorphosis to a considerable extent. Vogel observed haemato-globulin in the urine of an individual poisoned with arseniuretted hydrogen.

Dr. Garrod states that arsenic acid is less irritating to the stomach than arsenious acid.

PHOSPHORUS.

This substance for many years had fallen into disuse, but, owing to its signal success in neuralgia in the hands of homœopaths, it has again recently risen to favour.

In doses sufficient to produce acute poisoning, its effects are very singular.
PHOSPHORUS.

It is an irritant poison, but the symptoms are sometimes delayed for hours, or even days. The patient complains of burning in the throat with intense thirst and severe burning pain in the stomach, followed by distension of the abdomen and vomiting of a dark green or black substance with the odour of garlic, and sometimes phosphorescent. There are the usual symptoms of collapse. In less severe cases, vomiting ceases on the second or third day, but on the occurrence of jaundice, which often happens, the sickness returns, and the rejected matter contains dark-coloured blood. There is now pain and tenderness over the liver, generally diarrhoea, and later the stools become clay-coloured. At first, it is said, there may be fever, the temperature rising even to 102°, but subsequently the temperature sinks below the standard, and in one case it fell to 89° Fah. in the rectum. Jaundice sets in from the second to the fifth day, and at first the liver is apparently enlarged, but afterwards it becomes considerably lessened. The urine is generally scanty, albuminous, and sometimes bloody. It deposits epithelium cells, and when there is jaundice it contains biliary acid and colouring matter with leucine and tyrosine. Hæmorrhage and purpura often occur. Later, either delirium sets in or coma, which may terminate in convulsions. The post-mortem reveals most of the tissues in a state of advanced fatty degeneration. In the stomach and intestines, there is general inflammation of the glandular structures; hence the mucous membrane is thickened and whitish. The epithelium is granular or fatty and much degenerated or even broken up. The liver is either enlarged, with its cells in a state of advanced fatty degeneration, or is contracted from destruction of the cells. The kidneys are similarly affected, the epithelium being swollen, granular, fatty, or broken up. The heart, the voluntary muscles, and other structures are also implicated. The fatty degeneration affects likewise the whole of the arterial system, down to the microscopic arterioles (Wegner), and the number of the blood discs are said to be lessened.

Fatal doses of phosphorus lower the temperature of dogs and rabbits 50 to 12° Fah.

The effects of chronic phosphorus poisoning have lately been elaborately worked out on animals by Dr. George Wegner, with most singular results. It has long been known that workmen exposed to the fumes of phosphorus are liable to necrosis of the jaw, and Dr. Wegner believes that this results from the direct action of the phosphorus on denuded bone, and that necrosis will not set in unless through wounds or carious teeth there is some destruction of
the soft tissues, thus enabling the phosphorus to reach the exposed bone; in support of this view he adduces the following reasons:—

1. If the periosteum of an animal is severely wounded, and phosphorus is given in the form of a pill, even for months, the periosseal changes do not take place. 2. When the tibia of a rabbit is partially bared, a healthy granulating wound is soon established, but under exposure to a phosphorus atmosphere, periosseitis is set up similar to that in the jaw. 3. Many workers in phosphorus escape, whilst those who do suffer have carious teeth.

Dr. Wegner found that gradually increasing doses of phosphorus or phosphorus fumes administered to rabbits produced congestion of the mucous membrane of the stomach, this membrane becoming of a brown colour and three times its natural thickness. The liver is chronically inflamed, with great increase of the interstitial tissue, affecting earliest that portion surrounding the acini. This new tissue contracts, producing atrophy of the liver cells, and obstruction of the vessels and ducts. The organ, at first enlarged and livid in colour, sometimes gradually changes into the hob-nailed liver, or into a shrunken irregular mass, deformed by contracting bands.

Given in doses too small to affect the stomach and liver, phosphorus modifies the bones, especially in growing animals. Thus, where spongy tissue should be formed in the growing bone, dense solid tissue takes its place, which, examined by the naked eye and microscope, is found to consist of well-formed bone, and, if the administration of the phosphorus is continued, the proportion of dense bone increases, and the cancellous structure, in accordance with a natural process, becomes absorbed to make room for marrow tissue, till at last no cancellous structure is left, and afterwards the solid, newly-formed tissue itself also undergoes absorption. Changes occur likewise in the bony substance formed by the periosteum. The new bone looks natural, but the microscope reveals that it is dense, and compact masses of it encroach on the Haversian canals, producing in them at last a general narrowing which affects even bone formed previous to the administration of phosphorus. If phosphorus is given for a long time to adult animals, the spongy tissue thickens, and the compact tissue becomes still more dense, and after a time new bony tissue is deposited on the inside of the shaft, increasing till the bone actually becomes solid. The chemical composition of the bone is natural.

Dr. Wegner found also that under the influence of phosphorus, callus after fractures or resection becomes more dense, and the formation of new osseous tissue is favoured.
PHOSPHORUS.

The changes above described are produced by phosphorus as such, and not after its conversion into phosphoric acid. For phosphoric acid does not produce the peculiar changes in the stomach and liver. It does, however, affect the bones similarly, in very large quantities, larger than could be produced by the phosphoric acid generated from phosphorus introduced into the system. Wegner considers that it acts as a food, promoting natural growth.

In acute poisoning, phosphorus itself is absorbed unchanged, for in some cases the breath, the urine, and, after death, the tissues themselves, are luminous; moreover, it has been chemically detected in most of the tissues.

The jaundice occurring in acute phosphorus poisoning has been variously explained. Dr. Ebstein holds that it is not due to destruction of the liver cells, but to catarrh of the small biliary ducts, causing obstruction and leading to absorption of bile. The ductus communis choledicus has sometimes been found occluded by a tenacious plug of mucus, thus greatly assisting the obstruction of the smaller ducts in the production of jaundice. The presence of biliary acids in the urine, when jaundice occurs, certainly supports the view that the jaundice depends on absorption from obstruction of the ducts, rather than from suppressed secretion owing to the destruction of the liver cells. Sometimes the contents of the intestines are found destitute of bile.

According to Mr. Ashburton Thompson, the effects of repeated medicinal doses are improved appetite, increased rate of circulation, a heightened temperature, perspiration, irritation of the skin, abundant urine, sometimes loaded with deposit, a sharpening of the mental faculties, increase of muscular power, a sensation of well-being, sometimes nervous excitement shown by hesitation and trembling (effects more readily induced in some persons than in others), even slight clonic convulsions, occasionally some venereal ardour, and, less frequently, a more acute tactile sensibility.

Sometimes, even after doses now considered medicinal, as for instance $\frac{1}{10}$ gr., we get sickness and jaundice which may last weeks or months. The drug appears to affect some persons much more easily than others, and this uncertain action, long known, used to be ascribed to "idiosyncrasy;" but Mr. Thompson believes it is rather due to the preparation, and states that when medicinal doses prove poisonous, it is owing to the conversion of the phosphorus into hypophosphorus acid, pointing out that formerly, when this variable action was more often noticed, the phosphorus was generally administered dissolved in vegetable oil, which, contain-
ing a large quantity of dissolved air, oxidizes the phosphorus. The air may be driven off by super-heating the oil, but even then Mr. Thompson does not advise its use, preferring an animal oil, or an alcoholic or ethereal solution; but these preparations are simply unendurably nauseous, yet he says he gives, in this way, doses which could not be tolerated in other forms. I am, indeed, told by experienced pharmacists that in the solutions Mr. Thompson recommends, it is impossible to dissolve the quantities of phosphorus he directs, either in absolute alcohol or ether, so that I am constrained to think that the record of his experience of the comparative harmlessness of alcoholic, or ethereal solutions, is destitute of scientific accuracy. It has been asserted that phosphorus in medicinal doses sometimes causes hematuria and albuminous urine, but this must be unusual, for having employed phosphorus in a very large number of cases, I have never seen this result.

Phosphorus has been given lately in neuralgia with considerable success. It appears to be efficacious in neuralgia of any part of the body. Some regard phosphorus as well nigh a specific. As might be expected chronic cases take longest to cure, but in all the instances susceptible of benefit relief follows the few first doses. Mr. Thompson employs large doses, giving never less than one-twentieth, and generally one-twelfth, of a grain every three hours. Some writers think one-hundredth of a grain a sufficient dose.

The most intractable and severe cases generally occur, as Dr. Anstie points out, in the degeneration period of life; but even in these instances phosphorus may prove useful. My own experience hardly warrants me in speaking so enthusiastically of this drug as does Mr. Thompson. Yet, though it not uncommonly fails in the severe forms of neuralgia of middle and advanced life, still it must be considered one of the most valuable, perhaps the most valuable, remedy. In my hands it has yielded less satisfactory results in sciatica than in many other forms of neuralgia. Phosphorus is probably most efficacious in typical neuralgia, and much less useful, according to my experience, in those imperfectly-developed cases, where the neuralgia appears to be allied to, or passes into, sick headache or pleurodynia, and in those instances of nerve pain which lack many of the more distinctive characters of neuralgia. Phosphorus is often serviceable in angina pectoris, a disease which is closely allied to, if it be not a true, neuralgia.

Dr. Richard Hughes recommends phosphorus in chronic inflammation of the rectum, and Dr. Fleischmann, of Vienna,
COLLODION.

approves its use in pneumonia, especially if accompanied by typhoid symptoms.

Phosphorus has been tried in a variety of diseases. General nervous prostration, many affections of the nervous system, as mercurial tremors, paralysis agitans, and locomotor ataxy, in impotence, etc., but at present the evidence of its influence over these diseases is very unsatisfactory.

Mr. Thompson says phosphorus, unless given in large and unsafe doses, is not an aphrodisiac nor useful in spermatorrhoea, but that in small tonic doses $\frac{1}{6}$ to $\frac{1}{6}$ gr. it will remove the physical and mental debility induced by spermatorrhoea. A large dose, Thompson says, acts as a stimulant to the brain, and fits it for unusual exertion, and so obviates physical and mental exhaustion or depression from overwork.

Hammond praises phosphorus in cerebral softening and in hysterical paralysis, and Anstie in chronic alcoholism, and Thompson recommends it strongly in migraine.

It has been asserted that phosphorus largely increases the quantity of urea of the urine, splitting up, it is said, the nitrogenous tissues and converting them into fat and a compound which ultimately forms urea; others hold that the fatty degeneration is due to deficient oxidation. (See Turpentine.)

Phosphide of zinc $\frac{1}{4}$ gr. to $\frac{1}{2}$ gr. doses, has been strongly recommended in place of phosphorus. In compounding phosphorus it must not be mixed with turpentine, since with this and probably with other essential oils it combines and forms an inert compound; indeed, turpentine itself is used as an antidote in phosphorus poisoning. Eulenberg and Guttman point out that with a solution of copper, phosphorus immediately forms a phosphide of copper, and Bamberger's experiments lead him to conclude that copper salts are far more efficient antidotes than turpentine. (See Turpentine.)

Red allotropic phosphorus is inert.

COLLODION.

COLLODION is useful in many ways. It is used to adjust accurately and bind together the edges of cuts and wounds, and to exclude air. It is sometimes applied to chapped hands and chapped nipples; but for these affections there are better applications, as
glycerine of starch, arnica cerate, or two parts of eau de Cologne to one of glycerine. For chapped nipples, often so difficult to heal, equal parts of sulphurous acid and glycerine is a useful combination.

Collodion, painted over superficial erysipelas, slight burns, or patches of herpes before vesicles are developed, subdued inflammation, eases pain, and checks vesication. Unfortunately the collodion coating often cracks, admits air, and ceases to be efficacious; hence collodion is inferior to a solution of nitrate of silver in water or nitrous ether. \(\text{Vide Nitrate of Silver}\).

Dr. Hare we believe, first employed collodion for boils. There are many kinds of boils. The common form begins as a pimple or pustule, whence the inflammation spreads, producing a hard painful swelling, the centre of which dying forms a core. Now if collodion is applied at the papular or pustular stage, the swelling around the pustule subsides, and the further development of the boil is arrested in the pustular stage, collodion appearing to be useless if the pustule has burst. The matter must not be let out after the collodion application, or inflammation recommences, and the boil follows the usual course. It is desirable to apply fresh coatings of collodion over the old ones, allowing them to remain till the pustule has dried up, and the sore has healed. If much pus accumulate beneath this covering, causing considerable pain, the collodion should be incised under carbolic acid, and the pus allowed to escape, the subsequent treatment being conducted on Lister's carbolic acid plan. This treatment allays the great irritation often accompanying the early stages of boils. Dr. Hare prefers the contractile collodion attributing its success mainly to the pressure it exerts. I have succeeded with flexible collodion, but perhaps the contractile would have answered still better.\(^6\) Some doctors add a drachm of spirit of turpentine to each ounce of collodion.

Collodion, solutions of gutta-percha, or india-rubber in chloroform prevent the pitting of small-pox. The flexible variety of collodion is better for this purpose.

A mixture of collodion and carbolic acid is useful in toothache due to an exposed and inflamed pulp. A jelly is made by melting

* The extension of a carbuncle, may sometimes be limited by tightly strapping with strips of adhesive plaster, applied concentrically from the border inwards, around and over the swelling. Dr. Planat highly recommends the application of arnica ointment (one part of extract of fresh arnica flowers to two of honey) spread on diachylon plaster and placed over the boil, the application being renewed once or twice a day. He finds the internal use of arnica beneficial.
in a test-tube some crystalized carbolic acid, then adding an equal quantity of collodion. A portion of this preparation on a small piece of cotton-wool is inserted into the hollow painful tooth, with sometimes aggravation of the pain, but in a few seconds it begins to diminish and soon ceases.

Contractile collodion, with which some mix iodine, painted over the inflamed part in acute gout, will speedily relieve the pain, although for a brief space the application increases it. Too many coats must not be applied, or the contraction is too great and dragging on the skin, exciting a good deal of pain, or even producing vesication.

Sir D. Corrigan treats the incontinence of children with collodion. The prepuce is drawn forward by the left hand, and the little cap thus formed at its extremity is smeared over with collodion, which contracting, draws closely together the edges of the prepuce, and effectually prevents the exit of urine. A fortnight of this plan, which gives no pain and does not prevent sleep, sometimes suffices for the cure. When it is needful to pass water, the little cap of collodion can be easily chipped off with the nail. The prepuce in the morning is found distended with urine. Sir D. Corrigan thinks that it would answer as well to paint the collodion over the orifice of the urethra. This plan I find unsuitable for girls, as it excites smarting, and induces them to pick off the collodion.

Two parts of glycerine to a hundred parts of collodion sets without contracting or dragging the skin.

COD-LIVER OIL. DUGONG OIL.
ALMOND OIL. PALM OIL.
POPPY OIL. LARD.
HEMP-SEED OIL. SUET.
LINSEED OIL. WAX.
COCOA-NUT OIL. Etc.

Fats, in one form or other, are found abundantly in both the animal and vegetable kingdoms, showing their great importance in organic life.

Fats are necessary foods to the animal body, being heat-giving,
force-supplying, and plastic. Their combustion contributes mainly to the generation of the heat of the body. They are essential to tissue-formation, for without them nutrition and growth would be very imperfect, if not impossible.

Their combustion, moreover, supplies most of the force appropriated by the nitrogenous structures, and through them to be converted into muscular force, secretive force, nerve force, etc.

For the most part, all fats, so far as we know, have the same physical properties, differing only in the melting point. In their chemical nature, however, they differ much, but after entering the blood they are probably converted into a fat of uniform composition.

Oils and fats are used to lubricate and to supple the skin when it has lost its elasticity, and becomes dry, hard, and liable to crack; for instance, in many scaly diseases, as psoriasis and xeroderma. They should be employed in conjunction with warm baths.

Fats, moreover, are applied to the surface of the body to prevent irritation from such excreta as urine or faeces, or by acrid discharges, as in eczema, and when used for this protective purpose, some stimulating substance, as oxide of zinc, is generally incorporated with them.

Simple oils are used to soften and facilitate the removal of scabs, as of impetigo, eczema, and favus. Poultices are likewise useful in favus preparatory to epilation.

Oils are sometimes, with occasional success, rubbed into the skin of the whole surface, to prevent the debilitating sweating accompanying exhausting diseases, as phthisis; but this process is inferior to that of sponging the skin with a weak acid wash, and to other means. With the ancient Romans, during the decline, when warm baths were so much indulged in, it was the custom to anoint the body with fats, to check the profuse sweating caused by this enervating habit.

Fats are sometimes rubbed into the skin with a view to their absorption, so as to minister to the nutrition of the body.

Fats and oils are in general use as excipients for the application of various agents to the skin.

It has been asserted that the inunction of the body with fatty substances will induce a considerable fall in its temperature; but in a solitary testing instance I found this statement to be incorrect.

Rubbing the hands and feet with some firm fat will remove the irksome sensation of heat and tightness produced by the rashes of scarlet fever or measles.
OILS.

Some practitioners treat scarlatina solely by inunctions, anointing thoroughly the skin of the whole body twice or three times a day with a bland fat, or oil, which is not to be wiped off during convalescence from scarlatina. Dr. Budd, of Bristol, recommends the inunction of oil; the patient takes a bath at night, and after being wiped quite dry, a bland oil, like almond oil, is rubbed over the whole body. This treatment is said to assist desquamation, and to prevent sequelae: moreover, it probably lessens the risk of contagion by preventing the diffusion of the branny particles of the skin by currents of air.

In cases of ringworm, it is a useful practice to prevent the extension of the disease by greasing the head very freely to hinder the sporules reaching the unaffected hair. The uncontaminated members of the family should also use grease to the hair freely for the same purpose, and probably it would be more preventive to use a mild mercurial pomade, or quinine dissolved in glycerine, so that the sporules may alight on some substance destructive to them.

Oils and fats are not used topically in diseases of the mouth, nor do fats undergo alteration in this cavity, and they are almost as little affected in the stomach. If enclosed in albuminous walls, as in the form of cell, these being dissolved, the fat is set free. Although themselves not acted upon by the stomach, fats, however, act upon the other forms of food; they certainly promote the fermentation of sugar and starch; and it is generally accepted that fats, by assisting those chemical changes which constitute digestion, aid the conversion of the nitrogenous food. For example, fats assist the fermentation of milk, and promote the process of artificial digestion; and this action of fats upon food can be demonstrated outside the body. But how fats effect these changes, and whether, at the same time, they themselves are in any measure modified in constitution, are questions at present quite unsettled. The importance of this property of fats must be sufficiently apparent, and needs no farther comment. In large quantities they hinder digestion, possibly by their decomposition, and the formation of acids foreign to the stomach.

Fats undergo a variety of changes in the intestines; among others they are absorbed both by the lacteals and veins, but it is still an undecided question how this process is effected.

The alkaline pancreatic juice emulsionizes fats, and in this condition their absorption is supposed to be facilitated; but it is difficult to understand how mere division should assist their passage from the intestines to the blood; further, it is maintained
that when the pancreatic duct is tied, animals remain as fat as before.

It has been surmised that fat may become saponified, and so pass through the walls of the intestines into the blood, and probably a small part does pass into the circulation in this form; but, as much unsaponified fat is visible in the epithelium cells covering the villi, and much can be extracted from the chyle, the chief part must undergo absorption in another manner.

The passage of fats through the moist animal membranes forming the intestinal canal, is probably justly ascribed to the action of the bile; and in support of this proposition, apart from other evidence possible to adduce, it may be advanced that—

I. In capillary tubes moistened with water, fats rise scarcely at all; but if the tubes are moistened with bile, the fats rise from twelve to fourteen times higher.

II. While fats pass with extreme difficulty through moist, animal membranes, if these are moistened with bile the fats, as may be shown experimentally, pass readily.

Fats pass, to a small extent, into the blood by the agency of the intestinal juice.

The chief part of the fat passes into the lacteals; a little into the veins, to be conveyed to the liver, there to be converted into cholic acid; or, at least, it is probable that the oleic acid undergoes this change. The cholic acid, uniting with the soda set free when the hydrochloric acid of the gastric juice is poured into the intestines, forms a kind of soap, namely, the taurocholate and glycocholate of soda. These again find their way into the intestines, and, after serving their destined purpose there, the base reunites with the acid of the gastric juice from which it has been separated.

The influence of fats on the secretion of bile varies according to circumstances; if taken on an empty stomach, fats lessen the biliary secretion; if taken with, or after food, they increase it.

As food greatly augments the flow of bile, we have here an indication, abundantly corroborated by experience, to give fats either with or soon after a meal.

The melting point of a fat must influence its absorption; for if this point is above the temperature of the body, the fat, unless dissolved in the more liquefiable fats, must remain unabsorbed.

The stomach tolerates animal far better than vegetable fats; moreover, animal fats may be given in larger doses, and for a longer time; circumstances which, in some measure, explain the medicinal superiority of animal over vegetable fats.
There is a limit to the quantity of fats absorbable by the body. In regard to cod-liver oil, at first only a small quantity is taken up, and often for some weeks some of it appears in the motions; however, more and more of it becomes absorbed, till full doses are borne, and find entrance into the circulation; but in too large a quantity this oil is liable to decompose, and to form hurtful acids, exciting nausea, vomiting, colic, and diarrhea. This limitation to the quantity absorbed as well as the irritation caused by an excess remaining in the intestines, are sufficient reasons, to say nothing of economy, to make it undesirable to give more fat than can be appropriated. Too large a dose is both wasteful and harmful. By examining the motions day by day we can at any time ascertain if too much is administered.

Catarrh of the intestines is a condition unfavourable to the absorption of fat. Oils are sometimes given after a poisonous dose of a corrosive substance, with the intention of forming a protective sheathing to the mucous membrane, but it is impossible to give a coating of oil to a membrane moistened with water. Cod-liver oil sometimes overcomes obstinate habitual constipation in children. Figs kept in Lucca oil and one or two eaten daily are gently relaxing.

Fat is speedily saponified in the lacteals and blood-vessels, and most of it in the blood-vessels appears to collect in the blood-corpuscles, and may contribute to their formation, growth, &c.

Fats, as we have said, are heat-giving, force-supplying, and plastic. In common with other combustible substances, they, through oxidation, uphold the temperature of the body. This, though an important, is not their only, nor their most valuable, function.

Fats, like phosphate of lime, are necessary both to growth and nutrition; for in the most vitally-endowed organs fats are found in excess, and abound wherever cell-growth proceeds rapidly; it abounds even in disease, for much fat is found in fast-growing cancer; it is found, moreover, associated with the more highly-organized constituents. Thus the fat existing in pus is chiefly associated with the corpuscles, comparatively little being found in the serum. More fat is found in plastic than in non-plastic formations; in fact, observations day by day demonstrate more and more the importance of fats as tissue-forming substances. Facts like these obviously bear on the use of the members of this group in disease; but to this subject we shall return shortly.

Observations tend to show that fats are force-yielding sub-
stances, and that the peculiar forces of the body are mainly de-

rived from the fats we consume. Only a short time ago it was

considered that the forces of the body were derived from the com-
bustion of the nitrogenous structures, but many circumstances tell

conclusively against this hypothesis.

1. After severe and prolonged exercise, the urea of the urine is scarcely in-

creased; and as this substance is a measure of the consumption of nitrogenous

materials, it follows that at such times but little of it is consumed.

2. Under exertion, enormous quantities of carbonic acid are exhaled from the

lungs, pointing indubitably to the combustion of carbo-hydrates, or of fatty sub-

stances, the urea at the same time not being increased.

3. The combustion occurs chiefly, not in the blood, but in the muscles them-

selves, for when these are separated from the body, and made to contract under a

bell-glass, they are found to yield, during the time of their activity, an enormous

quantity of carbonic acid.

4. It has been found by experiment that when only starchy and fatty foods are

eaten, great exertion and prolonged labour can be endured, while at the same
time the urea of the urine is but little increased.

Drs. Cutler and Bradford, using Malassez’s method of counting
the red corpuscles, find that in health cod-liver oil causes an in-
crease in the number of red corpuscles, and a slight increase in
the white.

Dr. John Day’s (of Geelong) ingenious experiments show that
fats possess considerable power in converting oxygen into per-
oxide of hydrogen; also that the colouring matter of the blood
rapidly decomposes this into water, and nascent oxygen with its
characteristic active properties; and he suggests that fats may
play this important part in the blood making inert oxygen of the
atmosphere into active oxygen. His experiments show that the
iron of the colouring matter of the blood is probably the agent de-
composing the peroxide of hydrogen. Ether also possesses great
power to form oxygen into peroxide of hydrogen; and Dr. Day
suggests that the efficacy of etherized cod-liver oil may be due to
the large quantity of peroxide of hydrogen it contains.

Fats being necessary to growth, nutrition, and the due perform-
ance of the bodily functions, are peculiarly suited to convalescents
from acute general diseases. Fats are also useful in many chronic
affections. On the subsidence of many acute inflammations, as of
the kidneys, heart, or lungs, a chronic, but not less fatal, condition
may be left, a condition the danger of which is in proportion to the
health of the patient previous to the acute attack. If the patient’s
health has been impoverished, or if he is the subject of tubercu-
losis, or of scrofula, many sequelæ are apt to occur. Middle-aged
and old people, in whom the nutritive process begins to flag, are more liable to chronic diseases after acute attack. A like danger threatens children whose previous health has been damaged by unhygienic conditions. It benefits the chronic degenerative diseases of old age. These and other maladies depend on deficient nutrition, and, as fats are peculiarly promoters of this function, they are especially useful in such chronic maladies.

The dependence of chronic affections on the state of general nutrition may be shown in another way. Persons are found to suffer from some slight local affection, but little troublesome while the health is unbroken, but as the weakest link of the chain is the first to yield, so, if the health gives way, the local mischief becomes immediately developed or aggravated. Thus many individuals are able to measure the state of their general health by the condition of a local disease. Here, again, any treatment restorative of the general health will reduce the local affection to its former unimportant state, and in such a case cod-liver oil is often indicated.

Thus experience confirms the efficacy of cod-liver oil in many chronic inflammations, as of the heart, lungs, and kidneys, and in the sequelæ of the acute specific diseases, as the chronic discharge from the ears or nose so often left by scarlet fever or measles.

Cod-liver oil is of special service in scrofula, tending to remove the various manifestations of this disease, as chronic discharge from the ears and nose, strumous ophthalmia, strumous disease of the bones, strumous abscesses, &c.

In the treatment of phthisis cod-liver oil stands pre-eminent. The term phthisis, however, includes several distinct diseases. For our purpose it is sufficient here to divide them into the febrile and non-febrile varieties:—those forms manifesting preternatural heat of the body, and those in which the temperature is natural, or rises only occasionally, and for a short time. The existence of fever in the febrile forms of phthisis is by no means an indication of the uselessness or harmfulness of cod-liver oil, for in this condition many patients derive considerable benefit from it. In this form of phthisis, as, indeed, in all cases, we must be guided, in the employment of this remedy, not only by the nature of the disease, but also by the state of the patient in other respects. If the digestion is good, cod-liver oil may generally be given with advantage, but, if the stomach is irritable, then cod-liver oil does harm by still further disordering it.

In the chronic, or non-febrile forms of phthisis, cod-liver oil is generally well borne, and does great good; but, as with the more
acute varieties, it sometimes upsets the stomach. It is generally held that diarrhoea in phthisis is a decisive indication against the employment of the oil; but this is only partly true. Cod-liver oil, no doubt, sometimes increases diarrhoea, but this chiefly arises when the dose is unduly large, or too frequently administered; if only a teaspoonful is given at a dose once or twice a day, the oil often even controls diarrhoea. In cases of phthisis with diarrhoea, it is a good plan to begin the cod-liver oil with cautiously small doses, and if it suits it may be given with greater freedom. An excellent method is to give a teaspoonful the last thing at night, immediately before sleep, when it may often be borne without producing either nausea or diarrhoea, though previously it had occasioned one or both of these symptoms.

In the early stage, as might be expected, phthisis is most benefited by the use of oils.

Phlegmatic persons with sallow skins and dark complexions, benefit more, it is said, by cod-liver oil than persons of sanguine temperament and florid complexion.

Cod-liver oil is often very serviceable in chronic rheumatism, rheumatoid arthritis, chronic gout, chronic skin affections, syphilitic or otherwise. It is also particularly useful in emphysema of the lungs, and chronic bronchitis; in the former checking lung degeneration, in the latter controlling expectoration.

Many persons, especially the aged, complain of much sinking, or a sensation of "craving" at the epigastrium, relieved for a short time only by food, a condition sometimes connected with atonic dyspepsia, sometimes dependent on the general state of health. If the intestinal canal is not in an irritable condition, cod-liver oil will remedy this sinking. Middle-aged patients suffering from that anomalous group of symptoms called hysteria, sometimes complain of the same irksome symptoms. In this case oil will remove the sinking, while it often simultaneously relieves the other symptoms of the group.

Cod-liver oil and quinine is the best treatment for giddiness in the aged, that is, when this symptom is not ascribable to serious organic brain disease, but probably to atheromatous changes in the brain-vessels, or to a weak heart.

Fats are of special use in the chronic diseases of children, arising from mal-nutrition, and any local malady will generally disappear on restoring nutrition and growth to the healthy state.

Cod-liver oil often favourably modifies the course of laryngismus
OILS.

337

stridulus, rickets, chorea, the middle and after stage of whooping-
cough, and chronic coughs.

The obstinate constipation of children sometimes yields to cod-
liver oil.

The chronic diarrhoea of a few pale, stinking, pulpy motions
daily will reduce a child a few months old almost to a skeleton.
The skin becomes leathery and wrinkled, food is, perhaps, re-
jected, and, when brought to this dangerous pass, thrush breaks
out. Whilst combating the diarrhoea or vomiting, a teaspoonful
or half a teaspoonful of cod-liver oil, given to the child nightly
before sleep, gradually increasing the quantity and frequency of
the dose, will neither increase the vomiting nor the diarrhoea, but,
on the contrary, will promote nourishment, growth, improve the
general health, and rescue the patient from a perilous condition.

Hitherto, fats have been spoken of, for the most part, in common,
but they certainly are not all equally useful therapeutic agents.

As we have seen, animal fats are to be preferred to vegetable
fats; and liver fats are generally esteemed beyond all others.
Whether cod-liver oil is superior to that derived from the livers
of other animals, is difficult to decide—since much of the cod-liver
oil of commerce is procured, not only from the livers of various
fish, but likewise, it is said, from those of other marine animals.

The superiority of cod-liver oil has been thought to depend on
the minute quantities of iodine, phosphorus, or bile it contains—a
conjecture clearly wrong, for the effect of these substances in disease
is dissimilar to that of the oil.

The superiority of liver oils is ascribable to their easy toleration
by the stomach. They generally can be taken without inconveni-
ence for months or years, while other fats and oils often produce
nausea, loss of appetite, and diarrhoea. There is reason to think
that cod-liver oil is more easily absorbed than other oils.

Cod-liver oil, at first, often excites nausea, vomiting, and dis-
agreeable eructations. Occasionally, the difficulty in overcoming
the distaste for this medicine is almost insuperable; yet disgust is
generally overcome, and in a short time the oil is taken even with
relish, and children, indeed, often come to regard it as a treat.
Sometimes, at the commencement of the course, a child becomes
languid, appetiteless, and appears worse; but usually, after a week
or ten days, the oil begins to be tolerated, and then improvement
sets in.

The nausea and vomiting sometimes caused by this remedy may
be produced by too large a dose. At first a teaspoonful only, or
even less is enough; and should the stomach manifest intolerance, one dose only should be given daily; and it is a good practice to give it at night-time, just before lying down to sleep.

Cod-liver oil is often administered in such quantities that it can scarcely be borne, even when the stomach is accustomed to it. Weeks, and even months may elapse, before full doses of oil can be digested and absorbed; hence, if swallowed in undue bulk, it merely passes off by the motions, and by its decomposition, is liable to disorder the intestines. An examination of the motions will show whether the oil is given in excess.

Cod-liver oil should be taken after food, on orange, or gingerwine, or weak brandy-and-water, or some agreeable tincture of orange-peel, and should be so poured as not to touch the glass, but to float on the surface of the wine or the brandy as a globule, and thus tossed off. A little salt taken immediately before and after the dose often removes the taste, and prevents nausea, and it is said that a few drops of ketchup added to the oil will cover its taste.

A mixture composed of equal parts of cod-liver oil and fresh mucilage of gum acacia and water, has very little taste, and the addition of two minims of oil of lemons to each ounce of this mixture effectually conceals the fishy flavour.

A cod-liver oil jelly has recently been prepared, which is said to contain 70 per cent. of oil. Bolted like jelly it is almost tasteless.

Notwithstanding such ingenious devices, it is not uncommon to meet with patients who, even after repeated trials, cannot tolerate the oil on account of the eructations, loss of appetite, nausea, or vomiting. In some cases this intolerance is due to dyspepsia; but it is generally due to that inability to digest and absorb fat, so commonly noticed in consumption, even before its development. This fact has been much dwelt on by Dr. Balthazar Foster, who, led by some suggestive experiments of Claude Bernard—in the case of patients intolerant of oil, uses ether as a means of assisting the digestion and absorption of fat.

Claude Bernard has shown that the action of ether "is twofold—(1) it stimulates the pancreas and glands of the duodenum to pour out their secretions freely, and (2) at the same time facilitates the absorption of those very substances which these secretions are designed to digest. In other words, ether not only obtains for us the secretions required to digest, but promotes the absorption of these fats when digested." Bernard maintains that fats are chiefly absorbed by means of these secretions. After a prolonged investigation of the influence of ether, Dr. Balthazar Foster finds that oils
OILS.

and fats, which otherwise cause nausea and sickness, are, by means of this combination, retained and digested, thus increasing appetite, nutrition, and weight. Dr. Foster employs ether purus of the Pharmacopoeia in doses of from ten to fifteen minims to every two drachms of oil. The ether may be given either separately, or with the oil; but as the ether masks the unsavouriness of the oil, it is better to combine them. Lime-water mixed with the oil sometimes obviates nausea, and even diarrhoea.

Fats are consumed in the body, but sometimes a small quantity escapes with the faeces and urine. The quantity escaping by the urine is insignificant, except in the disease called chylous urine, when fat is often present in considerable amount. In Bright's disease, a little fat is voided with the uriniferous casts in the urine.

CASTOR OIL. CROTON OIL.

These oils consist of a bland oil, with a variable quantity of an acrid, irritating, purgative matter, which imparts to them their characteristic properties. This irritating substance exists in a small proportion in castor oil, and in a larger degree in croton oil. Croton oil irritates the skin, produces redness, vesication, and, with a strong application, even pustulation, followed by scars. The irritating effect is increased by the admixture of alkalies; hence, liquor potassae is sometimes added, to intensify the effects of croton oil.

Its action is very variable; several applications on successive days may produce but slight vesication, whilst sometimes a single moderate application sets up great irritation, much vesication, and even pustulation. Caution is therefore needful. When applied too energetically or too persistently, croton oil liniment sometimes produces superficial papilliform white round scars, with a hair follicle in the centre. These scars gradually disappear. Croton oil liniment applied to the chest of phthisical and bronchitic patients, is highly esteemed as a counter-irritant, but, owing to the vesication it produces, it cannot generally be repeated more than once or twice on successive days, and sometimes only one application can be borne. In bronchitis and phthisis, croton oil liniment is sometimes preferred to mustard poultices, and, indeed, certain patients aver that croton oil gives them greater relief than
mustard poultries. The vesication, being a decided disadvantage, the patient must carefully avoid conveying any of the croton application to tender parts of the skin, lest it should provoke troublesome or severe inflammation of the face or scrotum. Dr. Tilbury Fox states, that croton oil sometimes produces a symmetrical erythema of the face, lasting for a few days, where no direct application of the drug could have occurred; and I too have seen this erythema of the face occur during the employment of croton oil. It is hard to say whether this erythema depends on the action of the croton oil after its absorption into the blood, or on the volatile acrid principle, reaching the face through the air, or by means of the hands.

As is the case sometimes with iodine liniment, and now and then from a belladonna plaster, I have known croton oil liniment produce a crop of itching papules which have spread over the chief part of the body, reaching even to the feet.

Dr. Alder Smith employs croton oil as an application in obstinate ringworm. He says, "I generally put it on a patch about the size of a shilling, with a small camel's hair brush, and order a poultice to be applied at night, then, if it has not set up severe inflammation and pustulation by the next day, which is very rare, I apply it again, keeping poultices on constantly day and night. A pustular rash occurs at once, but the oil can be applied over this, and a daily application of it for three, six, or ten days, together with constant bathing with warm water, and frequent poulticing with linseed meal, will generally set up such inflammatory exudation, that the patch resembles true kerion."

Pure castor oil is almost tasteless. Croton oil has an acrid burning taste.

These oils, apart from their acrid principle, behave in the stomach and intestines, for the most part, like other oils. Croton oil in a large dose inflames the stomach. If not quickly expelled from the intestines, they become absorbed into the blood, and serve the same purposes as other oils.

The acrid matter of these oils, irritating the mucous membrane of the intestine, excites slight catarrh, and by this means purges. As alkalies intensify the action of the acrid principle, the purgative effect of these oils is heightened by admixture with the alkali of the bile.

These oils, especially castor oil, are commonly used as purgatives. Castor oil is a speedy, certain, and somewhat mild purgative, producing only one, two, or three motions, with little
griping. It is said to purge when injected into the veins, or even when applied to the skin; and if this statement is true, the oil must have an especial affinity for the intestines. It is commonly used as a purgative for children, women with child, after parturition, in fever, piles, and fissure of the anus. It is not a good purgative in habitual constipation, as it increases the torpid habit of the bowels, an effect constantly witnessed in children.

Croton oil is a powerful purgative, producing watery stools, with much depression. It is an uncertain purgative, sometimes acting in half an hour, at other times requiring much longer; large quantities, even six or eight drops, may be required; hence it is seldom used, unless, as in apoplexy, coma, and mania, when it is important to administer a purgative of small bulk. It is sometimes employed in obstinate constipation when other purgatives have failed. It is a good plan to give a quarter or a third of a minim every hour, by which means a much smaller total quantity often succeeds better than a larger quantity given in one dose. Owing to its acrid taste, it is generally administered in the form of a pill, except to patients in a state of insensibility, when it is mixed with a little butter or lard, and conveyed to the back of the tongue, and is swallowed involuntarily, or trickles down the throat.

Röhrig, from experimental evidence, is led to conclude that croton oil given to fasting animals is a powerful stimulant to the liver, but Rutherford and Vignat did not get this result in their experiments.

As these oils remain but a short time in the intestines, the greater part passes out with the motions. Probably little of the acrid matter passes into the blood, since unless croton oil is swallowed in large quantity, those serious symptoms, seen after its injection into the veins, do not occur.

Like other purgatives, these oils may influence distant organs, as the kidneys, and act as diuretics.

Croton oil has been used in hydrocephalus, and it is said to have removed the excess of fluid from the ventricles of the brain.

Mr. Sewell, of Ottawa, Canada, recommends croton oil in sciatica, obstinate pleurodynia, and crick of the neck, and he states that other purgatives cannot be effectively substituted for croton oil. He lays great stress on the evacuation of blackened faeces. No doubt some cases of sciatica depend on a loaded rectum or descending colon, when any purgative will be useful; but apparently these are not the cases referred to by Mr. Sewell. This
treatment sometimes relieves, or even suddenly cures, unconstipated patients, but it produces a good deal of temporary weakness. Diarrhoea in children, sometimes yields to eight or ten drops of castor oil suspended in mucilage; but, unfortunately, the indications for this treatment being unknown, it often fails.

In the early stages of diarrhoea, it is a common practice to administer a dose of castor oil, to carry away the irritant exciting the discharges.

A drop of castor oil introduced into the eye, will often allay pain and intolerance of light produced by a fine irritant, as sand.

Castor oil may be taken, almost, if not quite tastelessly, in beet-tea, highly peppered and well salted; or the oil may be beaten up with an equal quantity of the froth of porter, and tossed off before the constituents have separated. A mixture consisting of castor oil, half an ounce; fresh mucilage of acacia, three drachms; distilled water, five drachms; has very little taste. It may be flavoured with oil of peppermint, or oil of lemons. It is a good plan to pour into a wetted glass the required dose, and then toss it off without letting the oil impinge upon the teeth.

GLYCERINE.

The applications of glycerine are endless. It is a useful application for chapped lips and hands; and for rough furfuraceous, and inelastic skin, left after eczema, or other skin complaints. It restores suppleness to the tissues, and allays burning, tingling, and smarting. Undiluted glycerine may cause inflammation and smarting, hence it should be mixed with an equal quantity of rose-water or eau de Cologne. Glycerine of starch acts still better in rendering the skin soft and supple. In xeroderma, a bath should be taken daily, and the ointment rubbed in after wiping the body thoroughly dry. Glycerine is a good application for dryness of the meatus of the ear; and when the tympanum is ruptured, it covers the opening in the tympanum with a thin film, supplying for a time the place of the lost membrane.

Dr. M. Rosenthal recommends glycerine as a solvent for alkaloids employed hypodermically. One drachm of glycerine will dissolve ten grains of muritate of morphia, twenty grains of sulphate of quinia, and only one grain of curare.
GLYCERINE.

The lips, tongue, and gums, when dry and coated with dried mucus in acute diseases, should be washed and kept moist several times a day with glycerine, which greatly improves the comfort and appearance of the patient. If the sweet taste of glycerine is unpleasant, it will answer as well if diluted with an equal quantity of water or lemon-juice.

In the last stage of chronic diseases, as phthisis, when the mucous membrane of the mouth becomes dry, red, shiny, and glazed, a condition which causes much distress, and is usually accompanied by great thirst; a wash of glycerine and water, to rinse the mouth, will relieve this harassing condition. Undiluted, glycerine is apt to make the mouth clammy and sticky. Glycerine will sometimes cure thrush.

Glycerine of carbolic acid is a useful application to fetid sores and open cancers of the surface of the body, or of the uterus. It removes the offensive odour of the discharge, and improves the condition of the sore.

A pledget of cotton-wool, saturated with glycerine, and applied for several hours to the congested neck of the womb, will induce a copious serous discharge, and will give as much relief as the application of leeches. The pledget should be fastened with a piece of twine, so that the patient herself can readily withdraw it.

Glycerine of borax is a good application in pityriasis of the scalp, aphthae, and thrush.

Glycerine is much used now in the manufacture of medicated pessaries.

Glycerine has been used in place of sugar, as in diabetes. It has also been recommended as a substitute for cod-liver oil, but experience has shown its inferiority.

One of the best preventives of bed-sores is glycerine or glycerine cream. The part exposed to pressure should be washed morning and evening with tepid water, and carefully dabbed quite dry with a soft towel, and then gently rubbed over with a little glycerine or glycerine cream. If the skin is sore or tender, the glycerine cream is best. A draw-sheet made of linen, and sufficiently large to be firmly tucked in at both sides of the bed, (as any folds or creases are very apt to produce tenderness, and eventually, sores), will prevent soiling of the bed-clothes. This preventive treatment should be commenced before the on-coming of redness or tenderness.

It is impossible here to indicate all the manifold uses of glycerine.

Glycerine I find useful in stomach flatulence and acidity, a
drachm to two drachms should be taken several times a day in tea, coffee, or water, with food.

A teaspoonful of glycerine neat, or added to water, is often useful in coughs, even the cough of phthisis. It may be added to a little lemon-juice, which makes it more efficacious in some cases. This taken at night often lessens morning cough. It is also useful in dry throats.

ON DIFFERENT KINDS OF TANNIN.

ON GALLIC ACID.

These substances produce little or no change in the unbroken skin, but act as astringents to sores and mucous membranes, checking secretion by contracting the vessels and condensing the tissues. They precipitate albumen, and thus coat over wounds, in some measure protecting them from the injurious action of the air, whence tannin-containing substances are applied to excoriations, profusely-discharging sores, and luxuriant granulations. Tannin is conveniently employed in the form of glycerine of tannin. This combination is useful in ozæna. After measles, scarlet fever, and some other diseases, the inside of the nose not uncommonly becomes excoriated and reddened, and discharges freely a thin sanious or thicker purulent fluid, which, on drying, scabs up the nose, and often excites eczema of the upper lip; now, if the inside of the nose is well brushed out with glycerine of tannin, the discharge will cease, even after a single application; but if the scabs are thick, they must be thoroughly removed, to enable the application to act on the sore-secreting surface. Glycerine of tannin cures syphilitic ozæna of children; it arrests the discharge, reduces the swelling of the mucous membrane which produces the characteristic sniffing, and by enabling the child to breathe through the nose, permits sound refreshing sleep and proper suckling.

Occasionally among adults we meet with an impetiginous eruption of the inside of the nose, most severe near the orifice where the hairs grow, but extending higher in a milder form. Scabs block up the nose, especially at night, and the alæ, and sometimes the whole of the nose, is thickened, dusky red, and very painful. The swelling may extend to the adjacent structures, and may
merge into repeated attacks of erysipelas of the face. Glycerine of tannin, applied once or twice daily to the whole cavity of the nose, speedily reduces and even cures this disease. The upper part of the nose is the most easily cured, but the disease situated in the hairy part is much more obstinate, and is very prone to recur again and again. Epilation is useful in obstinate cases. Glycerine of starch or zinc ointment, applied several times a day, keeps the tissues moist and supple, and is a serviceable supplementary application.

Glycerine of tannin will generally check the nasal discharge of thick, lumpy, greenish-black, and stinking mucus, and, even when it fails, it ordinarily removes the offensive smell. In other forms of ozaena, especially when the disease affects the upper and back part of the nose with its numerous recesses, it is preferable to flush the nose with a deodorizing and astringent wash, in the way described; which, besides benefiting the mucous membrane, washes away the insipissated putrefying discharge on which the stench of ozaena generally depends.

Glycerine of tannin is very valuable in otorrhœa, a common complaint of weak unhealthy children after severe illnesses. The external meatus must be filled with it, and retained there by cotton-wool. One application usually suffices, but a slight discharge may remain, or return in a few weeks, when a repetition of the treatment is called for. This treatment is inapplicable in the acute stages of inflammation of the meatus. This affection is much more difficult to cure when the tympanum is destroyed and the small bones are exposed; indeed, in such cases, the tannin only restrains and deodorizes the discharge, which generally returns when the application is stopped. Glycerine of tannin will often cure the chronic vaginitis of children, a complaint generally more obstinate than either ozaena or otorrhœa.

Glycerine of tannin is useful in some stages of eczema. After the removal of the scales, if the inflamed, red, swollen, and weeping raw surface is painted with this preparation, it notably abates the discharge, redness, heat, and swelling. A poultice must be applied at night; if the glycerine of tannin excites much pain, the poul-tices must be continued night and day. In a less active stage, when the tissues are not so red, swollen, and weeping, eczema yields still more readily to glycerine of tannin, applied twice or thrice daily. A poultice is useful at night. Tannin-glycerine quickly allays the troublesome itching, tingling, and burning, so common in eczema; hence it prevents tearing with the nails and
rubbing, which hinder healing, nay, even cause the eczema to spread. It may not entirely remove the disease, but only reduce it to the desquamative stage, with a tendency to crack and ooze, when tar, carbolic acid, or other ointments become necessary to complete the cure. The same treatment is useful in impetigo. A poultice must be applied each night to remove the scabs, and the tannin application should be employed during the day. While treating these skin diseases, the state of the digestive organs must not be overlooked.

Eczema of the ears, common in middle-aged and old people, readily yields to glycerine of tannin, unless the inflammation runs high, with great swelling, heat, and weeping. This remedy is also very efficacious in eczema behind the ears of children, one or two applications speedily drying up and healing the eczema, although it may have lasted for weeks or months. The gums must be lanced, if red and swollen, and other irritations removed.

Glycerine of tannin sometimes benefits intertrigo.

Equal parts of tincture of catechu and liquor plumbi is a useful application to prevent bed sores.

Glycerine of tannin is very useful in many throat diseases. Immediately after acute inflammation, when the mucous membrane grows less red, less swollen, becomes moister, and is covered with mucus or pus, glycerine of tannin painted on the pharynx, hastens recovery, prevents chronic inflammation with relaxation of the mucous membrane, which often follows the acute disease, heals superficial ulcerations occurring as the acute inflammation subsides, and cures hoarseness.

Glycerine of tannin is useful on the appearance of ulceration in aphthous sore throat. In chronic inflammation of the throat when the mucous membrane is relaxed, swollen, granular-looking, and covered with mucus or pus, a few applications of glycerine of tannin brace up the tissues and lessen or remove the hoarseness. This kind of throat, often with slight enlargement of the tonsils, is common in children, and sometimes produces deafness, and still more often a frequent hacking cough, which may keep the child awake the greater part of the night. In children, this is so commonly the cause of cough, that it is well always to examine their throats. Glycerine of tannin applied daily speedily allays the cough, and cures the deafness. Throat deafness is the most common form of that infirmity in childhood; and when not due to enlarged tonsils, generally depends upon the kind of morbid throat just described.
TANNIN.

Many coughs depend on the state of the throat, a fact accepted in theory, but little regarded in practice. Glycerine of tannin is very useful to allay the cough and frequent deglutition excited by an elongated uvula, and the frequent hacking cough in phthisis, due to inflammation or ulceration of the throat. A good night's rest may be often obtained by painting the throat shortly before bedtime, and a small quantity of morphia added to the glycerine of tannin increases its soothing effect. Mopping the pharynx, epiglottis, and adjacent structures with this application will much reduce the frequency and violence of the paroxysms of whooping-cough. It is of little use if the case is complicated with catarrhal or other inflammation of the lungs, tuberculosi in, or any irritation, as that from teething; but in simple uncomplicated whooping-cough it is very useful. The paroxysmal cough often left by whooping-cough, which readily returns on catching cold, yields to this treatment. In whooping-cough and the foregoing throat diseases, glycerine of tannin is better than a solution of nitrate of silver, as it excites less pain, and is less disagreeable to the taste. (See Nitrate of Silver.) Glycerine of tannin is more efficacious than tannin lozenges.

Glycerine of tannin is useful in ulcerative stomatitis, especially in that form affecting only the edges of the gums; but dried alum is a better application. (See Salicine.)

In diphtheria and croup, Trousseau successfully employed a solution containing five per cent. of tannin, in the form of spray several times a day, for fifteen or twenty minutes.

Tannin unites with albuminous matter in the stomach, forming an insoluble substance, and any tannin left uncombined constringes the mucous membrane, and lessens its secretions. As tannin likewise diminishes the solvent power of the gastric juice, it is inadvisable to give tannin-containing substances close to meal times.

It is asserted that tannin, by virtue of its astringency, cures slight catarrh of the stomach; hence tannin preparations are occasionally employed in irritative dyspepsia. Some give tannin for pyrosis, but they do not discriminate whether it checks neutral, alkaline, or acid pyrosis, or all these forms of the complaint. In poisoning by alkaloids, as strychnine and morphia, tannin is given to render them less soluble. Tannin and gallic-acid control bleeding from the stomach. The members of this group are astringent to the intestines, lessening their secretions and probably their contractions: hence they constipate, and tannin-containing substances, as catechu, kino, red gum, rhatany, and haematoxylum, are very
useful in most forms of acute and chronic diarrhoea. The members of this group are employed as anal injections to check diarrhoea, to destroy thread-worms, and to restrain prolapse of the ano. Few applications are so useful in irritable piles as gallic acid and opium ointment. The combination quickly relieves pain, and after a time even reduces the size of the hemorrhoidal tumours. Calomel ointment, too, is highly spoken of by my friend Mr. J. Bartlett.

Owing to their low diffusion power, the members of this group must pass but slowly from the intestines into the blood. After, if not before, absorption into the circulation, they must become neutralized with albumen, and for this reason some authorities maintain that tannin and its allies do not act as astringents to organs distant from the intestines. Nevertheless, tannin and gallic acid are frequently employed with considerable benefit to check bleeding from the lungs, uterus, and kidneys, and with less apparent benefit to check over-abundant secretion of milk, and profuse sweating.

Tannin is sometimes administered to diminish the loss of albumen in chronic Bright's disease, and George Lewald has experimentally tested its power in this respect. In a few carefully-conducted experiments, he found that the albumen was always lessened to an inconsiderable amount, the daily average diminution amounting to about 0.66 grammes. Tannin produced a much more decided increase in the quantity of urine.

An injection of glycerine of tannin is very beneficial in the after-stages of gonorrhoea, and in gleet, but, as the undiluted preparation commonly excites much pain, it should be mixed with an equal quantity of olive oil or mucilage. Two drachms of this mixture is enough for each injection. Too much will excite frequent and painful micturition, the discharge in many instances ceases only during its employment. Urethral injections should be persevered with eight or ten days after the cessation of discharge, and as they are apt to excite seminal emissions, should not be employed at bedtime.

Tannin, either alone or blended with other astringents, is a useful injection in leucorrhoea. In obstinate cases, and when the os uteri is ulcerated, a suppository of tannin and cocoa-nut fat applied to the mouth of the uterus is very beneficial. Glycerine of tannin checks the great discharge of cancer of the uterus, and destroys the stench: but a mixture of glycerine of tannin and glycerine of carbolic acid is still more useful.
HAMAMELIS VIRGINICA.

The effect of the members of this group on the natural constituents of the urine is unknown. Gallic acid "passes unchanged into the urine, and has been detected one hour after being taken." Tannic acid "passes off by the urine in the forms of gallic and pyro-gallic acids, perhaps of a saccharine body." (Parkes).

HAMAMELIS VIRGINICA.

Various preparations of the witch hazel have long been in vogue in America among the natives who introduced it to the English settlers.

It is chiefly employed in hæmorrhage, and is most serviceable in passive hæmorrhage. Dr. Preston has employed it largely and successfully in epistaxis, and his experience is confirmed by that of many other writers. It has been recommended highly in the hæmorrhagic diathesis, but in the case of a lad with this peculiarity, I employed it in vain on several occasions in nose-bleeding. It has been found very serviceable in hæmoptysis and hæmatemesis. Dr. Hall recommends it in dysentery when the discharges contain much blood. I have known it arrest hæmaturia in four cases which had resisted many other remedies. It is very highly recommended in piles, both to check bleeding, and to cure the diseased veins; and I have found it singularly successful and prompt in arresting this form of bleeding even when amounting to half a pint a day, repeated almost daily for months or years. It is also very useful in curing the piles, if it is employed as an injection for many weeks, or even months. It should be employed either as a lotion, injection, or cerate, in piles, as well as by the mouth. A drachm of the tincture should be added to three ounces of cold water, and injected each night at bed-time, or before breakfast. The injection should be retained. It has been recommended in varicocele, and one case I have seen in which, during the employment of this drug, the varicosities entirely, and apparently permanently, disappeared.

Dr. Preston extols it in phlegmasia dolens. I have found it useful in checking that slight oozing of blood after a confinement, which may go on sometimes for weeks.

The dose is one or two minims of the tincture every two or three hours, large doses being liable to produce severe throbbing pain in the head.
TAR, CREASOTE, CARBOLIC ACID, PETROLEUM, OIL OF TAR, etc.

Carbolic acid destroys the lowest forms of animal and vegetable life, and prevents fermentation and putrefaction. Whilst it prevents the fermentation of sugar, it is said not to prevent the conversion of starch into sugar, nor the decomposition of amygdalin. It is largely employed to prevent the stench of drains, water-closets, dissecting rooms, and hospital wards. Unlike chlorine and permanganate of potash, carbolic acid is incapable of destroying offensive gases; it only prevents their formation. Its destructive influence over the low forms of animal and vegetable life has led to its being considered a disinfectant, but no satisfactory proof exists of its capability to destroy the contagious elements of disease. Nevertheless it is extensively, and apparently effectually, employed as a disinfectant. It is a good plan to hang a sheet, kept moist with a solution of carbolic acid, and large enough to cover the door way of the sick chamber, and to extend a little beyond.

Creasote and carbolic acid act energetically on the skin, producing opaque, white patches, and exciting active inflammation, followed, in a few days, by desquamation. They coagulate albumen, and are stimulant and astringent; hence they may be employed to check bleeding.

According to Dr. J. H. Bill, carbolic acid, locally applied, is an anaesthetic, a statement confirmed by Dr. Andrew H. Smith (New York Medical Journal). Dr. Smith painted on his forearm a spot an inch in diameter, with an 85 per cent. solution of carbolic acid. For a minute it caused slight burning, then the skin became quite numb, whitened, and shrivelled; at this point he made an incision half an inch long without even feeling the knife, the wound healing as usual. Three hours afterwards he thrust, without pain, a needle into the skin, and next he applied a blister to the carbolized skin without causing pain or vesication. He found that in incising two whitlows, this application greatly lessened the pain.

Professor Erasmus Wilson employs carbolic acid as an anaesthetic, to diminish the pain arising from caustics, as potassa fusa. Brushed over the delicate part or raw surface several times, the acid coagulates the albumen, "benumbs the surface, and permits the caustic action with a great reduction of pain." Mr. Wilson
CARBOLIC ACID.

employs this method in lupus, epithelioma, and in disease of the glans and prepuce.

Carbolic acid applied as a stimulant and antiseptic to gangrenous and ill-smelling sores, prevents the stench, and improves the condition of the wound.

The empyreumatic oils, and their derivatives, are very useful in many chronic skin affections, as chronic eczema, psoriasis, erythema. The odour of oil of cade, or oleum rusci, is less disagreeable than that of tar, liquor carbonas detersens, and carbolic acid. Dr. McCall Anderson strongly recommends these oils, especially liquor carbonas detersens, oil of cade, and oleum rusci. In most cases they afford immediate relief from the tormenting itching of chronic eczema, psoriasis, erythema, and prurigo, but if too long continued, they excite inflammation of the hair follicles, forming papules and pustules, with a black spot in their centre. Hebra terms this eruption tar-acne. They often excite considerable inflammation in delicate skins. The topical effect of the vapour even sometimes produces acne. The parts protected by clothes escape, showing that this effect is not induced through absorption by the lungs.

These oils are useful in chronic eczema, after the subsidence of inflammation, especially when only a little redness, itching, and some desquamation remain. Sometimes pure tar succeeds better than its ointment; but if there is inflammation, or if the surface is raw and weeping, it will then excite great pain and inflammation. In some instances the application of undiluted petroleum much improves local forms of eczema, as that kind occurring on the back of the hands; but as this is generally very painful, other and milder remedies should first be tried.

Provided inflammation runs not too high, carbolic acid ointment, composed of ten minims of the acid to an ounce of lard, moderates the weeping stage of eczema and allays the tingling and itching. It is useful in the eczema of the head of children.

The external application of these remedies in psoriasis is often very serviceable. Tar, or its ointment, seldom fails to benefit chronic psoriasis; and some of the most obstinate forms of this disease may often be cured by painting the patches of the eruption with pure undiluted tar, allowing it to remain till it wears gradually away. If the unsightliness of the tar ointment is objectionable, the creasote ointment, composed of two or three parts of creasote to one part of white wax, recommended by Mr. Squire, may be substituted. This powerful ointment must be applied only
to the patch of psoriasis, not on the adjacent healthy skin, otherwise it will blister. To avoid staining exposed parts, Dr. McCall Anderson sponges the eruption three or four times daily with a wash composed of crystallized carabolic acid, two drachms; glycerine, six drachms; rectified spirits, four ounces; distilled water, one ounce. But he considers carabolic acid inferior to tarry preparations. He strongly insists on the necessity of rubbing in the ointments till they have nearly disappeared, and, lest they become rancid, of washing them off with soap and water before each fresh application.

Petroleum soap, cade soap, and carabolic soap, are useful in both chronic eczema and psoriasis. As these soaps are made of different strengths, if one kind prove too strong and irritating, a milder form may be substituted. Doctors, especially accoucheurs and surgeons, use carabolic soap, to free their hands from infectious or noxious matters which might endanger their patients' safety.

Carbolic acid has the great advantage of being free from colour. It is useful in eczema, psoriasis, and prurigo, but is generally considered inferior to tar.

Dr. Alder Smith finds glycerine of carabolic acid very useful in the early stages of ringworm.

Dr. Eade recommends the use of carabolic acid for carbuncles and carbuncular boils. He employs a solution one part of carabolic acid in four of glycerine or oil, and soaks in this, small pieces of lint, and thrusts them through the opening of the broken skin to the bottom of the holes and sinuses in the carbuncle, and keeps the surface of the carbuncle covered with lint soaked in the solution. This application he maintains prevents the extension of the carbuncle. This treatment is only useful in that late stage of the carbuncle when the skin is broken and the carbuncle discharging.

Professor Hüter employs carabolic acid hypodermically in erysipelas. He uses the following formula: carabolic acid and alcohol, of each, $\frac{3}{8}$ ss; distilled water, $\frac{2}{3}$ ij. Of this six to eight syringefuls should be injected at different points where the inflammation is most intense, and should be repeated next day, or in a few days, if the disease spreads.

Glycerine of carabolic acid appears to me to be highly useful as a topical application in the throat in diphtheria. It should be applied only to the diseased portions of the mucous membrane, and should be applied twice a day.

A weak solution of carabolic acid is a very useful injection or wash for the cavities of large abscesses, or in empyema, after the
evacuation of pus. A like injection will correct the foetor arising from cancer of the womb, or other uterine diseases. Carabolic acid, it is said, will remove the stench and lessen the discharge in ozaena.

A lotion consisting of one part of carabolic acid to one hundred parts of water is strongly recommended in pruritus ani. Dr. J. Thompson employs marine lint soaked in carabolic lotion. He pushes every night a small plug into the anus, a part being left as a pad outside. Carabolic acid is useful in pruritus pudendi. It may cause considerable irritation both in pruritus ani and pudendi, the skin sometimes being so delicate that even a weak application causes considerable burning and smarting.

The inhalation of creasote or carabolic acid, ten to twenty drops in boiling water, is useful in bronchitis, lessening in some cases over-abundant expectoration. It will generally remove the breath foetor occasionally met with in bronchitis, and sometimes even the foetor due to gangrenous lung. The inhalation of even ten drops produces in some persons giddiness and sensation of intoxication. Inhalation of carabolic acid with steam, or in spray, is useful in whooping cough.

Creasote, mixed either with tannin or opium, introduced into the hollow of a decayed and painful tooth, often gives relief.

A creasote or carabolic gargle or wash proves very efficacious in sloughs of the mouth or throat, removing the offensive odour, and producing a healthier action in the sore.

Small doses of creasote excite no particular symptoms in the stomach, but a large quantity produces a sensation of burning at the epigastrium, with nausea and vomiting.

During its transit through the intestines, creasote appears not to undergo any change in composition, as its characteristic odour may be detected in every part of the canal. It checks the vomiting of various diseases, as that of pregnancy, sea-sickness, cancer, ulcer of the stomach, Bright's disease. It often promptly relieves stomach pains occurring after food.

The investigations of Dr. Sansom, who first employed sulpho-carbolates in medicine, prove that these salts arrest fermentation in different degrees, sulpho-carbolate of soda being most efficient, then follows a salt of magnesium, then of potassium, then of ammonium. Administered to animals, they prevent putrefaction and decomposition of urine, although Sansom could not detect any of the salt in this excretion. He gave sulpho-carbolate, and then collected and preserved the urine, which after six months had not undergone decomposition.
Sulpho-carbolate of soda and carbolic acid are very useful in flatulence, especially when there is great distension, unaccompanied by pain, heartburn, or other dyspeptic symptoms. Sulpho-carbolate of soda will generally relieve extreme flatulence, producing copious eructations and considerable distension, symptoms not uncommon in middle-aged women and phthisical patients. When flatulence occurs immediately after a meal, ten or fifteen grains of sulpho-carbolate of soda should be taken just before food; when it occurs some time after meals, the medicine in the same dose should be taken half an hour after food.

We often meet with patients, generally women, who suffer from what is ordinarily called "spasms." The patient complains of considerable flatulence and distension, often limited to one part, or sometimes most marked in one part, of the abdomen, generally on the left side under the ribs, accompanied by severe pain, which, like the flatulence itself, is often most marked under the left side of the chest. The pain, temporarily relieved by the eructation of a little wind, soon returns and may endure many hours, and may frequently recur. In some cases the complaint is evidently a neuralgia of some of the abdominal nerves; the pain being chiefly excited by flatulence. Sulpho-carbulates often afford considerable relief, by preventing the formation of wind, but in some cases I have found phosphorus far more prompt and its remedial effect more permanent.

Creasote has been given in cholera and typhus fever, but apparently without much benefit.

Creasote passes into the blood, and its odour is detectable in most of the organs, showing that it probably remains in chief part, if not entirely, unaltered in the blood.

Tar, creasote, and carbolic acid are used in bronchitis and in phthisis to check both the quantity of the expectoration and its offensiveness. They are especially useful in chronic bronchitis. Tar-water is an old-fashioned and approved remedy in bronchial complaints. The frequent and popular use of tar-water, both by the profession and by the laity, in France and Belgium, led me, in conjunction with my friend, Mr. Murrell, to try its effects. Patients so susceptible to cold that they were obliged to remain in-doors the whole winter, informed us that this remedy curtailed considerably the duration and lessened the severity of their catarrhal attacks, and that, by an occasional recourse to the tar, they became less prone to catch cold, and could more freely expose themselves to the weather.

We employed tar in two-grain doses, in a pill, every three or
CARBOLIC ACID.

four hours. From October to January, inclusive, we carefully watched its effects on twenty-five patients, whose ages varied from 34 to 70, the average being 44. All these patients had suffered for several years from winter-cough, lasting the whole winter. They were out-patients, and visited the hospital weekly, or oftener. Most of them were much exposed to the weather, whilst some being so ill, were obliged to stop work, and therefore, were less exposed.

These patients suffered from the symptoms common in winter cough—paroxysmal and violent cough, the paroxysms lasting from two to ten minutes, recurring ten to twelve times a day, and, in the night, spoiling sleep. The expectoration frothy, and slightly purulent, was generally rather abundant, amounting in some cases to half a pint or more in the day. The breathing was very short on exertion, but most of them could lie down at night without propping. The physical signs showed a variable amount of emphysema with sonorous and sibilant rhonchus, and occasionally a little bubbling rhonchus at the base.

These patients usually began to improve from the fourth to the seventh day; the improvement rapidly increased, and, in about three weeks, they were well enough to be discharged. The improvement was so decided that the patients returned to their work; even those who, in previous years, had been confined to the house the whole winter. The cough and expectoration improved before the breathing. In several cases the expectoration increased during the three or four first days; but its expulsion became easier, and, with the improvement in the cough and expectoration, appetite and strength returned.

On discontinuing the tar, a relapse often occurred in a week or two, and the patient returned with a request for more of the same medicine, and then, a second time, the symptoms quickly subsided. We found it useless in bronchial asthma, and its effects were more evident in cases where expectoration and cough were more marked than dyspnoea.

We have no doubt that tar is a good, useful, though, perhaps, not a striking, remedy in these troublesome affections; and certainly it is more efficacious than the drugs generally employed.

It may be remarked that tar is useful in the same cases for which the spray of ipecacuanha wine is serviceable. The spray, we find, acts much more quickly, and, unlike tar, it lessens dyspnoea even before it improves cough, or diminishes expectoration. (See Ipecacuanha).
In winter-cough and chronic bronchitis, creasote in two minim
doses, either in pill or mixture, or floating on an ounce of water,
is said to be efficacious.

Dr. Anderson gives tar in chronic eczema. He begins with
three or four minims in treacle, pill, or capsules, gradually in-
creasing the dose to ten or fifteen minims three times a day. In
gangrene of the lungs, creasote is employed to obviate the foster
of the expectoration, and as an inhalation it certainly succeeds,
though when swallowed it is of doubtful efficacy. (See Salicine).

Oppression of the head, epigastric pain, vomiting of dark-col-
oured fluid, and black motions sometimes occur after the applica-
tion of tar, though rarely except when applied over a large area.
Carbolic acid is readily absorbed by the skin. Internally and
even externally it may, even in small quantities, produce some-
times serious symptoms, some being affected much more readily
than others; it may excite severe vomiting, giddiness, delirium,
even coma or collapse, with weak pulse and cold sweat, symptoms
which disappear in from fifteen minutes to an hour. These toxic
symptoms arising from carbolic acid are, it is said, best removed
by the free use of diluents; so doubtless the symptoms arising
from tar would be benefited by the same means.

Tar and creasote are reputed to be diuretics; and, as some of
the ingredients of tar pass off with the urine, changing its colour
and odour, they may possibly act on the urinary tract. Thus tar,
creasote, and carbolic acid, administered either internally, or ap-
plied externally, cause sometimes at first, dark-coloured, and
sometimes black, urine which gradually becomes lighter in tint.
It is said that the urine is coloured dark more frequently from the
external than from the internal use of carbolic acid; and Ferrier
suggests that this is owing to its becoming oxidized before its
absorption. Sometimes the urine is natural in colour when first
passed, but becomes dark on standing. On the addition of sul-
phuric acid, the odour of tar is readily perceived, and chloride of
iron develops a beautiful blue colour. The local application of ol
fagi, ol rusci, ol cadini, occasionally affect the urine in the same
manner. The urinary changes are especially marked within the
first few days, but after a time these changes become scarcely per-
ceptible. The urine remains clear throughout, rarely contains
albumen, and does not exhibit an excess of iron, showing that the
discoloration is not due to disintegrated blood corpuscles. The
urine, in health, contains a trace of carbolic acid. Carbolic acid and
creasote sometimes excite strangury. Carbolic acid and sulpho-
CARBOLIC ACID.

Carbolates administered by the stomach prevent, as we have shown, decomposition of the urine; possibly these drugs may prove useful agents to preserve the urine sweet in cystitis, enlarged prostate, and paralyzed bladder.

Dr. Lloyd Roberts, of Manchester, was one of the earliest to draw attention to the virtues of carbolic acid, now often employed in ulcer of the os and cervix uteri, in chronic inflammation of the uterus and cervix with excoriatio, and in chronic uterine catarrh. "I use," says Dr. Roberts, "invariably the pure acid. A capital plan for maintaining the fluidity of the acid, devised by Mr. Weir of Dublin, and recommended by Dr. Roe, is to add a few grains of camphor to a little of the acid. In simple ulceration, a free application of the acid drawn over the surface twice a week is sufficient. When it is necessary to apply the acid to the interior of the cervical canal, I use a charged camel-hair pencil, or a gum-elastic catheter, having previously removed, with a piece of lint or injection of water, any impeding mucus. In applying it to the interior of the uterus by injection, it is very important to have the cervical canal freely open, so that any superfluous injection may pass freely out. Care should also be taken to ascertain the direction of the uterus; as in cases of retroflexion, any of the injection passing beyond the curved portion of the organ and retained there, would be certain to produce untoward consequences. When injected into the uterine cavity, the acid should be diluted with glycerine and water, commencing with a weak solution, gradually increasing the strength as circumstances require. I also use this acid freely as an ordinary injection in vaginal leucorrhoea, uterine ulceration, and cancer; and it will be found an excellent cleanser, healer, disinfectant, and allayer of pain. Although its action does not penetrate below the diseased surface, it possesses in equal degree with the stronger caustics, the property of changing the vitality of the tissues, and produces rapid cicatrization, dissipates the inflammation and hypertrophy, and relieves pain."

An injection composed of twenty grains of sulpho-carbolate of zinc to eight ounces of water, used twice or thrice daily, is useful in gonorrhoea.

It is said that sponging the exposed part of the body with a weak solution of carbolic acid will drive away mosquitoes.
been taken, and some time has passed. In this stage of insensibility the danger of death is imminent from paralysis of the heart and of the movements of respiration. It will be easily understood, therefore, that while chloroform and ether are used as anaesthetics, alcohol is inadmissible for this purpose.

Alcohol, owing to its volatility, is sometimes employed to abstract heat, and cool the surface of the body, as in inflammation of the brain, &c., but it is not a very effectual refrigerator, and ice is preferable.

If its evaporation is prevented, it penetrates the skin, owing to its tolerably high diffusion-power, and excites the tissues beneath the cuticle, causing a sensation of heat and some inflammation. It may be thus employed as a counter-irritant.

It coagulates albumen, and is sometimes used to cover sores with a thin, protective, air-excluding layer, which promotes the healing process. Alcohol, in the form of brandy or eau de Cologne, is often applied to harden the skin of parts exposed to pressure, and to obviate the occurrence of bed-sores an excellent practice, which should be adopted before the occurrence of abrasion, or even before redness occurs.

It is a useful practice to bathe the nipple with brandy, each time after a suckling, then carefully to wash the part, and dab it dry. It is well to apply the brandy some days before delivery, so as to harden the tissues, and prevent the formation of cracked nipples, which gives rise to so much pain and distress.

In virtue, probably, of its power to coagulate albumen, and perhaps of other properties, it constricts, to a small extent, the mucous membranes of the mouth, and is sometimes used, diluted with water, as an astringent gargle in relaxed throat, scurvy, salivation, &c.

In the stomach it exerts a double action. Thus it may affect both the gastric juice and the secreting mucous membrane. Its action in these respects will be considered separately. The effect of a small quantity of alcohol on the pepsine of the gastric juice is insignificant; but a large quantity destroys the pepsine and its food-dissolving property.

As with the gastric juice so with the mucous membrane, the topical effect of alcohol differs according to whether the dose is large or small. It has been experimentally proved that, taken very moderately, it increases the secretion of the gastric juice, and every-day experience confirms this fact; whilst undue quantities destroy the appetite, upset the stomach, inflame its mucous coat,
MUSK. CASTOREUM.

These medicines, although once highly esteemed, especially musk, by Graves and Cullen, are but seldom used. Their peculiar and characteristic odour is oppressive and sickening, and sometimes causes headache, giddiness, and even fainting; hence musk is ill adapted for the sick-room.

These substances have a bitter taste.

Jorg asserts that musk, in two to five-grain doses, causes weight at the stomach, eructations, dryness of the oesophagus, heaviness of the head, giddiness, headache, followed by sleepiness, faintness, and a sensation of heaviness in the whole body; and in very large doses, trembling of the limbs, and even convulsions. It is said they strengthen and quicken the pulse. Trousseau and Pidoux failed to obtain these symptoms, noticing only headache with giddiness, the pulse being unaffected.

These remedies are employed in melancholia, and for many of those anomalous but distressing symptoms grouped under hysteria. They have been given in chorea, epilepsy, whooping-cough, nervous palpitation, cramps of various parts of the body, and even in tetanus. Dr. Graves employed musk in typhus and other fevers, to prevent prostration, and to strengthen a weak and feeble pulse.

ALCOHOL.

For many reasons alcohol might be grouped conveniently with chloroform and ether, there being much similarity in the action of these three medicines. Each, at first, produces much excitement, with increased strength of the pulse, this stage after a time giving way to another of unconsciousness, which may be profound; but with this general similarity there is an important difference between alcohol on the one hand, and chloroform and ether on the other. With chloroform and ether the stage of excitement is brief, soon passing into that of insensibility, which may endure a long time without danger to life. But with alcohol the early stage of excitement and intoxication is of considerable duration, insensibility and unconsciousness not coming on till large quantities have
been taken, and some time has passed. In this stage of insensibility the danger of death is imminent from paralysis of the heart and of the movements of respiration. It will be easily understood, therefore, that while chloroform and ether are used as anaesthetics, alcohol is inadmissible for this purpose.

Alcohol, owing to its volatility, is sometimes employed to abstract heat, and cool the surface of the body, as in inflammation of the brain, &c., but it is not a very effectual refrigerator, and ice is preferable.

If its evaporation is prevented, it penetrates the skin, owing to its tolerably high diffusion-power, and excites the tissues beneath the cuticle, causing a sensation of heat and some inflammation. It may be thus employed as a counter-irritant.

It coagulates albumen, and is sometimes used to cover sores with a thin, protective, air-excluding layer, which promotes the healing process. Alcohol, in the form of brandy or eau de Cologne, is often applied to harden the skin of parts exposed to pressure, and to obviate the occurrence of bed-sores an excellent practice, which should be adopted before the occurrence of abrasion, or even before redness occurs.

It is a useful practice to bathe the nipple with brandy, each time after a suckling, then carefully to wash the part, and dab it dry. It is well to apply the brandy some days before delivery, so as to harden the tissues, and prevent the formation of cracked nipples, which gives rise to so much pain and distress.

In virtue, probably, of its power to coagulate albumen, and perhaps of other properties, it constringes, to a small extent, the mucous membranes of the mouth, and is sometimes used, diluted with water, as an astringent gargle in relaxed throat, scurvy, salivation, &c.

In the stomach it exerts a double action. Thus it may affect both the gastric juice and the secreting mucous membrane. Its action in these respects will be considered separately. The effect of a small quantity of alcohol on the pepsine of the gastric juice is insignificant; but a large quantity destroys the pepsine and its food-dissolving property.

As with the gastric juice so with the mucous membrane, the topical effect of alcohol differs according to whether the dose is large or small. It has been experimentally proved that, taken very moderately, it increases the secretion of the gastric juice, and every-day experience confirms this fact; whilst undue quantities destroy the appetite, upset the stomach, inflame its mucous coat,
cover it with a thick tenacious mucus, and abolish its secreting power.

Owing to this influence on the functions of the stomach, alcohol is a remedial agent, as the following examples will illustrate:—

I. Some persons, after undergoing considerable fatigue, are apt to lose all appetite and digestive power, and on taking food to suffer from an undigested load on the stomach; but a glass of wine or a little brandy-and-water, taken shortly before food, will restore appetite and digestion.

II. In the convalescence from acute diseases, when digestion and strength may remain a long time depressed, alcoholic stimulants, taken just before or at meal-times, are often serviceable.

III. Many dwellers in towns, who lead a sedentary life, and suffer often from weak digestion, find that only by the help of alcohol in some form can they properly digest their food.

IV. Stimulants are most serviceable in the prostration from acute illness, when, in common with the other functions, digestion is much depressed, at a time when it is most important to support the strength until the disease has done its worst. Strength, no doubt, is best supported by food, yet the weakened stomach can digest but sparingly, but at this critical juncture alcohol spurs the flagging digestion, and enables the patient to take and assimilate more food.

Next, the time of giving the alcoholic stimulant is a matter of great importance. It should not be given at haphazard, as is too commonly the case, but should be given with the food. To a patient labouring under great prostration, in whom digestion is very feeble, food and stimulants should be given together, in small quantities, frequently repeated; but a stronger patient had better take food at the ordinary meal-times, when, from habit, the stomach digests better.

It is necessary to insist on this point, as it is common with both doctors and patients to trust to alcohol alone, forgetting that while it benefits by stimulating the heart, it at the same time effectually aids the digestive process, and thus supports the patient in the best and most natural manner.

It has been mentioned that large quantities of alcohol excite catarrh of the stomach; but it is singular how large a quantity a patient prostrated by fever can take without producing this result. The same fact may be noticed in convalescence from exhausting diseases. Still, care must be exercised, since stimulants, if too freely given, will sometimes upset the stomach so that the food is
vomited, an untoward circumstance greatly adding to the patient's danger.

After a variable time, the prolonged indulgence in alcoholic drinks seriously damages the stomach by producing chronic catarrh. The mucous membrane, coated with tenacious mucus, excites unhealthy fermentation of the food, while the structure of the membrane itself undergoes considerable alteration through great increase of the connective tissue, which by its contraction obstructs and destroys the secreting follicles and their lining cells. The mucous membrane thus becomes thickened, hardened, and uneven; and, owing to obliteration of the orifices of the follicles, cysts form in its substance, and these enlarge from the accumulation of cells within them. In consequence of these serious changes, little gastric juice is poured out in response to the demand made by the food, while the unhealthy mucous coating of the stomach, by exciting morbid fermentations, induces the production of much gas, with various acids, as butyrlic, acetic, &c., whence acidity and heartburn. Morning vomiting of a scanty, sour, bitter, and tenacious fluid is a characteristic symptom of this condition.

Owing to its high diffusion-power, alcohol passes readily into the blood, so that but little can reach far into the intestines. Spirits, especially brandy, are often successfully employed after the removal of the exciting irritant, to control the after-stages of acute simple diarrhoea, when the relaxed condition of the mucous membrane allows the liquid parts of the blood to pass into the intestines, producing frequent watery stools.

Even in large quantities alcohol appears neither to promote nor to hinder the conversion of starch into sugar.

Observations on the influence of alcohol on the blood and organs, have yielded contradictory results, the most recent and elaborate investigations of Drs. Parkes and Wollowicz clashing in most particulars with those of previous experimenters. Hitherto it was held that alcohol diminishes the oxidation of the body, but Parkes and Wollowicz's observations are opposed to this conclusion. Dr. G. Harley found that alcohol in small quantities added to blood withdrawn from the body, lessened its absorption of oxygen and its elimination of carbonic acid.

As the result of a great many observations taken in conjunction with Dr. Rickards, every quarter of an hour, for several hours, on persons of all ages, we found that alcohol, brandy, and wine, diminish the body temperature. After moderate doses, the fall was slight, amounting to not more than 0.4° to 0.6° Fah., but after
poisonous doses, the depression in one instance reached nearly three degrees: in rabbits the fall was much greater, reaching to ten or more degrees. These observations have been confirmed by Professor Binz, of Bonn, and by Dr. Richardson, who asserts that all alcohols reduce the animal temperature. Drs. Parkes and Wollowicz, whose observations are opposed to the foregoing, gave to a healthy young man, in divided quantities, for six days, a daily amount of absolute alcohol, varying from one to eight ounces, and on a subsequent occasion, twelve ounces of brandy daily for three days, observing meanwhile the temperature of the body every two hours. The average temperature of the alcohol and of the brandy-drinking days, was found to be almost identical with that on days when only water was taken. These conflicting results it is difficult to reconcile; but it must be granted that a considerable quantity of alcohol repeated several times a day, does not permanently reduce the body temperature. Dr. Parkes has recently re-investigated this question, and he finds that dietetic doses (two fluid ounces of absolute alcohol) given to a healthy fasting man at rest, often reduces the rectal temperature rather less than half a degree; but when the alcohol is given with food, even in doses of four to eight ounces of absolute alcohol, it produces no effect on the temperature. In a boy aged ten, who had never in his life before taken alcohol in any form, I found through a large number of observations a constant and decided reduction of temperature. It is possible that alcohol given in repeated doses, may soon lose its power of depressing the temperature. Excessive habitual indulgence appears to have this effect; for Dr. Rickards and I gave to an habitual drunkard, making him "dead drunk," twelve ounces of good brandy in a single dose, without the smallest reduction of the temperature.

In their experiments on the urine, Böcker and Hammond found that "the formation of urea of the extractives, and of sulphuric acid and phosphoric acid, was lessened by alcohol and beer, and the water and free acidity of the urine was diminished;" but in Parkes and Wollowicz's observations, alcohol, brandy, and claret, produced no decreased elimination by the urine of urea, phosphoric acid, or free acidity. They, however, increased the amount of urinary water.

Edward Smith found that brandy and gin diminish, while rum increases, the pulmonary carbonic acid. These conflicting statements it is impossible to reconcile; but Parkes' observations were so carefully conducted, and are so complete, that they must be accepted as authoritative.
ALCOHOL.

How much alcohol is consumed in the body? The results of investigations to determine this point are so contradictory, that it is impossible to decide the value of alcohol as a food. Bouchardat, Sandras, and Duchek, conclude that alcohol is freely consumed in the body, little escaping by the urine, unless very large quantities are taken. On the other hand, Perrin, Duroy, and Lallemand, deny that alcohol is consumed in the smallest degree in the body. Anstie concludes from careful experiments that the greater part of the alcohol is consumed, and he has undoubtedly proved that only a little escapes with the urine, while Parkes and Wollowicz believe that a considerable quantity escapes with the sweat and breath. Dupré's recent observations confirm those of Anstie, proving that only a fractional part of alcohol escapes from the body; and Anstie believes that this never occurs except with a narcotic dose, which varies in different persons.

Even if the greater part of alcohol is consumed, and thus ministers to the forces peculiar to the body, yet alcohol, by depressing functional activity, favouring degeneration, etc., may do more harm than can be counter-balanced by any good it may effect by the force it sets free during its destruction; even if taken in quantities too small to do harm, yet it can scarcely be classed as an economical food for the healthy. Granted that dietetic doses check oxidation in the healthy, and thus economize the blood and tissues, still, unless it can be shown that in health there is constantly an excess of consumption over and above that required by the body, such a diminution of oxidation could only result in lessening the amount of force set free and put at the disposal of the organs, entailing of course a diminution of the functional activity of the body. Physiology failing to guide our steps amid these conflicting statements, it is obvious that in estimating the value of alcohol in health or disease, we must rely solely on experience, which plainly shows, that, for the healthy, alcohol is not a necessary nor even a useful article of diet. Varied, repeated, and prolonged experience, and the testimony of army medical men, prove that troops endure fatigue and the extremes of climate better if alcohol is altogether abstained from. The experience of the celebrated Moscow campaign showed this; so also quite recently, the Red-River Expedition. During arduous marches it has always been found that, without alcohol, the health of the men is exceptionally good, but as soon as spirits are allowed disease breaks out. Modern trainers recognise the fact that the power of sustained exertion and resistance to fatigue is best pro-
moted by abstaining from alcohol, and the ill-health of many athletes depends, not on the rigour of the training, but on the excesses they indulge in after the contest.

There can be no doubt that healthy persons, capable of the fullest amount of mental and physical exertion without the stimulus of alcohol, not only do not require it, but are far better without it.

It must be recollected, however, that these remarks apply to pure alcoholic drinks, as spirits, and not to beers and wines, which contain ingredients useful as food. The amount of alcohol in the lighter beers and wines is small, and can hardly be prejudicial to the robust, while they seem to brace up and sustain the flagging functions of the weakly, as town-dwellers, especially those who pass much of their time indoors, in an unhealthy atmosphere. Some, indeed, cannot properly digest food without a stimulant.

Dr. Anstie speaks highly of alcoholic stimulants in the debility of old age, especially in the "condition of sleeplessness attended often with slow and ineffectual digestion and a tendency to stomach cramps." He employs "a generous and potent wine," containing much ether.

Alcoholic drinks, especially those containing a large quantity of volatile ether, often relieve the pain of neuralgia, the alcohol removing the temporary nervous depression which produces the paroxysm: alcohol for a time relieves the distressing symptoms occurring in so-called hysteria, generally met with in middle-aged women; but, as the stimulant after a time must be taken in increasing quantities, there is great danger lest the patient should acquire the habit of taking alcohol to excess. Nervous or neuralgic patients are often prone to imbibe alcohol in excess, and thus many women become confirmed tipplers. It behoves, then, the doctor to be very guarded and precise in prescribing alcoholic stimulants.

Whatever doubt may exist concerning the usefulness of alcohol in moderate quantities, there can be no question of its pernicious and poisonous effects when taken in excess. It then injures and degenerates the tissues of all parts of the body and produces premature old age. The lungs become prone to emphysema; there is diminution of both physical and mental vigour; the kidneys, liver, and stomach may become cirrhused. Even in a state of so-called health, when the effects of hard-drinking are not very apparent, they become at once evident on the occurrence of illness or accident, when the constitution manifests its undermined condition
ALCOHOL.

and its diminished power to resist disease. Thus drunkards succumb to accident or illness which temperate men easily pass through.

Delirium tremens may arise in different ways; sometimes through a single debauch, but commonly it attacks those who habitually take an excessive quantity of wine or spirits, without perhaps even getting drunk. In an attack arising from an exceptional debauch, it is merely necessary to withhold spirituous drinks for a time, to allow the system to get rid of the alcohol. On the other hand, delirium tremens is often excited in habitual topers by altogether withholding intoxicating drinks, so that in treating these chronic drinkers a moderate quantity of some alcoholic drink for a time must generally be allowed.

The influence of alcohol on the heart is most noteworthy. It strengthens the contractions of the heart, especially when this organ is weakened by debilitating diseases, which are always attended by a quickened and weakened pulse. In health, alcohol dilates the arterioles and makes the pulse larger and softer; in disease, or when from other causes the arterioles are relaxed, it contracts them, rendering the pulse smaller, slower, less frequent, and more resistant; alcohol strengthens the pulse, and reduces its frequency, and must be considered one of the most powerful cardiac tonics. This tonic property, combined with its influence in promoting digestion by increasing the gastric juice, explains the great usefulness of alcoholic beverages in debilitating chronic and acute diseases.

In most diseases accompanied by weakness or prostration, alcohol in one or other form often proves a valuable remedy. It is of conspicuous service in acute diseases running a limited and definite course, in the treatment of which the cardinal point is to sustain the vital force beyond the critical stage.

Brandy or wine are the best remedies when the heart is suddenly enfeebled, from fright, loss of blood, accidents, or other causes.*

Great as are the beneficial effects of alcohol in disease, yet it may do harm as well as good. Certain precautions must therefore be observed, and its effects on the functions must be carefully watched. Although the heart affords the most trustworthy in-

* In threatened fainting, it is a good plan to direct the patient, whilst sitting down to lean forward and place the head between the legs as low down as possible, so that the blood may gravitate to the brain.
formation on this point, yet the influence of alcohol on the other organs must not be overlooked, as it may happen, that while alcohol may benefit one part of the system, it may injure another, doing good in one respect, yet on the whole inflicting more harm.

The following rules regarding the use of stimulants in fever were laid down by Dr. Armstrong, and were endorsed by Dr. Graves:—

1. If the tongue become more dry and baked, alcoholic stimulants generally do harm; if it become moist, they do good.
2. If the pulse become quicker, they do harm; if it become slower, they do good.
3. If the skin become hot and parched, they do harm; if it become more comfortably moist, they do good.
4. If the breathing become more hurried, they do harm; if it become more and more tranquil, they do good.

These excellent rules might be supplemented by a fifth; alcohol does good when it produces sleep, and quells delirium (see Opium).

In judging of the influence of alcohol on the pulse, its compressibility is of more importance than its volume. Under the action of alcohol, a soft and yielding pulse of large volume often becomes much smaller and less compressible, changes indicating an increase in the tonicity of the arteries, and in the strength of the heart.

Such are the rules which must guide us in the employment of alcohol in disease, giving us data as to the quantity we should administer, and whether we should continue, increase, or withhold it.

There are other circumstances which we must carefully regard in respect to the employment of alcoholic drinks. At the two extremes of age, the powers of the body being easily depressed, stimulants are accordingly called for early, and must be freely used. In the aged, especially, it is of great importance to anticipate prostration by the early employment of alcohol; for it is very difficult to overcome this condition. Young children prostrated from disease take stimulants with benefit, even in large quantities. Next, the knowledge of the course a disease ordinarily runs, gives us timely indications in respect of this question. In some acute diseases, as typhus, in which the depression is often very marked, especially at the extremes of life, stimulants should be employed early.

Alcohol has been given lately to fever patients in very large quantities on the Continent, and to some extent in England. In this country, Dr. Anstie is the chief supporter of this treatment. Alcohol is given to reduce fever, and to check waste. In fevers, no doubt, there is greatly increased destruction, certainly of the
nitrogenous tissues, shown by the large quantity of urea eliminated by the urine; at the same time, all the functions of the body are much depressed, and can appropriate less of the force set free by oxidation than in health. From these two causes, and partly likewise from diminution of perspiration, so that the heat fails to pass off dully by the skin, preternatural temperature of the body, occurs in fevers. Alcohol in large doses, it is maintained, lessens oxidation and prevents waste, and thereby lowers the temperature of the body, and diminishes the amount of urea in the urine; but, to effect this, very large doses must be given—doses which, in some cases at least, I should imagine might do harm in other ways; hence, the influence on the pulse, respiration, etc., according to the rules just laid down, must be very carefully watched.

Several years ago, I made a large number of observations concerning the influence of alcohol on the temperature of fever, and found that as in health, so in fevers, alcohol slightly reduces the temperature; but its efficacy in this respect is so insignificant, and doses so enormous must be taken to produce even trifling results, that it is useless to give alcohol solely with this intention.

In my judgment, there can be no doubt that alcohol is not required in all febrile diseases; on the contrary, many cases are best treated without it; and in no instance should it be given unless special indications arise. The enormous quantities of alcohol which used to be given a short time ago, and are indeed now sometimes administered, are, I believe, rarely needed, although very large doses are occasionally needed, and are undoubtedly the means of saving life.

The kind of alcoholic stimulant employed is perhaps not a matter of great importance, provided its quality is good. It is undesirable to give several kinds of stimulants at about the same time, or they may derange the stomach; but they may be changed from time to time according to the patient’s desire. Anstie recommends strong alcoholic drinks in fevers, as brandy, in the earlier and middle stages; but when the heart flags, and the nervous system becomes weakened, he prefers wines containing plenty of compound ethers. Stimulants should not be given in large quantities to weakly persons at distant intervals of the day; it is far better to give them in small and frequent doses. A large dose at one time strongly stimulates the heart; then, as the alcohol is decomposed or eliminated, the heart is left unsustained, when great weakness may set in; whereas, the frequent administration of smaller quantities keeps the heart more uniformly supported.
Some easily digested food in small quantities should be given with the stimulant, which, by promoting digestion, supports the patient's strength in the most natural and most effectual way. As a rule, when food is freely taken and digested, stimulants are little needed.

Weekly children derive more benefit by taking stimulants about an hour before, rather than with food, which plan enables them to take more food, and to digest it better, than the more common one of giving the stimulant with food.

In common with ether and chloroform, alcohol is an antispasmodic, but in this respect ether and chloroform are more effective.

It does sometimes happen that one alcoholic stimulant is harmful, while another is found useful; a fact especially noticeable in coughs, which are aggravated by porter or beer, but are unaffected or even relieved by brandy or wine. Beer or stout sometimes produces sleepiness, heaviness, even headache, and flushing of the face, while the same person can take wine or brandy without inconvenience. Individual peculiarities abound in respect of wines; for example, one person cannot take sherry without suffering from acidity, while another, on taking port, is seized with gouty pains.

The wish of the patient for any particular form of stimulant, is often a correct indication of its desirability. A free draught of the weaker beers will often gratefully slake the urgent thirst of fever.

Stout is supporting and nourishing to persons brought low by exhausting discharges, and to women weakened by suckling, though in many cases unfortunately it disagrees, producing headache and sleepiness. The good old-fashioned remedy, rum or brandy and milk taken before breakfast, is useful in phthisis and in exhausting diseases. A little rum and milk an hour before rising is a good prop to town-living women, to whom dressing is a great fatigue, who, without appetite for breakfast, suffer from morning languor and exhaustion, often lasting till mid-day, and to convalescents from acute diseases.

The ill-effects of alcohol in gonorrhoea are well known. A cure is much more readily effected if the patient will abstain altogether from alcoholic beverages. Even when the cure seems near completion, a single indulgence in spirits, wine, or beer, will bring back the scalding and discharge.

In some persons, alcohol, unless in a very dilute form, and in very moderate doses, quickly affects piles. Beer, champagne, port, strong claret, even in a few minutes cause burning pain and aching
CHLOROFORM.

in the rectum, lasting for hours. With some persons, coffee or pepper act in the same rapid way.

CHLOROFORM.

CHLOROFORM, when applied to the surface of the body, speedily volatilizes and cools the skin; but it is seldom used as a refriger-ator, being in this respect inferior to other agents.

Owing to its high diffusion-power, chloroform readily penetrates the animal textures. If evaporation is prevented, it penetrates the cuticle and excites inflammation, and thus becomes a rubefacient.

In quantity insufficient to excite inflammation, chloroform deadens sensation, and acts as a local anaesthetic. It is sometimes applied to relieve pain, and occasionally with good effect, although it often fails, and is inferior for this purpose to many other external applications. It has been used in neuralgias, sometimes effectively, but it generally fails, and even when successful, the relief is ordi-narily very temporary, the pain soon returning.

In faceache or toothache, two or three drops, on a small piece of cotton-wool, introduced into the ear, give occasionally complete and permanent relief; but if too large a quantity is used, it will excite inflammation, even vesication, and give much annoyance. The pain of cancer, when the skin is broken, leaving a painful, irritable sore, is relieved by playing vapour of chloroform on the raw surface, and often the immunity from pain lasts several hours; a like proceeding relieves the pain of cancer of the uterus, of ulceration of the os uteri, of neuralgia of the uterus, and, in a less degree, the annoyance of pruritus pudendi. The vapour must be made to play on the os uteri for some minutes. I think that chloroform vapour might be useful in cancer of the rectum, spasms of the intestines, etc.; recollecting, however, that chloroform is easily absorbed by the large intestine.

According to Sir J. Simpson, a few drops of chloroform whilst evaporating from the palm of the hand held close to a photophobic eye, will enable it to bear the light without pain.

Dr. Churchill lessens the violence of the paroxysms of whoopingcough, by the simple plan of directing the nurse to pour about half a drachm of ether or chloroform over her hand, and to hold it before the child’s mouth. The child at first dislikes this treatment,
but soon appreciating its benefit, will run to the nurse on the first warning of an attack.

An ointment, composed of half a drachm of chloroform to an ounce of lard, will often allay the itching of urticaria, lichen, and true prurigo, but, like most other ointments, it loses its effect in a short time, hence anti-itching applications require to be changed from time to time.

Dr. Augustus Waller has shown that chloroform promotes to a considerable extent the cutaneous absorption of many substances. The absorption of watery or alcoholic solutions is far less rapid. The chloroformic solutions of aconite, atropia, strychnia, or opium, applied to the skin, speedily destroy an animal with the characteristic toxic symptoms of the alkaloid employed. He ascribes this property of chloroform to its property of passing rapidly through animal textures, carrying with it the dissolved alkaloid. The addition of a certain amount of alcohol to the chloroformic solution, does not hinder the absorption of the alkaloid—indeed, it appears to hasten it; for when an equal quantity of alcohol is added to the chloroformic solution, the absorption is more rapid than when simple chloroform is used. This property, either alone or mixed with alcohol, should be borne in mind in employing alkaloids as external applications.

Chloroform produces in the mouth a sensation of warmth, and, if undiluted, excites inflammation. Being a stimulant to the mucous membrane, it excites a flow of saliva. A few drops on cotton-wool inserted into the hollow of a decayed aching tooth, often gives permanent relief, but when the anaesthetic effect has passed away, the pain is sometimes aggravated, the chloroform having irritated the inflamed pulp. It is a good plan to fold over the hollow tooth a piece of linen moistened with chloroform, so that the vapour may remove the pain. Equal parts of chloroform and opium, or of chloroform and creosote, constitutes a useful application in toothache.

Chloroform excites a sensation of warmth in the stomach, but in large doses it induces nausea and vomiting. Drop doses of pure chloroform are beneficial in flatulent distensions of the stomach, sea-sickness and other vomitings.

Its high diffusion-power enables it to pass rapidly into the blood, little, if any, finding its way into the intestines. The physical and chemical changes produced in the blood by its admixture with chloroform are at present unknown.

When given in medicinal doses to a healthy person it produces
CHLOROFORM.

very little change, either in the frequency or strength of the heart's contractions, though when inhaled, judging by the hæmodynamometer, it is said, at the very first, slightly to increase their force. In disease, on the other hand, when the heart beats feebly, especially if due to some sudden and transient cause, chloroform certainly strengthens the heart's contractions, so relieving such symptoms as syncope, &c.; but it is in no way preferable to a glass of brandy-and-water or wine. It, no doubt, acts more quickly and evanescently than alcohol, and its cardiac effect certainly declines more speedily than that of alcohol. It is frequently administered to hysterical patients and others suffering from weakness, depression of spirits, nervousness, &c. Like all stimulants, if habitually ingested, it soon loses its effect; and this especially happens with chloroform and ether, so that from time to time the dose requires to be increased, and even then soon loses its efficacy.

In diarrhœa, after the removal of the exciting irritant, spirit of chloroform may be given with much benefit, combined with astringents and opium. It is useful in intestinal and summer colic, from whatever cause arising, and in renal and biliary colic, in hiccup, hysteria, and asthma, both primary and secondary; and from the relief it gives in these affections, it is ranked among antispasmodics. In the treatment of any of the foregoing diseases it is usually combined with opium, and this combination succeeds admirably. No doubt much of the effect is due to the opium; its action, it appears, however, being increased and sustained by the chloroform. Its mode of action is at present unknown. Possibly, by restoring the weakened muscular or nervous system to its natural physical condition, it controls inordinate muscular action, and removes pain, thus becoming a true stimulant.

Chloroform, combined with small doses of morphia or opium, given with a drachm of glycerine, honey, sugar-and-water, or treacle-and-water, is often conspicuously beneficial in certain coughs. It is useful when the cough is paroxysmal and violent—violent out of proportion to the amount of expectoration; when, indeed, there appears to be much excitability or irritability in the respiratory organs, and when a slight irritation induces a distressing fit of coughing. In such circumstances the chloroform is of more service than the opium, and should be given in a full, while the opium should be given in a very small dose. This combination allays the cough in the fibroid form of phthisis, so frequently paroxysmal, wearing, and exhausting. In this form of lung disease there is often such extensive induration, with thickening of the pleura, as
to prevent any expansion of the lung, and consequently of the chest walls, so that little or no air enters the consolidated part of the lung; and no expulsive force can be brought to bear on the mucus. Here our attention should be given to check the abundant secretion, to lessen its tenacity, and so facilitate its expulsion.

Cough, very often indeed, arises from a morbid condition of throat; and even when due solely to lung disease, the application of the mixture just recommended, to the throat and parts about the glottis is often beneficial, in accordance with a general fact that remedies applied to the orifices communicating with certain organs, as the nipple, rectum, and throat, will by nervous communication act on the organs themselves. For example, many coughs are allayed much more efficiently if the opium and chloroform mixture is swallowed slowly, and so kept in contact with the fauces as long as possible.

Being highly volatile, much chloroform passes off by the lungs, and its odour can be detected in the breath; some, probably for the same reason, escapes by the skin, and some probably by the urine. In its passage from the lungs it is unlikely in any way to influence the mucous membrane of the bronchial tubes, the quantity separated being very small; and even during and after the inhalation of chloroform we do not observe that it modifies in any way the secretion of this membrane. Its influence, if any, on the kidneys and the urine is at present unknown.

Harley’s observations on the action of chloroform on the respiratory function of the blood tend to show that it lessens the oxidation of the blood, and diminishes the evolution of carbonic acid; but to establish this point we think further experiments are needed.

We will now give a succinct and practical account of the administration of chloroform as an anaesthetic. It is needless to dwell upon the signal and beneficent service this agent has in this respect rendered to mankind.

Chloroform at first very often causes a sensation of tingling and heat in the lips and nose, and these parts, if accidentally moistened with it, may become inflamed, even to blistering; an accident which can always be prevented with care, particularly if the nose and lips are first smeared with glycerine or cold cream, or some protecting substance.

The early sensations experienced vary much in different persons, being sometimes so agreeable as to tempt to the inhalation of this substance merely for the sake of inducing them; but in the majority the sensations are more or less disagreeable, often intensely so.
CHLOROFORM.

At first there is a sensation of warmth at the pit of the stomach, spreading to the extremities, and accompanied by some excitement; then some or all of the following symptoms soon set in. Noises in the ears, lights before the eyes, heavy weight and oppression of the chest, great beating of the heart, throbbing of the large vessels, and a choking sensation. These symptoms betoken no danger, and need excite no apprehension. At the very commencement of the administration some cough is not unfrequently excited, or even a passing spasm of the glottis, sure signs that the vapour is administered in too concentrated a form, and that more air must be mixed with it, by opening the valve in Clover's apparatus, or by removing the lint farther from the nose and mouth.

At this early stage, women, by becoming hysterical, may give some trouble and alarm. They laugh, sob, or cry; their breathing is often extremely irregular and hurried—a condition which frightens the friends, and inexperienced chloroformers; but this state is to be accepted as an indication to continue, not to withhold, it; for this condition soon subsides as the patient passes more deeply under the power of the anaesthetic.

The pulse, at first quick, and it may be weak, if not due to the patient's illness, is the effect of nervousness and anxiety; and as soon, therefore, as unconsciousness sets in, the pulse falls in frequency, and gains in force.

A few seconds from the commencement of the administration, all discomfort ceases, the patient becomes quiet, breathes calmly, and feels brave. The consciousness is now more or less affected; questions are still heard, but are slowly answered, and not to the purpose. The induction of this medium stage is adequate for confinement, and for the relief of renal colic.

All knowledge of the external world soon becomes lost, and is followed by a period of excitement. Various incoherent ideas occupy the mind; some persons struggle, attempt to get up, and, when restrained, often show much irritation. The stage of complete unconsciousness required for capital operations is now fast approaching. Violent tonic contraction of the muscles of the body often occurs before complete unconsciousness and perfect muscular relaxation set in. The extremities become rigid, the muscles of the chest are firmly fixed, and the respiration thus becoming impeded, causes, in combination with the general violent muscular contraction, duskiness or lividity of the face. The eyes are injected or prominent, the lips blue, the jugulars stand out like large black cords, the mouth is clenched, and a profuse perspiration breaks
out on the body, especially about the face. In a few seconds all these symptoms pass away. They may be accepted as a sure indication of the immediate approach of utter insensibility, and complete flaccidity of the muscles, and as a warning that the administration must be conducted with increased caution, or the patient will suddenly pass into a stage of danger, with noisy, stertorous, quick, shallow breathing, and quick, weak pulse. These violent muscular contractions, which greatly distort the face, and frighten the patient’s friends, rarely occur in women or children, or in men weakened by exhausting illness; and it is a condition more frequently seen when the chloroform is administered too abundantly, and the patient brought too quickly under its influence.

As these movements cease, the muscles become flaccid, and the stage of perfect insensibility is reached. Reflex action is lost; the conjunctiva can be touched without producing winking. The limbs, when raised and let go, fall heavily. The breathing is calm, but a little superficial; the pulse is not much altered, but it may be a little more compressible. The face is moist with perspiration. The pupil is much contracted. This condition may be maintained with due precaution for a considerable time; but if now the chloroform is continued in undiminished quantity, the breathing becomes noisy and stertorous; the pupil greatly dilates; the pulse loses its strength; the breathing becomes more and more shallow, and less and less frequent, till both pulse and respiration stop. Even now artificial respiration will often restore the breathing, bring back the pulse beats at the wrist, and restore the patient from the jaws of death. On several occasions, while administering chloroform, I have witnessed recovery from this critical condition.

On the other hand, it appears that sometimes, without warning, while the pulse is beating well and the breathing is deep and quiet, the heart suddenly stops, and respiration immediately ceases. This form of death arises probably from cardiac syncope, while the other form of death is probably due to gradual paralysis of the respiratory muscles from the effect of the chloroform on the respiratory centres. (See Belladonna).

Chloroform insensibility may with care be maintained for hours, and even days.

In administering chloroform, the attention should be directed to the state of the pulse, the breathing, the conjunctiva, and the pupil. The pulse usually retains throughout its frequency and force. Should it become quick and weak, or irregular, then the inhalation must be withheld, unless the frequency of the beats can be ac-
CHLOROFORM.

counted for by the patient’s struggles. The breathing often affords an earlier sign of danger than the state of the pulse. If the respiration becomes very shallow, and gradually less frequent, the chloroform should be suspended for a time.

The surest signs of safety, and the earliest of danger, are afforded by the state of the conjunctiva and pupil. While irritation of the conjunctiva causes reflex action, and is followed by blinking, there is usually no danger. The pupil is much contracted in the stages of insensibility when no danger is to be apprehended; but on the approach of peril from over-dose of the anaesthetic, the pupil dilates.

It is concluded that chloroform affects the pupil by first stimulating, and then paralyzing the oculi motor nerve centres, for during the contraction of the pupil, stimulation of the cervical sympathetic is without effect, but when the pupil begins to dilate, this stimulation increases the dilation.

When, on touching the conjunctiva, reflex action is annulled, and the limbs, when raised, fall heavily, the patient is fit to undergo any operation.

One or two circumstances require a passing notice. Vomiting is liable to happen if food has been taken a short time before the chloroform, occurring either as the patient is passing under its influence or more commonly on recovery from it, ceasing always when under the full effect of chloroform. Vomiting, happening after complete chloroformization, may be taken as a sign of returning consciousness; and, if the operation is uncompleted, the inhalation should at once be continued, when the vomiting will speedily cease. But, to avoid vomiting, it is advisable that the patient should take no food for three or four hours before chloroformization. At the same time too long a fast should be avoided, or its very purpose may be defeated by inducing the tendency to vomit; and fainting and much exhaustion may occur from a small loss of blood during the operation. The head should be turned aside to assist the escape of the vomited food, and to prevent choking.

It should be borne in mind that operations on the rectum and vagina, even when the patient is quite insensible, often, nay, generally, cause noisy catchy breathing, very much resembling stertorous breathing, often mistaken for it, and sometimes thought to indicate that too much chloroform has been administered; but this is not the case. The true state of things can generally be discriminated by a little attention to the circumstances. Thus, the noisy
breathing does not occur until the rectum and vagina are manipulated, and is especially loud and noisy when the finger or an instrument is passed with any force into either orifice.

On discontinuing the administration, consciousness usually returns in a few minutes, but is sometimes delayed for a longer period. If perfect quiet is observed, its effects are often followed by sleep, which refreshes the patient, gives time for many of the disagreeable consequences of the inhalation to pass off, and allows the pain of the operation to subside.

Experiment, practice, and common sense show that the danger of chloroform is in proportion to the percentage of vapour inhaled in the air. The importance of ascertaining the minimum quantity sufficient to bring the patient speedily and safely to a state of insensibility is apparent. Mr. Clover had shown this to be in the proportion of 4 to 5 per cent. of chloroform vapour. With this percentage, insensibility can be produced in about five minutes, with the minimum of danger. In animals killed by the inhalation of this proportion of chloroform, the heart will continue to beat long after respiration has stopped. At the beginning, Mr. Clover administers about 2 per cent. vapour, and as the patient becomes accustomed to its action the quantity is increased till 5 per cent. is reached.

The way chloroform destroys life is not yet well worked out, and much uncertainty still remains concerning its action on the heart. The sequence of events in animals killed by chloroform, when the percentage of its vapour is not sufficiently great to destroy life at once, is as follows:—The breathing grows gradually more and more shallow and infrequent, while the pulse becomes weaker and even ceases; soon after, breathing stops; but still, for a short time, the heart continues to beat languidly. This is the order of the toxic phenomena in animals, and that most frequently met with in the human subject. Here it is difficult to say whether the poison acts directly on the heart, and whether the enfeeblement of the heart-beats and the cessation of the pulse is due to the direct attack upon the heart, or whether it is simply connected, and depends on the gradual cessation of the breathing. It seems probable that the heart may be directly poisoned and paralyzed by chloroform; for the heart's movements cease immediately when a very large percentage of the vapour is breathed; and further, Dr. Harley has shown that a frog's heart suspended in chloroform vapour ceases to beat much sooner than one suspended in watery vapour.

The direct action of chloroform on the heart is probably dis-
played in those cases in the human subject, when, without warning, the patient becomes pulseless, breathless, and dies.

When any serious symptoms arise, and danger is apprehended, the chloroform administration should, of course, be discontinued, and artificial respiration, after Sylvester's method, practised instantly and assiduously, whether the breathing has ceased or is growing slower and shallower. Where the breathing has been extinguished in a gradual manner, the patient, provided artificial respiration is instantly adopted, in a few seconds, in most instances, fetches a deep gasp, which is soon repeated, and presently the breathing grows more frequent, till it becomes natural, and he is saved. When the chest has ceased to move, the pulse to beat, and when the patient presents all the appearances of death, even at this crisis life may generally be restored. Little is to be hoped, however, from artificial respiration, in those cases where the breathing and pulse both cease immediately, without any warning. Besides the use of artificial respiration, cold water should be dashed over the face and chest, air should be freely admitted, and all hindrance to breathing removed; indeed, everything hampering to the breathing, as stays, or a tight dress, should be removed before the administration of chloroform. The most serious impediment to the breathing, sufficient to endanger life, may be caused by the patient lying prone for the convenience of the operator. Several times I have witnessed cases of imminent danger from this cause. When this position must be assumed, the most anxious care must be paid to the state of the breathing; for this prone posture is itself quite adequate to arrest feeble breathing, which without this impediment would go on safely.

It is a question of importance, whether galvanism should be used in danger from chloroform. The Committee appointed by the Medical and Chirurgical Society, are of opinion that this agent is useful, but that it is far inferior to artificial respiration; but some authorities are wholly opposed to its use, on the score of its influence to arrest a very feebly acting heart and so diminishing any slight remaining hope of recovery. It is advised to apply it to the phrenic nerve, to stimulate the diaphragm to action, and thus maintain breathing till the chloroform shall have had time to evaporate from the blood, and the system become free from the drug. But artificial respiration is a more potent agent to excite the respiratory functions.

It has been proved that a certain percentage of chloroform, amply sufficient to produce, speedily, complete unconsciousness,
can be inhaled with safety for an almost indefinite time. It is, therefore, obvious, that the method required should enable us to give this percentage with certainty throughout the most protracted operation, so that the proportion compatible with safety shall never be exceeded. The contrivance which best fulfils this condition is the ingenious apparatus of Mr. Clover. Its advantages are so great as to out-balance fully the slight inconvenience connected with its use. If this apparatus is not at hand, we may adopt the use of a simple piece of lint and a towel, or Dr. Simpson’s method, or Skinner’s cone.

Are there any conditions of age or health which forbid the use of chloroform as an anaesthetic? Provided due care is observed: I think it may be given to all persons irrespective of their condition, having myself given it without any threatening symptoms, in serious heart disease, in every stage of phthisis, in Bright’s disease, cancer, chronic bronchitis, to patients almost dead of exhaustion from loss of blood, to children of a few weeks and to persons close upon a hundred years old. No doubt a dilated or a fatty heart adds to a patient’s risk, and enforces on the operator more care and anxiety, and the two extremes of age are conditions which exact close watching whilst giving chloroform.

For minor operations, ether spray is undoubtedly to be preferred to the inhalation of chloroform; but for the more formidable operations, chloroform should be used. In addition to its more obvious and inestimable advantages in operations, chloroform has been found to reduce the mortality.

Chloroform inhalation is now frequently used with much advantage during delivery; it eases the uterine pains without increasing the danger to mother or child. It is not necessary to obtain complete unconsciousness, but to give only sufficient chloroform to dull the pains; if this recommendation is disregarded, and the anaesthetic is pushed to the stage of complete unconsciousness, it weakens the contraction of the womb, and retards delivery. It is true that even if only slight unconsciousness is produced, the uterine contractions are probably somewhat weakened, but accoucheurs maintain that this disadvantage is more than compensated by the relaxation of the parts, and the abatement of spasms. Dr. Playfair, who thinks chloroform inhalation is too indiscriminately used, says, he has often observed the pains alter, and become less effectual after chloroformization, and when it is prolonged, he thinks it favours post-partum haemorrhage. (See Chloral.)
CHLOROFORM.

In dental operations the patient incurs some additional risk of syncope, owing to his sitting posture. Chloroform should be avoided in dentistry; indeed, it is now superseded by nitrous oxide.

Chloroform inhalation may be used with signal benefit in renal and biliary colic. In my experience it is inferior only to morphia injection, and is very far superior to opium, warm baths, and the ordinary treatment in vogue. It removes the severe pain before unconsciousness is reached; indeed, it is never necessary to carry the administration of chloroform very far. The pain often speedily returns, but may be quelled again; and after two, or at most three, administrations, it is often permanently removed.

Chloroform inhalation in the treatment of chorea is sometimes very valuable. It is applicable especially to those serious cases in which violent and constant movements prevent sleep, and even the swallowing of food, so that speedy exhaustion and death are to be apprehended. Chloroform in such cases often induces refreshing sleep; indeed, the sufferer passes from the insensibility of chloroform into that of natural sleep, and after, perhaps, some hours, wakes up soothed, refreshed, and with a marked abatement in the movements. So great sometimes is this improvement, that patients, who before the chloroform could scarcely be restrained in bed, after waking, sit up troubled with only slight involuntary movement, and eat and swallow with ease. Soon, however, the movements return, when the inhalation must be repeated. At first it should be administered three times a day; then, proportioned to the improvement, twice, and after a time once, a day. This treatment, it is stated, will cure the disease, on an average, in twenty-eight days. (See Chloral.) In delirium tremens, when the usual means fail to induce sleep, it has been advised to produce unconsciousness by chloroform inhalation.

Chloroform inhalation will arrest convulsive fits, especially in children, sometimes permanently. Chloroform inhalation is of great service in puerperal convulsions. It is necessary in some cases to maintain unconsciousness for hours, or even days, allowing the patient to wake every three or four hours to take food.

In the reduction of hernia its use is obvious. It may be used to assist the diagnosis of abdominal tumours, when deep-seated, and when the walls of the belly are hard and rigid. It is useful also in determining the nature of phantom tumours, which disappear entirely when the patient is made insensible by chloroform.

Chloroform inhalation gives relief in neuralgia, sciatica, colic of
the intestines, if the pain is very severe, in distressing dyspnœa, whether this is due to asthma, aneurism, etc. Mr. Gascoin reports a case of bronchitic asthma much benefited by rubbing the chest for an hour daily with liniment of chloroform. He attributes the success to the friction, and refers to a Widow Pau, who has obtained a reputation in Paris by using friction in cases of asthma. The inhalation of a few whiffs in asthma, without producing unconsciousness, sometimes affords relief: and should the paroxysm return, on the effect of the chloroform passing away, the inhalation may be repeated. A small quantity of chloroform given in this way often suffices to avert an attack, though in most cases the effects are only transient, the paroxysm returning as the influence of the drug wears off.

Dr. Buckler recommends 5 to 60 drops of chloroform by the stomach in biliary colic, repeated every four to six hours.

Insomnia, tremulousness, and inability to fix the attention, are, it is said, apt to follow the repeated use of chloroform inhalation.

In some recent experiments (Practitioner, 1881) with Roy's tonometer, in which I used the entire ventricle, and the lower two-thirds of the ventricle, I find that chloroform, ethedene dichloride, and bromide of ethyl, will paralyze the ventricles by their action on its muscular substance.

I find that chloroform and ethedene dichloride are about equally poisonous to the heart's substance. These experiments show, too, that chloroform, and ethedene dichloride are far more poisonous than ether; indeed it requires about 80 to 100 minims of ether to arrest the ventricle, whilst 1 to 2 minims of chloroform is sufficient. I also find that ammonia and chloroform, ammonia and ether, ammonia and bromide ethyl, and ammonia and iodoform are mutually antagonistic. After the ventricle is arrested, or almost arrested, by chloroform, ethedene dichloride, ether, or iodoform, the pulsations are restored and strengthened by the addition of a small quantity of a solution of caustic ammonia.

ETHER.

The physiological action and therapeutic use of ether and chloroform are, for the most part, identical.

As a local anaesthetic in neuralgia, toothache, etc., ether is less frequently used than chloroform.
ETHER.

In the form of spray, after the method introduced by Dr. Richardson, ether is employed temporarily to abolish sensation of the skin; the rapid evaporation of the ether, and consequent abstraction of heat, freeze the tissues and annul sensation. Ether spray is frequently used in minor operations, as the opening of abscesses, the removal of small tumours, etc. It has been successfully employed in amputation of the leg, and in ovariotomy, but it is not generally available in operations so serious and prolonged. The skin or mucous membrane, when sufficiently frozen to permit of a painless operation, becomes pale, shrunken, tallowy-looking, and feels as if oppressed with a great weight. Whilst recovering the natural condition, the frozen tissues tingle and smart, sometimes so intensely as to exceed the pain of the operation. The obvious advantage of ether spray over chloroform inhalation is its perfect safety.

The experiments of Flourens and Longet render it probable that ether affects first the cerebrum, next the sensory, then the motor tract of the cord, next the sensory, and lastly the motor centres of the medulla oblongata.

Ether for many years preceded chloroform as a general anaesthetic. At the present time there is, in this country, much contention as to the relative merits of chloroform and of ether; and ether bids fair rapidly to take the place of chloroform. Each has its respective advantages. Ether differs from chloroform in several particulars. Ether must be inhaled in larger quantities, and for a longer time; its effects pass off sooner, consciousness often returning almost immediately the inhalation is suspended; and it produces much more excitement than chloroform. The Committee of the Medical and Chirurgical Society instituted to investigate the action of chloroform and ether, state that at first both strengthen the heart's contractions; soon, however, the heart grows weaker and weaker as the animal passes more deeply under the influence of chloroform; while the tonic effects of ether persist, and the heart's pulsations often continue strong till the moment of death, which in almost every instance depends on paralysis of the muscles of respiration. Thus, ether and chloroform both destroy life by arresting respiration; but in regard to chloroform, there is an additional danger from its depressing action on the heart.

In America ether is almost universally used in preference to chloroform. Mr. C. Tomes, writing from America to the British Medical Journal, says, ether is there considered so safe that the pulse is rarely watched, and the patients, when fully under the
influence, are put in any position without fear of danger. The ether is very freely used; sometimes half a pound is consumed for a single operation. He says, "Two or three ounces of pure anhydrous ether are poured upon a conical sponge previously moistened with water, and this is placed over the patient's mouth and nose. Ether is lavishly poured upon the sponge, so that it often runs down the patient's face and neck. Sometimes it excites a good deal of spasm of the expiratory muscles, stridulous breathing, and laryngeal spasm, and sometimes a degree of asphyxia far transcending that which I have seen during the administration of nitrous oxide, but no anxiety is felt, the sponge is merely removed for half a minute. It is not a pleasant anaesthetic; patients are apt to be noisy on recovery: vomiting during and after the administration is common." Equally strong testimony regarding the greater safety of ether is given by numerous authorities in this country; and, in fact, ether seems to be gradually superseding chloroform. As ether is highly inflammable, Mr. Hutchinson cautions against using it by gas or candle light, or when employing the actual cautery.

Full doses of ether or spirits of chloroform often act as soporifics, and are very useful in angina pectoris, sometimes giving even more prompt and permanent relief than nitrite of amyl.

Freezing the skin with ether spray sometimes removes sciatica or neuralgia permanently, but the relief generally is but temporary.

In an interesting lecture on anaesthetics, Dr. Richardson discussed the merits of the following substances, differing only in the amount of chlorine they contain.

\[
\begin{align*}
\text{C H H H Cl} & \quad \text{Chloride of methyl.} \\
\text{C H H Cl Cl} & \quad \text{Bichloride of methylene.} \\
\text{C H Cl Cl Cl} & \quad \text{Chloroform.} \\
\text{C Cl Cl Cl Cl} & \quad \text{Tetrachloride of carbon.}
\end{align*}
\]

"All these substances," he says, "possess the power of producing anaesthesia when they are inhaled as vapour by men and animals. "Chloride of methyl exists in all ordinary temperatures as a permanent gas. It is very soluble in ether; and when ether is saturated with it, the compound is one of the most perfect anaesthetics. Unfortunately this compound is not very stable, the sleep produced by it is rapid, gentle, profound, and prolonged, and I found in an animal, where I may say I forced the animal to die by increasing the quantity of the vapour, that the muscular irritability was perfect one hour and five minutes after death." It is soluble in water, and water charged with it will take up four volumes. Chloromethyl water is rather agreeable to drink, and is a potent intoxicator. Half an ounce has a very decided but transient effect.

"Bichloride of methylene is a colourless fluid, having an odour much like the odour of chloroform. It is pleasant to inhale as vapour, and produces very little irritation of the fauces and air-passages. Its specific gravity is 1.344. From its position physically, it combines many of the properties of chloroform with those of
NITROUS OXIDE GAS.

ether, and these peculiarities must be remembered in its administration. From its
easier evaporation it requires more free administration than chloroform, and from
its greater density of vapour it requires less in quantity than ether." The bichlor-
ide of methylene sometimes excites vomiting. Dr. Richardson, to whom we are
indebted for the introduction of this anaesthetic, thinks it less dangerous than
chloroform. In an interesting letter to The Lancet, Mr. T. C. Morgan says that
bichloride of methylene has many advantages over chloroform; for 1st, it is safer;
2nd, its action is more rapid, complete unconsciousness being usually induced in
two minutes; 3rd, recovery is more prompt, the patient regaining complete con-
sciousness in one to three minutes; 4th, dangerous symptoms subside sooner,
lividity disappearing in a few seconds on discontinuing the inhalation; 5th, if,
during the operation, consciousness returns, it may be abolished by a few inspira-
tions. Mr. Morgan thinks it excites vomiting about as often as chloroform. He has
administered it over 1,800 times to persons of all ages, and has sometimes con-
tinued the inhalation for three-quarters of an hour, but never lost a patient. He
employs "a perforated card-board frame, covered with flannel, and fitted with
lappets to lie over the face so as to completely exclude air. Two drachms are put
into the inhaler, and it is so closely held before the face as to allow no air to be
breathed except what passes through the flannel. In less than two minutes the
patient is usually completely insensible. Another drachm is then put into the
inhaler, and given as required." He does not care to watch the pulse, though this
is sometimes much retarded, sometimes beating only twelve strokes per minute
without any alarming symptoms. He watches the lips and breathing, when the
lips become white and bloodless he stops the administration, fearing pallor, not
lividity, for patients die from syncope, not coma.

Mr. F. Searle's testimony is similar, but he states that it rarely excites vomiting
and that it is important not to allow the patient to recover before the administra-
tion is completed, otherwise excitement ensues. Mr. Miall and Mr. Gaine also
speak highly of this anaesthetic.

NITROUS OXIDE GAS.

Of late this gas has been extensively used as an anaesthetic. To
Mr. Clover, the highest English authority on all matters pertaining
to the administration of anaesthetics, the author is indebted for
the following remarks:—

Preparation.—Nitrous oxide is made by boiling nitrate of ammonia
in a glass retort. The gas and steam thus formed are passed
through water to remove any of the higher oxides of nitrogen, and
the gas collected in a gasometer.

Nitrous oxide is now prepared on a large scale, and condensed
in iron bottles. It is sold in the liquid form by Messrs. Coxeter,
and by Bath & Co. The contents of the bottle are easily measured
by weighing. A gallon weighs about three-tenths of an ounce.
Effects on Animals.—Dogs and cats obliged to breathe the pure gas are killed in a few minutes; after making the usual efforts to get free they become insensible, and make slight convulsive movements, and then breathe stertorously. The breathing always intermits before the heart’s action fails. If the animal is brought into pure air when the intervals of breathing are not more than thirty seconds, it always recovers. The recovery is attended with panting respiration.

Administration.—In producing anaesthesia by nitrous oxide, it should be remembered that it is to be given pure, and without any admixture of air. The time required to fit the patient for the operation is to be reckoned, not from the commencement of inhalation, but rather from the time when the lungs are finally deprived of all atmospheric air, after which I believe that every patient is ready for the operation in a very few seconds. The gas may be conveyed by an inch tube either from the gas-holder or from an air-proof bag, holding not less than two cubic feet of gas. If the compressed or liquid gas be used, it must first be conducted from the iron vessel into an air-proof bag. Care must be taken not to allow the gas to escape so rapidly as to produce cold enough to freeze the gas, and so for a time to stop the supply. It is a good plan to move the screw a little forwards and backwards instead of allowing it to remain in one position. This can be best done by having the key made of a circular iron plate with spikes projecting from its upper surface, so that the bottle being fixed in a vertical position the key can be moved by pressing the foot against it. The mouthpiece may be made so as to be held between the teeth; but this plan necessitates the pinching of the patient’s nostrils and compressing his lips against the tube, which is objectionable. In spite of this a restless patient will sometimes draw in a little fresh air, which will keep him for the next half-minute either conscious or in such a state that he will struggle against the operation. It is better to cover both mouth and nose with a face-piece, edged with an indiarubber cushion. The indiarubber should be thin, and in cold weather should be warmed to make it soft, otherwise an air-tight fitting against the face is not made. If the beard is very abundant it requires care to prevent air passing through it, and unless the cushion is well made it is easier to prevent the admixture of air by using the vulcanite mouthpiece and compressing the lips against it. Valves are placed so as to allow the gas to enter freely, and to escape during expiration.—Even valves may be dispensed with by those who have had experience enough to
have perfect command of the screw tap; the face-piece being slightly raised during expiration, and the gas supplied only during inspiration.

Formerly I had a supplemental bag attached to the face-piece, the entrance to which was regulated by a tap. This, being opened after five or six respirations, allowed a portion of the gas to be breathed over and over again. The same object was afterwards attained by pushing down a stop so as to raise the inspiring valve and keep it open. The economy of gas thus effected is without disadvantage to the patient, provided that the lungs are well cleared of air before the valve is opened.

Having applied the face-piece, the patient should be directed to inhale freely rather than rapidly, and to empty his chest at each expiration, so that he may get rid as speedily as possible of the residual air in his lungs. Pure gas is so free from taste and smell that it is very readily respired; he should be told that he will hear ringing sounds, and experience a sense of general pulsation, but that he has only to continue breathing freely to procure the wished-for sleep. After four or five respirations the stop-cock of the supplemental bag, which has hitherto been kept empty, should be opened to receive a portion of the expired gas and again supply it at the next inspiration. If there is no supplemental bag the lever just mentioned should be pressed upon. The apparatus of Mr. A. Coleman is for the purpose of purifying the expired gas from carbonic acid; it consists of a metallic vessel containing half a pound of slaked lime, and placed on a table near the patient. This vessel is connected on one side with the gas bag, and on the other, by means of a tube two feet in length, with the face-piece. It is not provided with any valve, so that the bag should be gently pressed during the first four respirations; and after this the expiring valve is fastened down, so that there may be no loss of gas afterwards. I do not think it possesses any practical advantages, and it is now very rarely used.

Lividity of the face is soon observed: this is not a sign of insensibility, and may be disregarded; the eye soon becomes fixed, and if the conjunctiva is touched the eyelids contract feebly or not at all; the pupil at this stage is of its normal size. Pinching the skin will now produce no signs of pain; a single tooth, not firmly fixed, may be removed, and such small operations as do not prevent the continuance of the inhalation may be commenced; but it is necessary for enabling operations on the mouth to be continued for more than a few seconds without causing the patient to struggle, that
other symptoms should be produced. Convulsive twitching of the hands, and oscillations of the eyeball next occur, and at the same time, or soon after, the respirations become slower, and are accompanied with a snoring noise. If breathing should cease for fifteen seconds, the chest and abdomen should be pressed upon two or three times. The pulse should always be watched during this part of the administration, as syncope might possibly occur, in which case the patient should be placed in a horizontal position, and be freely supplied with fresh air. The pulse remaining regular, and the pupil being only moderately dilated, the gas may be continued, notwithstanding the convulsions mentioned, and although the breathing begins to be slow; but if the pupil dilate widely, or if the breathing intermit, the gas should be immediately withdrawn. It is astonishing to witness the degree of resuscitation afforded by a single full inspiration of air, so that if it is intended to keep up the anaesthesia, not more than one inspiration of air should be allowed if the pulse continue distinct. Gas should then be given for five or six respirations, and be again intermitted. In dental operations, on account of the mouth being open, the anaesthesia can be sustained for a limited time only. I have sometimes prolonged it by continuing to supply gas through the nostrils by means of a cap fitting closely over the nose, or by means of a tube held in the mouth; but in most cases the operator has time to extract several teeth before consciousness recurs, and it will generally be found to be the best plan to allow the patient, after one or more teeth have been removed, to awake sufficiently to rinse the mouth, and then to give the gas again. A piece of wood should be placed between the jaws to keep them open, and it should have a string attached to prevent it slipping down the throat. The piece of string should be attached to the middle part of this instrument. Most patients are glad to inhale again and again. Many persons find the sensation experienced very agreeable; some appear to suffer as from nightmare; it is very rare to have any complaint made of headache. Some persons suffering from headache have awaked from the sleep of nitrous oxide without any. It is doubtful if vomiting ever occurs from a moderate single inhalation of nitrous oxide; but when blood has been swallowed, sickness of short duration has been produced. Such vomiting and prostration as we witness after chloroform and ether is unknown. As previously stated, there is nothing unpleasant in the smell or taste of this gas; indeed, it is hardly to be distinguished from common air, when absolutely pure; but some patients from timidity resist
breathing, and so produce a sensation of tightness in the chest. Hysterical patients, when only half under the influence of the gas, are liable to have an attack of hysteria, but it soon passes away, and most of such cases may safely be left to themselves. These subjects may present threatening symptoms when they cease breathing. In a case of this kind a patient is said to have ceased to breathe for two minutes. She had not taken enough gas to prevent her struggling against the dentist, and was either faint from the violent efforts she had made, or else was conscious that the medical men were nervous about her, and was actuated by the desire of being an object of interest, so common in patients of this class. She had held her breath, or taken it so very softly as to seem not to breathe at all. The fact that the colour of the lips had improved, and that the pulse had rallied, and was going on with regularity, were signs that the nitrous oxide had nearly left the system. The laughing and gesticulation formerly witnessed in experiments with laughing gas is now seldom seen; and, when it happens, we can generally account for it by the patient not having inhaled gas sufficiently pure. It was then given by means of a bladder and small tube, through which the patient breathed backward and forward; the gas would thus be diluted with some eighty cubic inches or more of residual air in the lungs, and a further dilution would be likely to occur through an involuntary or voluntary effort on the patient’s part to obtain air.

I have on many occasions availed myself of nitrous oxide as a preliminary to the administration of ether or chloroform.

Some persons have a great repugnance to the taste of these agents, and put themselves to much distress in holding their breath to avoid it. Five or six respirations of gas are sufficient to blunt the sensibility of the air-passages, and enable the patient to respire freely. The after-effects of ether or chloroform, as might be expected, remain the same. The administrators should know that if panting respiration occur (as it often does when, after inhaling gas, the patient begins to breathe air), it is not safe to give chloroform as freely as in ordinary breathing.

Those persons who are frequently engaged in giving anaesthetics will find it useful to have an arrangement of their apparatus by which, on turning a stop-cock, the supply of gas is made to pass through a chamber containing ether, and having a water-jacket to keep up the temperature of the ether. This is especially of use for prolonged dental operations, as the anaesthesia is by its means easily kept up for two minutes. Of course the patient
should be watched for signs of failing heart, or failing respiration, as the resuscitation would be impaired by the amount of narcotic vapour in the chest.

Since the above was written I have contrived an apparatus for giving gas and ether, by which the patient breathes the air or gas in the proportion desired, through a vessel containing ether. The vapour is increased so gradually that with a little practice no coughing will be produced. I have used it in four thousand cases, and, although I have had sometimes to assist the breathing, which had apparently ceased, and have produced coughing and choking by turning on the ether too suddenly, I have met with no fatal result.

Physiological Action.—It appears to me to produce its anaesthetic effects by preventing the oxidation of the nervous centres, and this chiefly by depriving the blood of its supply of free oxygen. Although there is more oxygen in nitrous oxide than in air, it is chemically combined with nitrogen, whereas air is a mixture of nitrogen with free oxygen. The effect of a moderate quantity of nitrous oxide, so long as the influence of the atmospheric air last inhaled remains, is exciting; but as soon as the oxygenating property of the blood is lost, the functions of the nervous system fail, and if fresh air be not quickly supplied they cease, and the animal dies.

But although the inhalation of this gas deprives the blood of oxygen in an available form, it does not prevent the escape of carbonic acid; for, if the expired gas is passed over lime-water, or over hydrate of lime, as in Mr. Coleman's apparatus, the lime is found to have taken it up, and to be converted into carbonate of lime. A further confirmation of this is afforded in contrasting the effect of inhaling the same gas again and again from a bladder of small size. In this case the anaesthesia approaches slowly, is accompanied by excitement, and there is more or less headache complained of afterwards, which rarely or never occurs from breathing pure nitrous oxide, until the carbonic acid has been expelled from the lungs.

The functions of the brain proper cease before those of the medulla oblongata, hence we have loss of consciousness before the respiration fails; and the functions of the medulla are abolished before those of the ganglia presiding over the heart, and hence failing respiration occurs before failure of the heart's action.

One death is known to have occurred within an hour of inhaling the gas. This case was one of extensive phthisis, and it has been
supposed from this case, and from the lividity induced by the gas, that persons with delicate lungs are not fit subjects for taking it. If extensive disease of the lung exists, it would be imprudent to use it in the present state of our knowledge; but I have given it where I have believed only a moderate lung disease existed, and observed that in these cases no untoward symptoms were produced. Persons liable to syncope would seem to be unfit subjects, but many such patients have taken the gas without serious consequences having occurred.

I have known no signs of mischief to the brain follow the inhalation. I have given it successfully to several persons who were the subjects of epilepsy.

The lady who died at Exeter, after taking gas, appears to have been asphyxiated after the anaesthesia had passed off. The medical man who died under the influence of gas at Manchester was probably the subject of heart disease, but the reports of the case do not state whether the circulation or respiration first ceased.

Pregnancy is not a bar to its use; but in such cases it should be given with caution.

The danger of death from blood getting into the trachea in one respect would be as great, or greater, than when chloroform is given. The patient would unfortunately show no signs of it, as the lividity which might tell of it would, of course, not be distinguishable from that of nitrous oxide.

From all that I have seen of the administration of anaesthetics, and from the accounts published of the cases where they have been followed by a fatal result, it appears to me of little importance what is the age, temperament, or disease of the patient, in estimating the danger of using them. The young and old, feeble and strong, fat and thin subjects, have all on some few occasions died from them. On the other hand, we have witnessed the successful administration of chloroform, &c., in the advanced stage of phthisis, heart disease, &c. The only reasonable hope of security lies in carefully preventing an overpowering dose, or the prolonged exhibition of a milder one, after symptoms of failing lungs or heart have shown themselves.

Note.—Since the first edition of this work was published, we have had abundant opportunity of contrasting the effects of gas, ether, and chloroform. It may be confidently stated that no other anaesthetic can be compared with gas for rapidity of action, and freedom from unpleasant after-effects. This applies only to short operations. If a patient is to be kept quiet for ten minutes, vomiting and headache will very likely result. The addition of ether, of such a strength as does not
produce swallowing or coughing, enables us to give just enough air to prevent the asphyxial convulsive movements without allowing the patient to recover so far as to struggle.

In giving ether with air, or rather with as little as possible, by means of a sponge and towel folded into a cone, we generally produce conscious struggling in the early stage; and, later on, the breathing is obstructed by bronchial mucus. This is generally very easily coughed up as the patient recovers, but not always. In a few rare cases the patient has been unable to clear the air-passages, and has died in a few hours afterwards.

There is reason to think that in these exceptional cases the patient has been allowed to get too cold.

The immediate recovery from ether is generally pleasant. The patient has had a delightful dream.

Where perfect quietude is necessary, as in some operations on the eye, the end may be accomplished by ether as well as by chloroform, if we wait and let the ether enter freely into the system. It is not so easily managed, however, by ether as by chloroform.

The depressed state of the circulation induced by chloroform facilitates the operation by lessening the bleeding.

Unfortunately, if an excessive dose is given, the heart may suddenly cease to beat; or if any choking occur, the heart stops so quickly that there may not be sufficient time to clear the air passage and restore breathing. The increased risk is, however, so small, where all care is taken, that in important operations its use is quite justifiable.

In conclusion, it may be said that later observations have only confirmed the views of Dr. Snow, that ether, chloroform, etc., produce narcosis by preventing the oxidation of the nervous centres.

In the use of nitrous oxide the effects are explained by the fact that the oxygen is chemically combined with the nitrogen, and thus not available for the oxidation of the tissues.

IODOFORM.

IODOFORM is a healing and soothing application to spreading and sloughing sores, as bed-sores, and especially to soft chancrea, preventing buboes. It is also recommended in syphilitic and scrofulous ulceration. The sore dusted over with iodoform is covered with some bland application, as glycerine spread on lint. Its action in chancrous and syphilitic ulceration is often most prompt. It has been successfully employed in ulceration of the nose and throat. It relieves the pain of cancerous sores. Dr. Moleschal uses it as an ointment, 1 part in 15, for enlarged scrofulous or simply inflamed glands in orchitis. When employed in uterine cancer, a bolus containing from eight to sixteen grains made up with cocoa-nut fat is inserted into an excavation produced by
HYDRATE OF CHLORAL.

sloughing or ulceration. An iodoform suppository is also useful in painful diseases of the rectum and bladder.

Dr. Tanturri recommends an iodoform ointment of 3 j to 3 j for prurigo.

Iodoform is said to relieve the pain of neuralgia and gout. A saturated solution of iodoform in chloroform is advised in neuralgia.

Iodoform must not be applied to inflamed tissues, or it will increase the inflammation.

Given internally, it produces a kind of intoxication, followed by convulsions, with tetanic spasms, and the breath and tissues of the animal give out the odour of iodoform, and is said to act like iodine.

In fatal doses it produces fatty degeneration of the liver, kidneys, heart, and voluntary muscles; acting thus like chloroform and ether.

—

HYDRATE OF CHLORAL.

We owe most of our knowledge of this valuable medicine to Liebreich.

Chlorine acting on alcohol (C\(^4\) H\(^4\) O), first produces aldehyde (C\(^4\) H\(^4\) O), and afterwards chloral (C\(^4\) H Cl\(^4\) O), which forms a crystalline soluble hydrate. The addition of an alkali to a solution of hydrate of chloral, gives rise to the formation of chloroform and formic acid.

This decomposition led Liebreich to believe that the alkali of the blood decomposes hydrate of chloral, forming chloroform, and that the properties of chloral are due to the chloroform slowly formed in the blood. In support of this view several observers have obtained chloroform by distillation of the blood of animals poisoned by chloral; but probably the chloroform is given off by the heat necessary for the distillation, as Hammarsten found that on adding chloral to blood, and passing carbonic acid through the mixture, he failed to obtain chloroform, but on subjecting the mixture to distillation, chloroform was readily given off.

Dr. Amory also concludes from his experiments that chloral hydrate does not decompose in the blood, and that its effects are consequently not due to chloroform. He could not detect chloroform in the blood, excreta, breath, &c., of animals poisoned with chloral; whilst in animals poisoned with chloroform this substance was easily detected in both the blood and excreta. These state-
ments are confirmed by other observers. This evidence is rendered conclusive by the experiment of Rajewsky and Lewisson, who, after washing out from the vessels of a frog all the blood, and substituting a neutral solution of common salt, and then administering chloral, its characteristic effects were produced.

Chloral is antiseptic.

In moderate doses chloral causes sleep, sometimes makes the pulse a little slower, and contracts the pupil. Large doses induce profound sleep, passing into coma. The pulse is either slow, or very weak and quick, the temperature falls. The pupil contracts at first, and then dilates. There is great muscular relaxation, diminished or abolished reflex action and sensibility, and the animal dies by arrest of respiration or paralysis of the heart.

The most characteristic effect of chloral is sleep, in part due probably to its direct action on the nervous structure of the brain, but in part also to the anaemia it produces in this organ. Thus, Dr. W. H. Hammond finds that at first chloral congests the retina, but in five or ten minutes the opposite condition commences, and continues till the retina assumes a pale pink colour. As the retinal circulation corresponds with the cerebral, he concludes that chloral affects the brain in the same way as the retina, and has proved the correctness of this inference by means of an instrument called the cephaloahemometer, invented independently by himself and by Dr. Weir Mitchel. Dr. Hammond says, that while the brain is congested, there is some mental excitement; but as the vessels contract, drowsiness supervenes; and on this wearing off, the retinal and cerebral vessels enlarge till they assume their accustomed size.

Dr. J. H. Arbuckle (West Riding Lunatic Asylum Reports, vol. v.) finds that the following substances, Nicotia, Atropia, Hyoscyamia, Aconitia, Hydrate of Chloral, Nitrite of Amyl, Prussic Acid, Strychnia, Morphia, Picrotoxine, pushed even to a fatal dose, do not in any degree affect the circulation at the fundus of the eye. His observations were made on rabbits, and the results they obtained were, with respect to some of these agents, confirmed by experiments on man; hence the statement, hitherto generally received, that the retinal circulation corresponds with the cerebral circulation, changes in the one always implying changes in the other, must be accepted with caution, unless, indeed, some of these drugs act on the brain in a manner opposed to the accepted theory, and do not influence it by affecting its blood-supply.

In his lectures on vascular depressants, Dr. Fothergill ascribes this anaemia of the brain to the effect of chloral on the general vascular system. He refers to Ludwig’s and Schifl’s experiments
showing that in health the arterial system is constantly in a state of semi-contraction, and that by relaxation of the vessels the capacity of the vascular system may be doubled. Dr. Fothergill points out that chloral dilates the arterioles, especially of the skin; hence blood is withdrawn from other organs, including the brain, which thus becomes comparatively anæmic.

Liebreich, Tay, Hammond, and others, find that a full dose of 40 to 80 grains of chloral depresses the temperature sometimes to the extent of three or four degrees.

Dr. Levenstein reports the extraordinary case of a man aged 35, who was poisoned by six drachms of hydrate of chloral. When first seen, he lay in a profound sleep, with congested face, heavy breathing, and pulse of 100. An hour after the poisoning, he became livid, the veins were distended, the respirations were intermittent, and his temperature was 103° Fah. An hour and a half after the dose he became pale, pulseless, with contracted pupils, and his temperature had sunk to 91·2. Nitrate of strychnia, enough to produce twitching, was then injected hypodermically, and the heart at once began again to beat, and the thermometer marked 91·9° Fah.; collapse, however, returned in a few minutes, the circulation appearing to stop. Artificial respiration was performed and nitrate of strychnia again injected, again with the same result. In ten hours, the pupils responded to light; in twelve, the temperature was 100·4; in twenty-two hours, he could be roused, and after thirty-two hours, he awoke "quite refreshed," and did not complain of any gastric disturbance. Dr. Fothergill, in his important lectures On the Depressants of the Circulation, says, that Dr. Lauder Brunton finds that after large doses of chloral the temperature falls, till it can no longer be measured by an ordinary clinical thermometer. Having determined what dose would kill an animal when exposed to the air, he gave this quantity to two similar animals, wrapping one in cotton-wool. The one wrapped up survived, the other died. Then he found out the fatal dose to an animal wrapped up in cotton-wool, and gave that quantity to two similar animals, wrapping up one in wool, and putting the other in a warm chamber; and he found that the one in wool died, the other recovered. A still larger dose was fatal to the animal in the warm chamber. These experiments show that the loss of heat is one, but not the sole, cause of death.

Many observers maintain that chloral produces hyperæsthesia, but others contradict this statement. Very large doses produce anæsthesia.
The paralysis and loss of reflex irritability, as the muscles and motor nerves unaffected, is probably due to the effect of chloral on the spinal cord; moreover, direct irritation of the spinal cord produces less active contraction in a chloralised animal than in one undosed with this drug. Some investigators conclude that this paralysis is preceded by heightened activity of the cord.

Some say that at first chloral heightens blood pressure; but all observers agree that large doses lessen this pressure, chiefly by the action of the chloral on the heart, but in part by paralysing the vaso-motor nerves.

Chloral weakens the heart, and after large doses it is arrested in the diastole.

Chloral diminishes the frequency of the breathing, and as this phenomenon takes place after section of the pneumogastric, it is concluded that the drug acts on the respiratory centres.

Hydrate of chloral is chiefly employed to produce sleep or allay pain. Chloral sleep is generally calm, refreshing, and dreamless, not too profound to prevent waking to cough, take food, etc. As a general rule, chloral causes no giddiness, headache, nervous depression, constipation, sickness, or loss of appetite. A patient roused from chloral sleep will eat a hearty meal, then lie down and immediately fall asleep again.

Chloral at first sometimes causes a good deal of heaviness and sleepiness on the following day, but this effect soon wears off. It occasionally produces frightful dreams, and sometimes much excitement, intoxication, and even delirium without sleep.

Sleep comes on sometimes in a few minutes, but more commonly in half an hour, after a dose of chloral. Like other soporifics, it should be given shortly before bedtime, and the patient should avoid excitement, and keep quite quiet, else it will produce restlessness instead of sleep. It has been given for many months apparently without any bad results. Its effects sometimes wear off, but in a far less degree than is the case with opium.

Chloral has been found useful in a variety of circumstances. It subdues the sleeplessness of old people, and the wakefulness induced by excessive mental fatigue, succeeding where opium, bromide of potassium, and other remedies fail. In delirium tremens it produces sleep, and calms delirium; but is especially successful when administered at the onset of the symptoms, often averting a serious illness. Large doses have been given, even sixty grains or more, repeated several times. Dr. Da Costa cautions against its administration to patients with a weak heart. He
advises its combination with opium. In paralysis of the insane, full doses induce sleep at night, and a moderate dose calms excitement by day. Dr. Macleod has given it daily to the same patient, without bad effect, for upwards of three months, and avers that it is superior to digitalis or the hypodermic injection of morphia. Luke, Clouston, Gardiner Hill, G. Crawford, recommend it in acute mania.

It is employed in puerperal mania, and in puerperal convulsions. It is conveniently administered to the insane in porter.

Dr. James B. Russell, of Glasgow, recommends it in typhus, to produce sleep and allay excitement, especially in violent boisterous delirium. He much prefers it to opium, as the patient can be roused to take food, and readily wakes to clear the bronchial tubes, hence there is much less danger of congestion of the lungs.

Dr. Hughes Bennett used it in phthisis, stating that it produces sleep, allays cough, and sometimes checks sweating, without producing any of the harmful effects of opium.

Chloral sometimes restrains the voluntary movements of chorea, but in many cases it is powerless. It is most useful in those cases where the violent movements render sleep impracticable, the want of sleep in its turn aggravating the choreic movements, till even deglutition may become almost impossible. In these urgent cases ordinary remedies like arsenic are useless, and recourse must be had to narcotics. Large doses of chloral, frequently repeated, will often produce profound refreshing sleep, from which the patient wakes calmed and less convulsed. (Vide Chloroform).

E. Lambert recommends chloral in parturition in fifteen-grain doses every quarter of an hour till the patient falls asleep; stating that this treatment does not weaken the uterine contractions, while it prevents pain, and ensures calm repose after delivery. Dr. Playfair thinks that chloral acts far better than chloroform inhalation, as chloral does not lessen the strength of the contraction, whilst it greatly lessens the suffering. Moreover, it is chiefly applicable at a period when chloroform "cannot be used, that is towards the termination of the first stage, before the complete dilatation of the os." The patient falls into a drowsy state—a sort of semi-sleep. Dr. Playfair gives fifteen grains, and repeats the dose in about twenty minutes, leaving its subsequent administration to circumstances.

Chloral is often useful in the convulsions of children. Given in a dose sufficient to induce sound sleep of some hours, the convulsions cease, and often do not recur when the child wakes. If the child
cannot swallow, five grains given by the rectum soon induces a deep sleep, and the convulsions then cease, at least temporarily. The liquid injection is often expelled during the convulsions, so that it is better to administer the chloral as a suppository, pushed as far as the finger can carry it.

Bouchut employs chloral hydrate to produce general anesthesia in children. To children about seven he gives forty-five grains; and to children from two to five he gives thirty grains. Anesthesia is complete an hour after the administration. The drug may be given by the rectum. Children bear chloral well.

Five grains of chloral given twice or thrice daily will often remove a common condition characterized by restlessness, irritability, and nervousness—a condition of ceaseless misery.

Dr. Bradbury and Dr. Thompson speak very highly of the efficacy of chloral in nocturnal incontinence of children.

Liebreich recommends chloral in sea-sickness.

The shortness of breath affecting the emphysematous on catching cold often yields to chloral. When the dyspnœa occurs at night, a full dose (twenty-five to thirty grains) at bedtime calms the breathing, and gives sound refreshing sleep. When the difficulty of breathing is continuous, small doses (two to six grains) should be given several times daily.

It is necessary to give chloral with caution to patients with emphysema and bronchitis accompanied with obstructed circulation, causing lividity and dropsy; for, besides drowsiness, an ordinary dose may produce muttering delirium and a notable increase in the lividity; these effects often lasting several days, and attributable possibly to the slow destruction of the drug in the blood, seem not due to any peculiarity on the part of the patient, as I have seen chloral produce these symptoms in a patient who had previously taken the medicine with benefit.

A full dose of chloral is often useful in a paroxysm of asthma.

Some cases of tetanus have apparently yielded to chloral in large doses; and in some instances this drug has prolonged life and eased pain.

The statements concerning the influence of chloral on pain are conflicting, some asserting that it produces anesthesia, while Demarquay states that in many instances it excites hyperesthesia. Chloral, it is said, simply makes a patient oblivious of pain; but if the pain is too urgent to permit of sleep, chloral fails to give relief. This metaphysical explanation is certainly incorrect; the truth be-
HYDRATE OF CHLORAL.

ing that, for some unexplained reason, chloral in certain cases subdues pain, while in other apparently similar instances it fails. Chloral sometimes relieves the pain of neuralgia, chronic rheumatism, gall stones, colic, and gastralgia. In doses of ten grains, three times a day, it has relieved most severe pain of cancer, without inducing drowsiness. Injected hypodermically, it is liable, like chloroform, to excite inflammation, and to produce an abscess followed by a scar.

The addition of a small quantity of morphia intensifies considerably the narcotic effects of chloral.

When equal parts of chloral and powdered camphor are rubbed together, they form a syrupy liquid, which, painted on the painful part, or gently rubbed in, often affords relief in neuralgia. My friend, Mr. George Bird, has used this compound in several cases of neuralgia and pleurodynia with great success. I have known it cure, promptly, neuralgia of the inferior dental branch of the fifth and neuralgia in the temporal region. It is said often to relieve toothache, even when applied externally, and I have known it succeed when put into the cavity of the carious aching tooth; but, like other applications, it often fails in neuralgia without apparent cause, in cases very similar to others it has benefited. When it does answer, this liniment generally affords almost instantaneous relief. I have known it give relief in severe pleurodynia.

Although, no doubt, in some cases, chloral can be borne nightly for months, or even years, without producing any ill consequences, yet, recently, some doctors have met with patients who, through an injudicious and too continuous use of this drug, have induced symptoms of depression, nervousness, irritability, sleeplessness, and even slight paralysis, which soon disappeared on ceasing to take chloral.

Chloral is the antidote of strychnia, physostigma, and picrotoxine; that is to say, if the known minimum fatal dose, or rather, more than fatal dose, of one of these substances is given, chloral will either prevent death or greatly modify the symptoms induced by any of these poisons. (See Strychnia and Calabar-bean).

Valuable though chloral undoubtedly is, yet it has scarcely sustained its early reputation. It is not so certain a hypnotic as the first over-drawn accounts of its virtues led us to believe, for not unfrequently it produces great excitement, even intoxication, without inducing sleep. Sometimes we meet with a patient who has hitherto taken chloral with good effect, yet, on the occurrence of
HYDRATE OF CROTON-CHLORAL.

We are also indebted to Dr. Oscar Liebreich for introducing this valuable agent into the service of medicine. This distinguished experimenter finds that in animals it produces anaesthesia of the head without loss of sensibility of the rest of the body; and in man, anaesthesia of the fifth nerve only. In large doses it produces sleep, and in fatal doses it destroys by paralyzing the medulla oblongata. He recommends it in trigeminal neuralgia, but speaks of it as only affording temporary relief; he, however, greatly underrates its efficacy.

Croton-chloral is, perhaps, the most efficacious remedy in facial neuralgia. In neuralgia due to carious teeth; in facial neuralgia in old people, in whom the disease is generally most obstinate and severe, it is alike beneficial. In the few cases of that severe form called epileptiform tic, I have had the opportunity of using it, it has proved useless, even in large doses. I have found it very serviceable in neuralgia of the back of the head, and also of that of the neck with pain radiating to the shoulders. There is but little evidence at present of its effects on neuralgia of the other parts of the body; Dr. Louis Lewis has by its means promptly cured several severe cases of dysmenorrhoeal neuralgia. Hitherto, I have not found it successful in neuralgia of the trunk and extremities; but at present my experience of it in this respect is but limited.

I have found hydrate of croton-chloral very useful in migraine.

It is hardly necessary to observe that under the term migraine I include those affections commonly called sick headache, bilious headache, nervous sick headache, and hemicrania. The most characteristic and commonest symptoms of megrim are headache and sickness; but, in a typical case, these symptoms are preceded by other significant and interesting phenomena. At the onset of
an attack, a peculiar affection of the sight first occurs, soon to be followed by perversion of the sense of touch and of the muscular sense in the arms and legs, by disordered speech and defective ideation; the headache then comes on, and, as it becomes intensified, nausea gradually sets in.

The affection of the sight may consist of mere absence of vision, beginning at the centre or circumference of the visual field. When at the circumference, the defect is generally situate to the right or left of the axis of vision. From the centre of the visual field, the blind spot gradually expands, and as it enlarges it then clears up in the centre, and so gradually disappears to the circumference. As the blind spot expands, its margin is often lighted up with spectra variously described as glimmering, dazzling, bright zigzag lines, corruscations, &c.

In ten minutes to half an hour, numbness and loss of sensibility occur on one or both sides of the body, followed by tingling formication, “pins and needles,” felt most distinctly in the hands, tongue, and lips. Speech is commonly disordered, the aberration in some cases being simply memorial, in others simply motorial; in others, again, these two derangements of speech are more or less combined. In other words, one patient forgets his words, another forgets how to utter them, whilst a third manifests a combination of these two defects. There is too, loss of memory, confusion of ideas, and a bewildering feeling, as if the patient were going out of his mind. In half an hour or a little longer, these phenomena are followed by headache, which is generally felt on waking in the morning; is at first slight, but intensifies till it may become most severe—indeed, almost unbearable. It affects one or both brows, and, beginning at one spot gradually extends, till it may involve the greater part of the head. The throbbing, stabbing, cutting, boring pain is increased by movement, noise, light, smells, or food. When the area of pain is limited, the complaint is termed clausus. As the pain subsides, or even during the whole attack, the patient may suffer dull or shooting pains in the eye of the affected side. There is much tenderness of the scalp during and after an attack.

Throughout the attack the patient complains of nausea, which may be slight, but usually increases, and, when the pain is at its worst, ends in vomiting, which may be severe and prolonged, causing much prostration; yet occasionally vomiting affords relief.

Lasting a few hours, the whole day, or even two or three days, the attack generally ends in calm refreshing sleep, but sometimes
it gradually subsides or ends abruptly in vomiting, perspiration, or, more rarely, a copious flow of tears. The attack may be preceded and followed by very obstinate constipation or by diarrhoea, the liquid motions being in some instances pale, in others of a deep brown mahogany colour. Before and after the attack, there is often much dusky discoloration around the eyes.

It is now almost universally held that megrim is an affection of some part of the nervous centre. Dr. Liveing, to whose exhaustive work I am considerably indebted, considers that, in a typical case, the disturbance takes place first in the optic thalamus, and passes backwards and downwards, reaching to the nucleus of the vagus below; for, as he observes, in a model seizure, the visual disorder is always the initial, the headache the middle, and the vomiting symptom the final. Where morbid intellectual phenomena and disorder of speech occur, the affection radiates from the thalamus to the hemispheric ganglia, and where emotional phenomena occur, to the mesocephale.

Though the affection is seated in the nervous centres, yet it must be recollected that both the frequency and the severity of the attacks depend on peripheral exciting causes, due to the stomach, intestines, liver, womb, &c. Even when the affection is strongly developed and the periodic attack occurs apparently spontaneously, remote exciting causes may render the seizures more frequent and severe; nay, in many cases, the affection may be so slight, that it lies dormant till roused into activity by some near or distant irritation, which, being removed, the seizures cease.

The successful treatment of megrim depends less on change to be effected in disordered nervous centres than on the removal of the exciting cause. The treatment of megrim, therefore, falls under three heads:

1. The treatment of the central nervous affection.
2. The removal or prevention of exciting causes.
3. The treatment of the paroxysm.

Many remedies act in a twofold or even a threefold way. Thus bromide of potassium is often extremely serviceable in two ways. It is very useful in cases where the seizure is due to uterine disturbance, as in menstruation and dysmenorrhea. Sometimes the attacks are more severe and frequent, arising from the exhausted state of the nervous system. Perhaps from overlong town residence, or from mental troubles, the patient becomes irritable, depressed, nervous, excitable, with broken sleep, harassed by dreams. The ensuing general depression increases the headache. Now,
bromide of potassium soothes the patient by promoting a refreshing sleep, and thus lessens the frequency and severity of the headaches. Bromide of potassium, moreover, is serviceable in the paroxysm itself, for it may produce several hours' sleep, from which the patient awakes free from headache.

The pain of megrim is situated in the fifth nerve; and, remembering how closely megrim is allied to neuralgia, and how useful hydrate of croton-chloral is in facial neuralgia, I have been induced to try this remedy for megrim, and have found it useful in cases of which the following may be taken as a type.—

A woman has been subject for years to nervous sick headache; then, owing to some great trouble, or to excitement, fatigue, or flooding, or prolonged suckling, or more often at the change of life, the headache becomes much more severe, becomes continuous for weeks, perhaps months, and is intensified greatly by fatigue, excitement, or at the catamenial period. If not actually continuous, the headache comes on daily, lasting perhaps many hours, or several attacks may each day occur. The pain is often intense; and whereas, previous to the oncoming of this intensified form of headache, the pain was probably limited to one brow, it now affects both, perhaps the greater part of the head. The skin is generally very tender. There is also a sensation of bewilderment, or, as some term it, a stupid headache, and the patient says she feels as if she should "go out of her mind." The sight may be dim, especially during the exacerbations of pain. Some patients of this class are very excitable and irritable, and are upset with the slightest noise. Nausea and even severe vomiting may occur with each exacerbation of the pain. Five grains of croton-chloral every three hours, or even oftener, will give in most cases considerable relief. I need hardly say, that the drug does not entirely free the patient from her attacks; but, in one or two days, the pain ceases to be continuous, then the attacks recur, though only once or twice a week, the interval gradually extending till an onset occurs only every week, then about every fortnight, or even longer, till the illness assumes its old type and periodicity. In some cases, a week's treatment suffices to bring back the headache to its original type of an attack, once in three or four weeks. Then the croton-chloral appears to be far less serviceable, manifesting but slight effect on the periodical attacks. In many cases of ordinary periodical headache, the patients say that in the milder forms, the drug distinctly lessens the severity and duration, but in the severer forms it is without effect, even when sickness is absent.
In cases accompanied by severe vomiting and retching, croton-chloral is useless, being speedily rejected.

Croton-chloral, I have found, will relieve the lighter attacks some delicate and nervous women experience after any slight fatigue or excitement.

In the continuous sick headache just described, as the pain grows better so the cutaneous tenderness disappears. It seems to me that, in many instances, two kinds of headache co-exist, one sometimes predominating, sometimes the other. One appears due to affection of the cutaneous nerves, and is generally accompanied by tenderness. Patients describe the other as a "stupid headache," "a feeling of bewilderment," "a bewildering headache." After the dispersion of the first form by croton-chloral this stupid headache often continues, but is ordinarily relievable by bromide of potassium. Indeed, in many cases, I have found it useful to combine these remedies. Bromide of potassium itself is often sufficient in certain sick headaches; for instance, if the other symptoms point to the use of this drug, as when, in addition to the bewildering or stupid headache, the patient complains of broken sleep, is harassed with disagreeable or frightful dreams, is prone to be very irritable and excitable, and feels as if she should "go out of her mind." Bromide of potassium, too, is often useful where the continuous or almost continuous form of sick headache is associated with, and is probably due to, uterine derangement, as menorrhagia. The drug's efficacy is not due to simply checking the loss of blood, and so indirectly improving the health, for it manifests its efficacy before the occurrence of the next flooding. In cases like this, it may be usefully combined with cannabis indica.

I have already referred to the effect of croton-chloral on the shooting pains in the occipital and auricular nerves, but I wish again to revert to them, because they appear in many cases to be closely allied to migraine, being often induced by the same circumstances. Thus, they are most common in women, especially when in depressed health or subject to worry. Sometimes the attacks are associated with nausea, and even sickness. The pains occur in sharp stabs running in the course of the nerve, and not in enduring paroxysms. Croton-chloral in such cases is often very useful, although it may fail where the health is greatly depressed, and where there is much anaemia. Sometimes the symptoms indicate the employment of bromide of potassium.

Liebreich, who recommended croton-chloral as a soporific, and gives as much as sixty grains for a dose, thinks it superior to
hydrate of chloral, since whilst it produces sleep it does not affect muscular tone, nor interfere with the circulation or respiration. He thinks it applicable in cases of heart disease. Much smaller doses are said to produce sleep; thus, Dr. Yeo states that sometimes two grains will suffice. I have given five and ten grain doses in a considerable number of cases, but never knew either dose to produce sleep, or even drowsiness.

Dr. Yeo recommends croton-chloral in the "distressing night cough of phthisis.

There are many conflicting statements concerning the dose of croton-chloral. According to some writers, croton-chloral is treated as a powerful and dangerous remedy, requiring to be given with great care; but this is certainly erroneous. Mr. Baker's patients obtained relief from two or three hourly doses of one grain. Dr. Legg administered it in five, ten, and twenty grain doses. I have usually given five grains every two or three hours, and sometimes hourly. In one case—a delicate woman—I gave it hourly in five grain doses for a fortnight, without producing drowsiness or any other apparent effect beyond its influence over pain. Usually five grains every three hours is sufficient, giving freedom from pain in a few hours, though in some unusual cases relief may not be obtained for two or three days. After discontinuing the drug slight pain may return, but it yields again to the medicine. It sometimes promptly relieves toothache, though not uncommonly it fails; and I have known it relieve widespread neuralgia of the fifth, leaving unaffected the accompanying toothache. Indeed, I have known toothache to come on during the use of this remedy in five grain doses every three hours.

NITRITE OF AMYL.

To Dr. Brunton belongs the credit of first using this remedy, and the rare merit of inferring correctly its therapeutic effect from its physiological action. It must give him the highest satisfaction to know how great a boon his scientific insight has provided for the hitherto almost helpless patients under the anguish of angina pectoris.

In thirty or forty seconds, whether inhaled, subcutaneously injected, or swallowed, it flushes the face, and increases the heat and perspiration of the head, face, and neck. Sometimes the in-
creased warmth and perspiration affect the whole surface; or, while the rest of the surface glows, the hands and feet may become very cold; and this condition of the extremities may last many hours. It quickens the pulse in a very variable degree, sometimes, as Dr. Talfourd Jones points out, doubling its pace. Jones finds that this augmented pulse-beat precedes the flushing by a few seconds. It causes the heart and carotids to beat strongly, and the head to feel full and distended, "as if it would burst," or "as if the whole blood were rushing to the head," and sometimes produces slight breathlessness and cough. It often causes slight giddiness, mental confusion, and a dream-like state. When given to animals in a deadly dose, the breathing becomes quick; there is great weakness; loss of reflex irritability, and death ensues from arrest of respiration, but sensation and consciousness remain unaffected.

The most characteristic effect of this drug is its influence on the vascular system. It relaxes the whole arterial system, greatly reducing arterial pressure. The reduction of arterial pressure is due mainly to the great dilatation of the arterioles, and, after large doses, to depression of the heart. How does it dilate the arterioles? It will dilate the arterioles even after section of the cord just below the medulla oblongata; hence it has been concluded that it does not act by paralyzing the vaso-motor centre, which formerly was supposed to be situated between the calamus scriptorius and the corpora quadrigemina. It must, therefore, act either on the vaso-motor nerve trunks, or on the muscular coat of the arteries. Some have concluded that it affects the arteries. Brunton believes it partially paralyzes the sympathetic ganglia and their motor nerves.

Early experiments seemed to show that the vaso-motor centre is situated in the medulla oblongata. Thus:

1. Irritation of the region just indicated induces general contraction of the arteries.
2. If this centre is destroyed, the arteries remain widely dilated.
3. So long as the cord is undivided, irritation of any sensory nerves causes contraction of the arteries, the impression being conveyed to the vaso-motor centre, and reflected to the arteries; but if the communication between the vaso-motor centre and the arteries is severed by section of the cord below the medulla oblongata, then irritation of a sensory nerve no longer contracts the arteries.

Recent experiments of Nüssbaum, if correct, show that in the frog, and therefore probably in other animals, the vaso-motor centre is not situated solely in the medulla, but extends the whole length of the spinal cord, for after its section the medulla oblongata, time being allowed for the animal to recover from shock of the operation, irritation of a sensory nerve will cause contraction of
If Nüssbaum's observations are confirmed, they would seem to show that nitrite of amyl may act through its influence on the vaso-motor centre.

The paralyzing effect on the arterial system is well shown by the sphygmo graphic tracings, the flushing of the face, and the increase in the size of visible arteries like the temporal, which often becomes notably large—sometimes, indeed, doubled in size, and branches previously invisible, become plainly apparent; and by the interesting fact observed by Talfourd Jones, who, while cupping a patient over the loins, and finding that blood would not flow, administered nitrite of amyl by inhalation, when the cuts immediately began to bleed freely. After an inhalation, the larger arteries are slower in recovering their normal size than the capillaries, a phenomenon I have often observed in the temporal artery, which remains enlarged half a minute or longer after the blush has left the face.

Dr. Horatio Wood has shown that the loss of reflex action and of voluntary power occurring after large doses, is due to the depressing action of the drug on the motor tracts of the cord, and to a slight extent on the motor nerves and on the muscles. It appears to have no effect on the sensory tracts of the cord, nor on its co-ordinating centres. It abolishes reflex action, but whether it depresses the reflex function of the cord is uncertain, as it may act simply on the motor part of the cord.

The inhalation or subcutaneous injection of nitrite of amyl produces in rabbits sugar in the urine, with a considerable increase in the quantity of urine. It has been experimentally shown that diabetes is produced by dividing the sympathetic nerve of the liver, and thereby causing dilatation of the hepatic vessels, so increasing the quantity of blood passing through the liver. Probably nitrite of amyl acts by its influence over the vaso-motor nerves, increasing the quantity of blood passing through the liver.

Dr. Horatio Wood finds that nitrite of amyl lowers the temperature by checking oxidation. Dr. H. Wood finds that the inhalation of nitrite of amyl changes both arterial and venous blood to a chocolate colour, due, as Dr. Arthur Gamgee shows, to the formation of nitrite-oxyhæmoglobin, and that by this means the ozonizing property of the blood and hence oxidation of the tissues are lessened. It has been sought to explain all the effects of nitrite of amyl on the animal economy by this influence on the blood; but, as Dr. H. Wood points out, this cannot be an adequate explanation, for nitrates generally affect the blood in the
same way, and yet do not produce the symptoms following the use of nitrite of amyl; moreover, the withholding oxygen from the system, produces symptoms very different from those due to this drug.

R. Pick, from observations on himself and others, finds that after inhaling amyl, if the eye is fixed on a spot on a blank wall, the spot itself, with the surrounding surface, appears of a yellowish hue, the yellow circle being encircled by a violet blue halo, with undulating lines at the edge.

Dr. Brunton first employed nitrite of amyl with signal success in angina pectoris, and found it more effective than any other remedy he had tried in this painful and dangerous disease. During an attack, his patient suffered from throbbing of the heart and carotids as high as the ears, with severe precordial pain extending to the right arm, though the usual characteristic "sense of impending death" was absent. The pulse was slightly quickened, and the sphygmographic tracing became modified, for, as Dr. Brunton states, "as the pain increased, the curve became lower, both the ascent and descent more gradual, and dicrotism disappeared. This form of curve clearly indicates that the arterial tension is much increased, and can, I think, be due only to contraction of the small systemic vessels." The increased tension first led Dr. Brunton to employ nitrite of amyl. In the case in question he attributed the attack to spasmodic contraction of some, if not all, the small systemic and pulmonary vessels, a state of arterial tension which gave way to the nitrite when the pain disappeared. In recurring attacks, the patient inhaled the nitrite of amyl, and always obtained instantaneous relief.

Dr. Ancstile reports the marked relief of a well-marked case of angina by means of this treatment. "The first sniff," he says, "produced after an interval of a few seconds the characteristic flushing of the face, and sense of fulness of the head; the heart gave one strong beat, and then he passed from the state of agony to one of perfect repose and peace, and at his usual bedtime slept naturally. This experience has, I am happy to say, been repeated on several occasions, and with this fortunate result: that so confident now is the patient of being able to cut short the paroxysm, that he has discarded all use of ether, and greatly reduced his allowance of stimulants." Dr. Talfourd Jones also finds nitrite of amyl very efficacious in angina. Since the previous editions of this work, it has been largely used in angina with considerable success; indeed, in the majority of cases, no other remedy, except
NITRITE OF AMYL.

nitro-glycerine, affords so much relief. As might be expected, it is not uniformly successful. I have never known it fail to give some relief, though sometimes this is very transient, the pain returning as soon as the physiological effect of the drug passes away. Thus, in one case, due as we discovered after death, to aneurism of the heart immediately below the aortic valve, an inhalation always arrested the pain, but after a few seconds or minutes it returned, even if the administration were several times repeated, as severely and persistently as though no amyl was used. In another case, whilst it always arrested the paroxysm, it took ten minutes to give relief, and seemed in no way superior to a full dose of ether, which the patient preferred, as the amyl produced so much giddiness and sensation of fulness in the head. In five other cases, however, it proved strikingly successful. In one desperate case, the slightest exertion brought on intense pain, but armed with amyl, the patient could always at once cut short the attack, so that now he can walk several miles, though during his journey he is obliged to employ the amyl several times. It has appeared to me, that by summarily checking the paroxysm, the attacks come on less frequently and severely, and after a time, require much smaller quantity to control the pain; so that amyl really contributes to the prolonged relief of these unhappy patients. In some cases, the nitrite of amyl either loses its effects, or the severity of its attack increases, so that the drug must be taken in increasing quantities and at shorter intervals. Two of my patients kept the bottle nearly always in their hands, sniffing the drug every few minutes, and one used an ounce every week for over a year.

Dr. Talfourd Jones found it remarkably successful in very severe attacks of asthma, removing the dyspnea immediately and averting its return; others too have found it very useful. In my hands it has not proved successful, for although it always arrests the paroxysm, yet on cessation of the physiological effect, the dyspnea has returned. Jones found it beneficial also in a case of cardiac dyspnea, accompanied by extreme anasarca, due to a dilated and hypertrophied heart.

Dr. Talfourd Jones advises inhalation of the nitrite in syncope, and thinks it should be of service in the paroxysms of whooping-cough. It is useful in neuralgia, at least in neuralgia affecting the fifth nerve, often easing the pain at once, and a single administration will sometimes avert further attacks; but so signal a result as this is probably very exceptional. Dr. Richardson finds that nitrite of amyl arrests in frogs the convulsions due to strychnia.
In this way he has saved their lives; hence in strychnia poisoning and tetanus he advises a trial of the nitrite, either by inhalation or subcutaneous injection.

It is better to administer the amyl by inhalation, for, according to Brunton, it will not answer with anything like the same certainty when given by the stomach; for, in the striking case of angina pectoris just cited, he gave ten minims in brandy by the stomach, with the effect of staying the pain for only a short time, but a single inhalation afforded perfect and permanent relief. It should be borne in mind that it affects some persons much more than others; one individual being able to inhale five or ten drops from a handkerchief, or to breathe the fumes from the bottle held close to the nose, while a whiff from the bottle held at a distance, will affect another with great giddiness, much mental confusion, and general weakness. Jones directs five or ten drops poured on a handkerchief, or the fumes from the bottle held close to the nose, to be inhaled till the pulse quickens; but this dose is far too potent for some persons, especially feeble and sensitive women, who in the first instance should inhale a much weaker dose. As Jones points out, patients become habituated to it, so that after a while it must be inhaled several times before it affords relief. This habituation is well exemplified in the internal administration of the remedy. By exposure, it gets "flat," and loses its efficacy.

Nitrite of amyl is generally considered a powerful and even dangerous remedy, requiring to be watched with great care, and given in a definite quantity. I am sure it is not nearly so dangerous as is generally imagined, though it is true that nervous sensitive women are far more powerfully affected by it than men. No doubt its administration at first should be conducted by a doctor, in order to ascertain how far the patient is susceptible to its influence, and that the patient may learn when he ought to discontinue the inhalation, but after one or two trials, patients soon learn how to administer it to themselves. I have now five patients with angina pectoris, each of whom carries a small bottle of this medicine, and on the first warning of an attack, whether walking or standing, each at once begins to sniff at the bottle. My patients have done this for months, and one for just a year, using the inhalation many times daily, so that he consumes two drachms a fortnight with still unfailing relief. Except in relieving the angina, the amyl seems to produce no other effect on the system.

Dr. Jones recommends a trial of it in epilepsy. To an epileptic patient, who, in addition to severe and repeated attacks, suffered
from much mental confusion, and was haunted many times a day with an indescribable dread and sensation as of an oncoming fit, although it came on only once or twice a week, I gave three drops thrice daily, and an additional dose on the earliest warnings of a fit, with the effect of diminishing considerably the frequency of the attacks, and entirely removing the harassing sensations. Dr. Crichton Browne has lately published some valuable observations on the inhalation of nitrite of amyl in this disease. In two rabbits made artificially epileptic, he prevented the oncoming of the convulsions which otherwise follow the application of the electrodes to the brain, by making them inhale nitrite of amyl. He likewise arrested epileptic attacks on the occurrence of the aura before the onset of the fit, and has even cut short the fit after its commencement. By the same means he has rescued several patients out of that desperate plight called status epilepticus—a condition consisting essentially of a succession of fits, linked together by intervening unconsciousness, the fits recurring with increasing frequency, till at last, no sooner is one fit ended, nay, before it has finished, another fit begins.

Amongst other successful cases, Dr. Weir Mitchell reports one, where the inhalation was used immediately the aura was perceived, and other instances where the spasms lasted for hours, one fit following another. I have given this remedy with considerable success to epileptic out-patients, in whom the attacks were very frequent. In some it has appeared to be more useful than full doses (20 to 30 gr.) of bromide of potassium thrice daily; in another case, whilst it decidedly lessened the frequency of the attacks, it was less serviceable than bromide of potassium. I have given it in two to five minim doses suspended in mucilage, every three hours, or three times a day, without inducing any unpleasant effects, not even in some cases causing flushing, whilst other patients have flushed with each dose, but only whilst swallowing it.

The patient should take the medicine whilst lying down; and as some patients, especially women, are very readily affected by the drug, it is well in the first instance to give it in smaller doses; but until the remedy is pushed to two and in some cases to five minims every three hours, I have failed to obtain conspicuous results. Dr. Crichton Browne maintains that epileptics are more sensitive than others to inhalation of amyl. I imagine that this medicine will be found useful only in frequent attacks, and that it is not available when the fits come at comparatively long intervals, as three weeks or a month.
Inhalation of nitrite of amyl has been recommended in sick headache, and one successful case is reported by O. Berger.

Dr. Clapham recommends the inhalation of nitrite of amyl to prevent sea-sickness, and many persons have confirmed his statements, and amongst others my friend Mr. G. E. Alford. Nitrite of amyl was very useful in the following singular case, no doubt allied to sea-sickness. A young woman could not travel either by coach or train without suffering great sickness and headache, leading to considerable exhaustion, these symptoms persisting many hours after the journey. Half a minim of nitrite of amyl dissolved in twenty minims of spirits, and a drachm of water taken hourly, almost entirely prevents these symptoms.

I have used this remedy extensively with considerable success in cases of the following kind: A woman, perhaps from the sudden arrest of menstruation, or through depraved health, or nervous depression, or, more frequently, at the change of life, suffers from frequent attacks of flushings or "heats" starting from various parts, as the face, epigastrium, etc., thence spreading over the greater part of the body. The face, and even the back of the hands, are often deeply reddened, the veins of the hands in some cases dilating to double the previous size. Although the patient feels deeply flushed, sometimes the skin remains natural. The sensation of heat may be so urgent that the patient opens her clothes, or removes the greater part of the bed covering, and even throws open the window in the coldest weather. These heats may last a few minutes only, or an hour or more, and may be repeated many times a day. They are generally followed by perspiration, often very profuse, at other times the skin remains dry; the attacks are then commonly termed "dry heats." The "heats" are often accompanied by great throbbing throughout the whole body, and followed by much prostration, the patient seeming scarcely able to rouse herself. After the heats pass away, the skin sometimes becomes cold and clammy, and may turn very pale. The least exertion or excitement may bring on these heats, and such a patient generally complains of cold feet, and sometimes of cold hands. The flushings are occasionally peculiarly and abruptly limited, reaching to the thighs, knees, or elbows, and while all the parts above these feel burning hot, the parts below feel icy cold; sleep, too, is often much broken, the patient waking with frequent starts, and in the morning feeling unrefreshed. Sometimes they chiefly at night. In many cases, palpitation or "flutterings of heart" occur on the slightest excitement, or even without cause.
Nitrite of amyl will prevent or greatly lessen these flushings or "heats," and avert the profuse perspiration, throbbing of vessels, and great prostration. Sometimes it warms the feet and hands and controls the fluttering of the heart, but in most cases it leaves these symptoms unaffected, and for their cure other remedies, as iron, are required. Amyl will also remove the giddiness, confusion of mind, heaviness in the head, and even headache; it generally produces calm refreshing sleep.

When the flushings and perspiration are slight, this remedy is scarcely needed; moreover, the perspirations are generally considered vicarious and beneficial at the change of life. These symptoms, in many cases, form only a minor part of the troubles of the patient, who may complain of great sinking at the epigastrium, or severe pains in different parts of the body, and other suffering incident to this period, over which nitrite of amyl has little if any influence; but when flushings constitute the chief part of the patient's troubles, this medicine is most serviceable.

The nitrite of amyl in ten days completely cured a woman who for three years had been horribly tormented with singular attacks, repeated several times daily, of severe burning sensation over the loins, whence a glow of heat spread over the whole body, followed by perspiration, the burning sensation being so unendurable that she was constrained to open the window at night even in the winter, and sometimes to rush out of doors.

For the symptoms just described, I have generally administered this drug by the stomach, though inhalation answers as well. In respect of dose it must be borne in mind that, like glonoine (nitroglycerine), its effects vary greatly with different persons, one, two, or even three minimis producing in some only flushings of the face and slight giddiness, while with others even a drop will induce various disagreeable symptoms. Thus one woman immediately after a drop dose turned deadly pale, felt giddy, and then became partially unconscious, remaining so for ten minutes. In another patient the same dose produced a sensation as if "a vapour spread from the throat through her head," and rendered her quite powerless for one or two seconds. A third of a minim dose sometimes excites great nausea, or a tickling in the throat; and one delicate woman, after one-thirtieth of a drop, passed for a few minutes after each dose into a trance-like state, everything to her seeming unreal, and the breathing becoming rather panting. The author began with a minim dose, but was obliged to reduce this quantity, and he ultimately found that, for the most part, these patients can
bear one-third of a minim without any disagreeable symptoms, but
that a tenth, nay, even a thirtieth, of a minim will in some patients
counteract the flushing. It may be dissolved in rectified spirit, two
minims to the drachm, and of this the dose is three to five drops on
sugar every three hours, with an additional dose as soon as the
flush begins. Relief generally ensues immediately, but sometimes
not till the medicine has been taken for a week. As the patient
grows accustomed to the remedy the dose must be increased.

It is interesting to observe the therapeutical similarity of some of the effects
of nitrite of amyl to those of bromide of potassium, though the physiological action
of these drugs is different, amyl dilating, whilst bromides are generally considered
to contract, the blood-vessels. Amyl depresses the motor centre of the cord, but
leaves the sensory unimpaired. Bromides depress the reflex and sensory parts of
the cord, leaving the motor tract unaffected. Both are serviceable in many of the
distressing symptoms occurring at the menopause, as irritability, depression of
spirits, sleeplessness, distressing dreams, heats, flushings, perspirations, and exhaus-
tion. They are both useful in epilepsy. In epilepsy, the starting point of the
attack is supposed to be the medulla; that some peripheral irritation acting on
this part, excites spasm of the glottis, and of the blood-vessels of the brain, pro-
ducing partial asphyxia and unconsciousness, and that the asphyxia excites the
general convulsion. Bromides depress the activity of the cord and of the medulla,
so that the peripheral irritation cannot produce these effects. Nitrite of amyl is
supposed to check or arrest the contraction of the arterioles, and so to prevent the
unconsciousness, but this would not explain its power to prevent the phenomena.
It is difficult to imagine that the influence of the laryngeal spasm and general
convulsion can be due simply to the depressing action of the nitrite of amyl on the
motor centres of the cord, as these are affected only by the very large doses, whilst
the inhalation of a few drops will stop the convulsions.

NITRO GLYCYRINE.

Dr. Murrell, whilst working with nitro-glycerine, was struck by
the similarity of its action with nitrite of amyl, and this led him to
anticipate that nitro-glycerine would prove useful in angina pectoris. He tested it in three severe cases of angina, and found it so
successful that he was led to further study its physiological action,
and has kindly allowed me to use his unpublished investigations.

Twenty years ago Mr. Field, of Brighton, took himself two
minims of a one-per-cent. solution. In three minutes he experi-
enced a sensation of fulness on each side of his neck, with nausea,
and for a moment or two some mental confusion. He heard loud
rushing noises in his head, and felt constriction round the lower part of his neck; his forehead became bedewed with perspiration, and he yawned frequently. These symptoms passed away in about half an hour, but were followed by slight headache, dull heavy pain in the stomach, with a sensation of sickness without vomiting. He felt for some hours languid and disinclined for mental or physical exertion, and the headache lasted till next morning.

Mr. F. A. James, of University College Hospital, also tested the drug on himself, and for a few minutes felt as if intoxicated.

Dr. Murrell has made a large number of observations on himself and on other persons confirmatory of the foregoing statements. After taking one or two minims of a one-per-cent. solution he feels painful pulsation over the whole head, the pulsation soon affects the entire body, and is so severe that it seems to shake his entire frame, and is so marked that it visibly jerks a pen held in his hand. The pulsation he feels to his fingers' tips. He experiences a sensation of fulness over his whole body. Whilst he keeps quiet these symptoms are slight, but they greatly increase on movement, and the headache is intensified on stooping. These symptoms last about five minutes, to be followed by a dull aching frontal headache, with languor, depression, and inability for work. He never feels sick, has no mental confusion nor giddiness. His sight and hearing are not affected till about half an hour after taking the drug, but he feels drowsy. The headache lasts till next day. For many years I have employed this substance, and can confirm from my own experience all the foregoing statements.

In numerous observations Dr. Murrell finds that the symptoms begin in about two to three minutes after swallowing the medicine, the acute symptoms lasting about ten minutes, whilst headache and languor persist about four to five hours.

Though the drug causes a glow on the face, accompanied by perspiration, still it only very slightly flushes the face, in this respect differing from nitrite of amyl. Sometimes nitro-glycerine causes very free perspiration.

The headache is at first throbbing, and felt over the forehead, sometimes on the top of the head, sometimes at the back. The continuous pain is dull and aching. Nausea is an uncommon symptom.

It increases the pulse about twenty beats per minute. The acceleration begins in about five minutes and continues half an hour. The pulse becomes full, bounding, large, and rather soft, but never
intermittent nor irregular. The pulse, indeed, manifests the characters due to extreme arterial relaxation.

Dr. Murrell has made one hundred and fifty sphygmographic tracings, and has compared the action of this drug on the same person many times with nitrite of amyl, and finds that nitro-glycerine gives a similar tracing to nitrite of amyl. The amplitude of the trace is much increased, the rise and fall is abrupt. The trace displays marked dicrotism. Dr. Murrell therefore concludes, that nitro-glycerine causes great arterial relaxation.

The effects of nitrite of amyl come on sooner, and last a shorter time, than those of nitro-glycerine. Thus, the effects of amyl begin in fifteen seconds, whilst those of nitro-glycerine are delayed for five minutes. This difference is probably due to the great volatility of nitrite of amyl.

Nitro-glycerine, in medicinal doses, does not affect the temperature.

The susceptibility to this drug varies. One or two minims of the one-per-cent. solution affects most persons, but I have seen even half a minim greatly affect certain patients, and to such an extent that they could not continue the medicine.

Dr. Murrell recommends nitro-glycerine in angina pectoris. It is certainly equal, if not superior, to nitrite of amyl. In many cases it is certainly superior. I have seen cases where the relief from amyl was very transient, but much more persistent from nitro-glycerine. In some cases amyl succeeds best, in others nitro-glycerine. Nitro-glycerine is slower in relieving pain, but its effects are often more prolonged. They should be administered differently. Amyl is only useful when given during a paroxysm. Nitro-glycerine may be given at stated intervals, say every two or three hours, and an additional dose on the onset of a paroxysm. The regular administration greatly lessens the frequency of the attacks. Occasionally, however, it produces so much headache, that patients are obliged to desist from its use. In one case it at first afforded much relief, but afterwards, each dose induced a slight paroxysm. It should be given in $\frac{1}{100}$ min. dose, either dissolved in water, or made into tablets, as sold by Martindale. One of my patients took a hundred of these tablets a day, with great benefit.

Nitro-glycerine is recommended in sea-sickness.

Dr. Neale has seen it of great service in the paroxysms of asthma, and in megrain. Speaking of a case of asthma, he says, "the tongue of the patient was touched with the stopper of
a bottle containing a 5 per cent. solution, when the paroxysm was
so severe as to cause consternation to all around, and in less than a
minute there was a great calm.”

CAMPHOR.

At the temperature of the body camphor is solid, but it slowly
volatilizes, even at a lower temperature. But little soluble in
water, it freely dissolves in oil and alcohol. Camphor destroys
most plants, except those of the lowest organizations, as the fungus
—commonly called mould. It is said to be poisonous to fleas,
bugs, spiders, and other insects. Camphor excites redness and
heat, indeed slight inflammation, in the unbroken skin, and, of
course, irritates more powerfully wounds and delicate structures
like mucous membranes, and may produce not only active inflam-
mation, but even sloughs and ulcers. It has been applied to stimu-
late indolent sores. It is a useful addition to dusting powders to
allay the heat, tingling, and itching of eczema and intertrigo.
Camphor is a common ingredient of tooth-powders, and is used
as a corrective of foul breath.

Camphorated alcohol has been recommended as a remedy for
boils at their earliest stages, applied three times a day for half a
minute, afterwards letting the skin dry, and then smearing it with
camphorated oil. It is said that a few applications will usually
disperse the coming boil. Inhaled, or taken by the stomach, cam-
phor exerts a decided influence on “cold in the head.” Employed
at the beginning of an attack (it is useless after the first stage),
camphor sometimes arrests an ordinary cold, and, failing this, it
abates its violence, obviating or diminishing frontal headache, and
restraining the sneezing and running at the nose.

Camphor inhalations are sometimes useful in that troublesome
and chronic complaint characterized by seizures of incessant sneez-
ing, and profuse watery running at the eyes and nose, the patient
remaining well in the intervals. The attacks may occur daily,
beginning early in the morning, and may last for a few minutes
only, or persist for several hours; and they may occur at any hour
of the day, recurring several times daily. Sometimes several days
intervene between the attacks, which may last twenty-four hours,
or even longer. They are generally accompanied by severe frontal
headache, and in some instances an itching of a point inside the
nose denotes the imminence of an attack. This affection lasts for years.

In catarrh, and in this unnamed affection, the patient should either sniff up finely-powdered camphor, or inhale by the nose some of the alcoholic solution poured on a handkerchief, or into boiling water; but when boiling water is used, it is needful to protect the eyes from the camphor vapour, to obviate smarting and inflammation. At the same time he should take four to six drops of the alcoholic solution of camphor every fifteen minutes for the first hour, and hourly afterwards.

For drowsiness or headache occurring at the change of life, or from perverted action of the uterus, Dr. Tilt orders eau de Cologne saturated with camphor to be rubbed into the head.

Camphor excites in the mouth and stomach a sensation of coldness, followed soon by a sensation of warmth. Large doses excite epigastric pain, nausea, and vomiting. After death from poisonous doses, the stomach and intestines are reddened, and sometimes even ulcerated, the amount of mischief depending on the mode of taking the camphor, which, if swallowed in solution, quickly passes into the blood, the stomach being but little affected; but if swallowed in the solid form, owing to its high melting point, it remains long enough in the stomach to excite severe inflammation, and most of it escapes undissolved with the motions.

Few, if any, remedies are comparable to camphor in summer diarrhoea and cholera. Its benign influence in cholera is most conspicuous; for it generally checks the vomiting and diarrhoea immediately, prevents cramp, and restores warmth to the extremities. It must be given at the very commencement, and repeated frequently, otherwise it is useless. Four to six drops of strong spirits of camphor must be given every ten minutes till the symptoms abate, and hourly afterwards. It is a good plan to mix it with a little brandy, but it acts admirably alone.

Dr. George Bird employs spirits of camphor with good results in the acute diarrhoea of infants. He administers it in milk. Camphor generally restrains the diarrhoea excited by the effluvia of drains. Some persons, especially women, on exposure to cold, suffer from diarrhoea, accompanied with severe cutting pains. Standing on cold objects is especially liable to excite this diarrhoea. The pain may be very severe, continuing till the bowels have acted three or four times. Camphor generally relieves the pain, and restrains this diarrhoea.

Camphor readily passes into the blood, and manifests itself there,
and in most of the organs of the body, by its odour. Its influence on the blood is unknown. Its influence on the heart appears to be capricious. Large doses often slacken, sometimes quicken, and generally weaken, the pulse. Moderate doses, it is said, quicken and strengthen the pulse. Large doses sometimes disturb the brain, causing at first increased activity, with a rapid flow of pleasant ideas; but subsequently, and in some cases even at first, camphor produces great faintness, giddiness, noises in the ears, much delirium, and even convulsions, with coldness of the surface, shrunk features, and clamminess of the skin. Large doses often induce some smarting and pain of the urinary organs, with urgent desire to pass water.

It is mainly given in adynamic fevers, and, according to Graves and others, it is a very valuable remedy. It is said to strengthen, while reducing the frequency of the pulse, to moisten the skin, and check the delirium, especially when of a low and muttering character. To control delirium, it must be given to the extent of twenty grains, or more, every two or three hours, and its effects must be watched. Some practical authorities, however, deny the efficacy of camphor in fever delirium.

It has also been recommended in melancholia, in spasmodic affections, in nervous palpitation, and in hiccup.

It is reputed, on high authority, that considerable doses of camphor will control inordinate sexual desire. It is said to relieve strangury. Drachm doses of the spirit will relieve choree.

Camphor is eliminated by the breath, probably with the perspiration, and a small proportion with the urine. The irritation it produces in the urinary mucous membrane, and the small amount of camphor separated by the urine, has led to the assumption that some of the products of its decomposition in the body escape with that secretion, and, in their passage, irritate the mucous membrane; but on this point nothing definite is known, and at present there is no proof that camphor is consumed in the body.

TURPENTINE.

TURPENTINE applied to the skin excites a sensation of warmth with some redness; and, if the application is sustained, blistering takes place. It is in common use as a rubefacient and counter-irritant. Over a flannel wrung out in hot water, some turpentine or turpen-
TURPENTINE.

Tincture liniment may be sprinkled, and applied till it produces redness, tingling, and smarting. It is well to bear in mind that, as the smarting arising from the application of a turpentine stupe goes on augmenting for some time after its removal, it should be kept on no longer than just sufficient to excite a moderate degree of pain. An equal quantity of yolk of egg and turpentine is a useful form, to be dabbed on the skin with a piece of sponge. Turpentine stupes may be employed as a rubefacient for the same purposes as a mustard poultice.

Turpentine in the stomach excites a sensation of warmth, and large doses sometimes produce nausea and vomiting. It generally, but not invariably, acts as a purgative; and if, after large doses, purgation does not take place, serious symptoms sometimes arise from the absorption of the turpentine, and from its action on the organs at a distance from the intestinal canal. Thus, when administered in considerable doses, it is desirable to give, either simultaneously or soon afterwards, some more active and certain purgative, as castor-oil. Even after large doses the stomach and intestines of animals have been found free from inflammation.

This drug is successful as a tape-worm poison, but it has now given place to milder and more efficient remedies.

Turpentine injected into the rectum will destroy thread-worms, but many other substances are just as effective vermicides.

In staying hæmorrhage from the stomach, arising from chronic ulcer, or other causes, from the intestines in typhoid, etc., few remedies are more successful than turpentine given in small doses of five to ten drops, very frequently repeated. Later on we shall speak of the use of turpentine in controlling hæmorrhages from other organs.

Turpentine proves useful in certain states of typhoid fever, probably from its direct action on the intestinal mucous coat. Thus, Dr. Wood has drawn attention to its value in ten-minim doses, repeated every two hours, when the tongue parts with its fur in flakes, and instead of becoming, and remaining moist, looks dry and glazed, a condition usually observed towards the end of the disease, and accompanied always by an increase of the tympanites, and an aggravation of the other symptoms. In "the course of twenty-four, or at most forty-eight hours, some amelioration of the symptoms may be observed. The tongue becomes gradually moister, and covers itself with a whitish fur; the tympanitic distension ceases to augment, and after a time diminishes; the pulse becomes less frequent, and the skin less dry and harsh, and the patient enters slowly but regularly into convalescence, often with-
out any other remedy. As the case improves, the quantity of the oil should be diminished, but care should be taken not to omit it too hastily." Dr. Wood further says, "I will repeat, that oil of turpentine may be used, with great hope of benefit, in any case of enteric fever in the advanced stage, with a dry tongue."

Dr. Graves employed it in the same disease, in drachm doses every six hours in extreme tympanites, and he pointed out that the remedy is of no use if, before and during the production of flatulent distension there is diarrhoea, when acetate of lead is invaluable. With the tympanites, there is very often much prostration, with muscular trembling, and picking of the bed-clothes, and low muttering delirium—symptoms all, according to Graves, benefited in many cases by the use of turpentine.

Turpentine passes readily into the blood, and may be detected in the breath and sweat, and in an altered state in the urine, giving to this excretion an odour of violets, or of mignonette.

In large quantities, and especially if it fail to purge, and thus escape promptly by the rectum, turpentine produces in most persons some excitement, with giddiness, confusion of sight, quickened pulse, and, in extreme cases, insensibility, with dilated pupils. In many instances it produces bloody and scanty urine; or, indeed, it may suppress this secretion; occasionally it excites pain along the urinary tract, with frequent and painful micturition.

As we have said, it is very efficacious in bleeding from the various organs of the body, as the lungs, nose, uterus, kidneys, and bladder. A drachm should be given every three hours; a dose which sometimes causes sickness, diarrhoea, and even blood in the urine; but on discontinuing the drug, the blood soon disappears. Given to check bleeding from the kidneys, as in Bright's disease, it must be administered in very small quantities. It is also reputed to possess the power of checking bleeding in the hæmorrhagic diathesis, and to be useful in purpura.

Puerperal fever has been treated with large doses of this medicine, but authorities are divided as to its usefulness.

According to some authorities, it has been employed with great success in sciatica, in half-ounce doses, given for four or eight successive nights, when, if it fail to give relief, it may be pronounced useless in that particular case.

Dr. George Bird finds that in 20-drop doses, thrice daily, it is markedly serviceable in lumbago.

Spirits of turpentine, in half-drachm doses, several times daily, is very useful in non-specific choroiditis.
It is asserted that turpentine is an antidote to phosphorus, and Dr. Letheby says that at a lucifer-match factory at Stafford, the workmen prevent necrosis of the jaw by wearing near their breast a small open vessel containing turpentine.

The experiments of Personne on fifteen dogs support this view. To five dogs he gave phosphorus alone, and they all died. To five others, an hour or two after the phosphorus, he gave turpentine, and only one died. To five others he gave turpentine immediately after the phosphorus, and only one dog died. These experiments, however, are not so satisfactory as they easily might have been, as he does not appear to have given an identical dose of phosphorus in all his experiments. Personne thinks that phosphorus produces asphyxia by becoming oxidized, and abstracting oxygen from the blood. Pyrogallic acid absorbs oxygen from the blood, and Personne asserts that it produces the same symptoms and post-mortem appearances in dogs as phosphorus. He thinks that turpentine prevents the oxidation of phosphorus, so that it is eliminated unchanged without inflicting injury on the body.

Köhler confirms Personne's statement of the antidotal power of turpentine, but controverts his explanation of its action. He gave to twenty-five animals from 0.006 to 0.09 grms. of phosphorus, and 4.5 grms. of turpentine, and on killing the animals, the tissues showed no fatty degeneration, or other signs of phosphorus poisoning. Köhler says that a compound of phosphorus and turpentine is formed, which is eliminated through the kidneys, giving to the urine a smell like opodeldoc, and not of violets.

Some experimenters deny the antidotal virtue of turpentine. These contradictory statements are now reconciled by the observations of Jonas, who finds that pure turpentine has no effect on phosphorus, whilst French turpentine forms a spermaceti crystalline mass—turpentine-phosphoric acid, which is said to be harmless and to be eliminated by the kidneys unchanged. Experiments with the different kinds of turpentine as antidotes to phosphorus confirm these conclusions.

Turpentine is reputed to be diuretic, and is sometimes administered in small doses with this intent in Bright's disease.

It has been used in chronic cystitis, in gonorrhoea, and in gleet. It has been given, with apparent advantage, in biliary colic.
Group containing:—

NUTMEGS. OIL OF PEPPERMINT.
CLOVES. OIL OF SPEARMINT.
CANELLA BARK. OIL OF RUE.
CINNAMON BARK. OIL OF LEMONS.
CAJEPUT OIL. CUBEBS.
OIL OF ANISE. BUCHU LEAVES.
FENNEL FRUIT. BALSAM OF TOLU.
CARAWAY FRUIT. BALSAM OF PERU.
CORIANDER FRUIT. COPAIBA.
DILL FRUIT. MEZEREON.
ELDER FLOWERS. SASSAFRAS.
LAVENDER OIL. STORAX.
OIL OF ROSEMARY. JUNIPER.
OIL OF SANDAL WOOD. BENZOIN, Etc.

This group consists of volatile oils, or substances containing volatile oils. Some of the members containing a bitter constituent are tonics.

The ethereal oils penetrate the cuticle, and excite slight inflammation. Some are employed as rubefacients to rheumatic and gouty joints, to the face in toothache, etc. Dr. Alfred Wright, of Finchley, says that in China he learned from the natives the practice of painting oil of peppermint on the face in facial neuralgia. He uses it also for gout, the relief it gives in both instances being almost instantaneous.

There is a German quack anti-neuralgic liniment which consists chiefly of oil of peppermint. Balsam of Peru is a useful adjunct to ointments for broken chilblains. Dr. Robertson, of Cheltenham, strongly recommends the local application of cajeput oil for chilblains, stating that sometimes one application will effect a cure. Dr. Copland, in his Dictionary, states that in the form of ointment, for which he gives a formula, it stimulates the growth of the hair.

All the essential oils destroy lice, whether situated on the head, trunk, or pubis; but in "louse disease" oil of rosemary and powdered pyrethrum are generally preferred.

Many excellent authorities extol storax and Peruvian balsam in itch. The following preparations are very useful:—Storax, an ounce; olive oil, two drachms. Or, rectified spirit, two drachms; storax, an ounce; olive oil a drachm; the first two ingredients are
mixed, and the olive oil added to them. The whole body, except the head, is carefully rubbed with either compound. One application, it is said, kills the insects; but, to avoid the risk of failure, it is better to repeat the application in twelve or twenty-four hours. These applications cause no irritation of the skin, and they possess the additional advantage of an agreeable odour. Although not necessary to the success of this treatment, yet for the sake of cleanliness, a warm bath should be given before and after the inunctions.

Dr. McCall Anderson praises storax highly, asserting that it is as efficacious as sulphur, while unlike sulphur, instead of irritating it soothes the skin.

Compound tincture of benzoin painted on the skin, or mixed with water, sometimes allays itching from urticaria, eczema, etc. Benzoinic acid dissolved in spirits of eau de Cologne is also very useful in urticaria; a drachm added to boiling water, and used as an inhalation night and morning, is often useful in bronchitis and even in chronic phthisis—easing cough and lessening expectoration.

Terebine is a useful inhaled; ten minims should be used in boiling water, or dropped on a handkerchief and placed near or over the mouth.

The members of this group have a warm, and many of them an agreeable taste. Oil of peppermint, orange-flower water, oil of cinnamon, oil of lemons, are used to conceal the flavour of disagreeable medicines.

These oils excite a sensation of warmth in the stomach; some of them being used to increase appetite and digestion. In large doses they excite slight inflammation of the stomach and intestines. Many of them, as oil of cloves, oil of cinnamon, oil of anise, oil of fennel, oil of coriander, oil of caraway, oil of peppermint, are employed to prevent the gripping pains of purgative medicines.

Some, as cloves and cinnamon, are useful in diarrhoea as adjuncts to astringents. Their stimulant action on the muscular coat of the stomach and intestines removes colic and expels wind; oil of cajeput especially, and oil of cloves, are generally preferred in flatulence. Spirits of horseradish, in half-drachm to drachm doses, is highly approved in flatulence. Cajeput oil is said to relieve the pain of dysmenorrhoea.

These oils probably pass readily into the blood, and for the most part act like turpentine. Many of them are employed as antispasmodics, but they are inferior in this respect to chloroform and ether. Whether they undergo any changes in the blood is at present unknown.
Balsam of Tolu, and balsam of Peru, and copaiba, are given in chronic bronchitis with a copious secretion of pus.

Mezereon and sassafras are reputed to be useful in syphilis and chronic rheumatism.

Lavender, rosemary, rue, cinnamon, and some other members of this group, are given as stimulants to nervous and hysterical persons affected with depression of spirits and other symptoms; but they soon lose their effect, unless given in increased doses. Drachm doses of oil of cinnamon, given several times daily, is strongly recommended in menorrhagia and flooding.

Senator finds benzoic acid, 150 to 180 grains daily, useful in acute rheumatism, though inferior to salicylic acid.

These oils, and the resins derived from them, escape from the body in part with the breath and perspiration, but chiefly with the urine, and in their passage along the urinary tract they stimulate or irritate its mucous membrane. Copaiba sometimes causes bloody urine with strangury and pain in the bladder.

Copaiba, cubebs, and especially buchu, are commonly used in chronic inflammation of the bladder and urethra.

Half drachm or drachm doses of tincture of cubebs in half a tumbler of linseed tea thrice daily are very useful in coughs due to chronic catarrh, or those following influenza, or a simple acute catarrh, or occurring in emphysematous patients. It often cures the cough "like a charm."

Copaiba and cubebs are used in gonorrhoea and gleet, and cubebs often succeeds when copaiba fails. Copaiba benefits, it is said, the chronic, but aggravates the acute, stages of gonorrhoea; while cubebs, which must be given in large doses, is considered only useful at the commencement of attack. Copaiba, however, often promptly relieves an acute attack. Emulsified copaiba, has been used, especially for women, as an injection for gonorrhoea.

Balsam of copaiba, in ten to fifteen minim doses, sometimes acts as a powerful diuretic, and Dr. Wilks, who has used it with much success, finds that the diuretic properties reside in the resin. Copaiba has been found very useful in some cases of ascites, entirely removing the abdominal dropsy, and in Bright's disease. I have in many cases used the resin in ten to fifteen grain doses often with great effect; I have seen it answer in cardiac dropsy and in ascites, where the kidneys where healthy; also in ascites where there was fatty degeneration of the kidneys; and in Bright's disease, where the kidneys seemed the seat of fibroid change and fatty degeneration, being much contracted, granular, red,
firm, the cortex much contracted, with numerous small opaque buff-coloured spots. I have also seen it remove, speedily and entirely, extensive dropsy, due probably to pale fatty kidney. I have also known the resin benefit the chronic diseases left by an attack of acute Bright’s disease, and prevail over a case of cardiac dropsy, with a small amount of albumen in the urine, and with signs of general decay. Yet in cases which appear exactly similar I have known it to fail entirely, leading me to think that success or failure depends less on the nature of the disease than on some individual peculiarity. In some cases copaiba causes bloody urine, in others I have seen a large amount of blood in the urine quickly disappear under the influence of copaiba resin.

Copaiba occasionally produces a rash, sometimes like urticaria, sometimes very closely simulating the papules of measles, but there is no fever with copaiba-rash. If the medicine is continued, the papules last many days. The rash does not begin on the face, then spreading downwards over the body, but is patchy, and shows a preference for the neighbourhood of joints. In doubtful cases, where patients deny that they have taken copaiba, it may be detected in the urine by the smell, and with still greater certainty by chemical reagents; for, if copaiba is present, nitric acid makes the urine turbid, which heat dispels. Copaiba may also be extracted from the urine by shaking it up with ether.

Oil of sandal-wood, in doses of fifteen minims three times a day, is useful in acute and chronic gonorrhoea.

Probably most of these ethereal oils escape from the body with the urine; but, from Weikart’s experiments, quoted by Parkes, this does not appear to be the case with copaiba, the volatile oil being destroyed in the body, and only its resinous acid appearing in the urine.

Many persons highly esteem juniper as a diuretic in scarlatinal dropsy.

Many of these oils may be prescribed in capsules.

VALERIAN. VALERIANATE OF ZINC. VALERIANATE OF QUINIA. VALERIANATE OF AMMONIA.

Like turpentine and the volatile oils, valerian produces a sensation of warmth in the stomach, a quickened pulse, some mental excitement, and, after a large dose, even delirium.
Neligan considers valerian a powerful anthelmintic, and especially recommends it when the worms excite convulsions.

Valerianate of zinc is very useful for those numerous, distressing, and changeable symptoms included under hysteria, generally occurring in women at the menopause. Thus it sometimes will remove "flushings of the face," "hot and cold perspirations," restlessness, nervousness, depression of spirits, sensation of suffocation in the throat, throbbing of the temples, fluttering at the heart, heat and weight on the top of the head. In many instances these symptoms depend on uterine derangements, piles, dyspepsia, or constipation; but, after the removal of all discoverable disease, or in cases where no cause for the symptoms can be detected, valerianate of zinc is often very beneficial. Oxide of zinc does good, but is certainly inferior to the valerianate. In many instances, however, valerianate of zinc fails in the very cases we should expect it to be useful, our knowledge of the conditions indicating the employment of these medicines being not at present sufficiently precise to enable us to predict in what cases they will be likely to succeed. It should be given in 3 to 5 grain doses in a silvered or coated pill.

Some prefer valerian or its tincture, and ascribe most of its efficacy to the volatile oil, others prefer the salts of valerianic acid.

Valerian has been used with occasional advantage in epilepsy, but whether in true epilepsy, or in merely the hysterical form of the disease, does not appear.

Valerianate of zinc, or valerianate of ammonia, in twenty-grain doses, sometimes relieves neuralgia of the face or head. It is recommended in megrim; doses of from two to five grains thrice daily. It is said that valerian preparations will control the paroxysms of whooping-cough, and the involuntary movements of chorea. Large and increasing doses of valerian are stated to be useful in diabetes insipidus.

SAVINE.

SAVINE is an irritant, and excites inflammation in the tissues. It is sometimes used to keep blistered surfaces open and discharging.

It is employed both in menorrhagia and amenorrhoea due to a want of tone in the uterus. Ignorant people use it to produce abortion.
ASSAFOETIDA. AMMONIACUM. GALBANUM.

These medicines act very similarly on the body; but assafoetida, probably because it contains most volatile oil, is the most powerful.

Assafoetida has a warm taste; it stimulates the stomach and intestines, and expels wind, and in large doses it often excites nausea and vomiting. It increases the secretion from the mucous membrane of the intestines, and hence acts as a mild purgative. Probably the active principle of these drugs does not pass quickly into the blood; for it makes the eructations offensive for twenty-four hours, or longer.

They generally quicken, but sometimes slacken, the pulse.

A full dose of assafoetida induces general exhilaration, and sometimes “various nervous or hysterical phenomena, and a general sense of malaise” (Jorg). It often produces headache and giddiness.

It is said to increase the bronchial secretions and perspiration. It does not similarly affect all persons, since Pidoux took enormous doses without experiencing any inconvenience, except from the offensive smell of his faeces.

Assafoetida is very useful in hysteria, in many cases removing hysterical headache and peculiar sensations in the head. It is also useful in hysterical flatulence.

Assafoetida is useful in the flatulence of young children, unconnected with constipation or diarrhoea. A teaspoonful every hour of a mixture containing a drachm of the tincture to half a pint of water is readily taken by children, and is strong enough to speedily relieve distention. When the flatulence is due to constipation or diarrhoea, assafoetida does very little good.

Assafoetida has been recommended in asthma. All members of this group are useful in chronic bronchitis, with much wheezing and abundant discharge, symptoms commonly met with in elderly people, but in cases like these, ammoniacum is generally preferred to assafoetida.

CANTHARIDES. (See Counter-Irrigation).

Preparations of cantharides, taken internally, produce an unpleasant burning taste, and, if in a large quantity, inflammation and vesication of the mouth.
CANTHARIDES.

The effect of cantharides in the stomach is in all respects similar to that in the mouth. Even small doses cause smarting in the oesophagus, pharynx, and stomach; but a larger quantity produces inflammation of these parts, and of the intestines, with vomiting, and diarrhoea of bloody and slimy stools, much pain and difficulty in swallowing, and often general peritonitis with which the system sympathizes, as indicated by high temperature and quick pulse.

The active principle of cantharides passes from the stomach and intestines into the blood. Its passage, it is true, has not been chemically demonstrated, but the symptoms following the administration of this drug renders this conclusion certain; for, after a large dose, all the indications of acute inflammation of the kidneys set in, with much irritation or even inflammation of the urinary and generative organs, and after a poisonous dose, headache, loss of sensibility, convulsions, and death.

The changes cantharadine produces in the blood are at present unknown.

The tincture or powder used to be given in cholera and epilepsy, but this treatment has now fallen into complete disuse.

Little is known of the separation of the cantharidine from the body. It is conjectured that, being volatile, some may pass off by the lungs; but, if so, it produces, apparently, in its transit through the lungs, no changes in the mucous membrane of the air-passages. Owing to the same property, some of the cantharadine probably passes off by the skin; and the internal use of preparations of Spanish-fly are recommended by several eminent French dermatologists in psoriasis, eczema, lichen, and prurigo. The chief portion of the active principles of cantharides escapes by the kidneys, and, as we have said, acts as a strong irritant to the urinary and sexual organs. It may, like oil of mustard, turpentine, or copaiba, produce hyperaemia of the kidneys, with bloody urine, which may partially set into a jelly, from the fibrine it contains. This coagulation is said to be characteristic of congestion produced by these and allied substances. Camphor, in two to five grains, is said to remove promptly this hyperaemia.

The preparations of cantharides have been recommended by high authority in certain forms of Bright's disease, but in this disease it has for years past been regarded as a most dangerous drug.

The discrepancy respecting the effects of cantharides arises, perhaps, from the difference in the dose administered by various
ASSAFŒTIDA. AMMONIACUM. GALBANUM.

These medicines act very similarly on the body; but assafœtida, probably because it contains most volatile oil, is the most powerful. Assafœtida has a warm taste; it stimulates the stomach and intestines, and expels wind, and in large doses it often excites nausea and vomiting. It increases the secretion from the mucous membrane of the intestines, and hence acts as a mild purgative. Probably the active principle of these drugs does not pass quickly into the blood; for it makes the eructations offensive for twenty-four hours, or longer.

They generally quicken, but sometimes slacken, the pulse.

A full dose of assafœtida induces general exhilaration, and sometimes "various nervous or hysterical phenomena, and a general sense of malaise" (Jorg). It often produces headache and giddiness.

It is said to increase the bronchial secretions and perspiration. It does not similarly affect all persons, since Pidoux took enormous doses without experiencing any inconvenience, except from the offensive smell of his faeces.

Assafœtida is very useful in hysteria, in many cases removing hysterical headache and peculiar sensations in the head. It is also useful in hysterical flatulence.

Assafœtida is useful in the flatulence of young children, unconnected with constipation or diarrhoea. A teaspoonful every hour of a mixture containing a drachm of the tincture to half a pint of water is readily taken by children, and is strong enough to speedily relieve distention. When the flatulence is due to constipation or diarrhoea, assafœtida does very little good.

Assafœtida has been recommended in asthma. All members of this group are useful in chronic bronchitis, with much wheezing and abundant discharge, symptoms commonly met with in elderly people, but in cases like these, ammoniacum is generally preferred to assafœtida.

CANTHARIDES. (See Counter-Irritation).

Preparations of cantharides, taken internally, produce an unpleasant burning taste, and, if in a large quantity, inflammation and vesication of the mouth.
CANTHARIDES.

The effect of cantharides in the stomach is in all respects similar to that in the mouth. Even small doses cause smarting in the oesophagus, pharynx, and stomach; but a larger quantity produces inflammation of these parts, and of the intestines, with vomiting, and diarrhoea of bloody and slimy stools, much pain and difficulty in swallowing; and often general peritonitis with which the system sympathizes, as indicated by high temperature and quick pulse.

The active principle of cantharides passes from the stomach and intestines into the blood. Its passage, it is true, has not been chemically demonstrated, but the symptoms following the administration of this drug renders this conclusion certain; for, after a large dose, all the indications of acute inflammation of the kidneys set in, with much irritation or even inflammation of the urinary and generative organs, and after a poisonous dose, headache, loss of sensibility, convulsions, and death.

The changes cantharadine produces in the blood are at present unknown.

The tincture or powder used to be given in cholera and epilepsy, but this treatment has now fallen into complete disuse.

Little is known of the separation of the cantharidine from the body. It is conjectured that, being volatile, some may pass off by the lungs; but, if so, it produces, apparently, in its transit through the lungs, no changes in the mucous membrane of the air-passages. Owing to the same property, some of the cantharadine probably passes off by the skin; and the internal use of preparations of Spanish-fly are recommended by several eminent French dermatologists in psoriasis, eczema, lichen, and prurigo. The chief portion of the active principles of cantharides escapes by the kidneys, and, as we have said, acts as a strong irritant to the urinary and sexual organs. It may, like oil of mustard, turpentine, or copaiba, produce hyperaemia of the kidneys, with bloody urine, which may partially set into a jelly, from the fibrine it contains. This coagulation is said to be characteristic of congestion produced by these and allied substances. Camphor, in two to five grains, is said to remove promptly this hyperaemia.

The preparations of cantharides have been recommended by high authority in certain forms of Bright's disease, but in this disease it has for years past been regarded as a most dangerous drug.

The discrepancy respecting the effects of cantharides arises, perhaps, from the difference in the dose administered by various
observers. I am convinced of its usefulness in acute Bright's disease, when the active inflammation and fever have subsided, as they invariably do about the fifth to the eighth day. A chronic state often follows the subsidence of the more acute stage, and the urine continues small in quantity, contains albumen, and perhaps blood. If, just at this time, that is, on the immediate subsidence of the acute inflammation, a one to three-minim dose of tincture of cantharides is given every three hours, the blood will almost always quickly disappear, while the albumen decreases more gradually, and the urine becomes more abundant. At a crisis like this, it is true that a like amendment not unfrequently takes place without any treatment; but the influence of the cantharides can often be put to a conclusive test. To a patient in the condition described above, passing urine containing albumen and much blood, give the drug in the way pointed out, and he will begin to improve; now withhold the medicine, and both blood and albumen return in their original quantity, and both may be augmented and lessened again and again by intermitting and reverting to the cantharides; but its restraining influence over the blood is speedier and more decisive than over the albumen of the urine. Sometimes it checks the greater part of the blood, but a small quantity remains for some weeks. This is especially the case when the patient gets up, for even a small amount of exercise often exerts remarkable influence on the renal bleeding. Merely sitting up in bed in some cases notably increases the bleeding.

Cantharides, in a similar dose, has been recommended even in the acute stage of Bright's disease; and when the kidney, having undergone fatty degeneration, secretes very little urine.

After its separation by the kidneys, cantharides acts as an irritant to the urinary tract, and may be employed in cystitis, gonorrhoea, and gleet. A drop of the tincture, although five are sometimes required, given three or four times a day, is particularly useful in cases where there is frequent desire to make water, accompanied by great pain in the region of the prostate gland, and along the urethra, while at other times severe twinges of pain are felt in the same part, the urine being healthy, or otherwise containing an excess of mucus, or even a small amount of pus.

Women, especially middle-aged women, often suffer from frequent desire to pass water, or inability to hold it long, sometimes only in the day on moving about. Micturition causes no pain, neither is there any straining, and the urine is natural. Other women cannot help passing a little urine on straining, or sneezing,
MUSTARD.

or coughing. Sometimes women are troubled with both sets of symptoms, which appear due to weakness of the sphincter of the bladder. One or two drops of tincture of cantharides, three or four times a day, will in many cases afford great relief, and sometimes cure with astonishing rapidity, even when the symptoms have lasted months or years.

Tincture of cantharides is useful in the incontinence of urine of the aged, even when due to paralysis, and sometimes in that of children. With children, however, it is inferior to belladonna. Unfortunately, each remedy fails in a not inconsiderable number of cases.

A drop of the tincture, three times a day, in the majority of cases, will abate or remove chordee.

Cantharides affects the generative organs. Large quantities of the drug congest and inflame these parts, and often produce erection of the penis, effects generally attributed to the sympathy existing between the genitary and urinary tracts. It certainly excites the sexual appetite, and has been often given criminally for this purpose. Full doses of cantharides, twenty to thirty drops of the tincture, or half a grain of the powder with full doses of sesquichloride of iron and phosphoric acid, or nux vomica, three times daily, is a combination effective in some cases of impotence; in the impotence of old age, and in that resulting from self-abuse or sexual excess, it has proved successful, and the patient has begotten children. Cantharides and iron combined are useful in some cases of seminal emissions.

Cantharides has been sometimes successfully employed to produce abortion; but the danger is so great as to deter any medical man from using this drug.

MUSTARD.

MUSTARD is in common household use as a poultice, a counterirritant, and an excitant. Much that has been said of blisters applies to mustard poultices. (See Counter-Irritation). As has been elsewhere stated, cantharides need seldom be applied to produce much vesication; and with regard to mustard, vesication should be carefully avoided, as the sore so produced is intractable, heals slowly, and pains greatly. Although mustard may be used in all cases where we should employ cantharides, short of vesicat
tion, still there are differences in their action. A mustard poultice is more painful than a blister, producing a severe burning, soon becoming unendurable, and if not speedily removed, creating troublesome vesication. A mustard poultice can rarely be borne longer than twenty minutes or half an hour; if the skin is delicate, as in children and many women, it cannot be endured for so long. Owing to the pain produced, and to its prompter action, a mustard poultice is more effective than a blister when applied to rouse a drowsy and comatose patient from poisoning by opium or alcohol, or in certain conditions occurring in the course of fevers. (See Counter-Irritation).

Mustard leaves may be used in place of a mustard poultice. As they often produce rather severe pain, one, two, or three layers of damped muslin should be placed between the leaf and the skin.

When a mustard poultice is employed to affect deep-seated, diseased organs, as in bronchitis, pleurisy, or pneumonia, its action should be sustained for a long time, over a considerable extent; the larger the tract of skin attacked, the greater is its influence on the organs beneath. Small mustard poulitics are less useful, except to remove a localized pain. The poultice, diluted with bread or oatmeal, should be of a size sufficient to cover the front or back of the chest, or both, and should be continued for five, six, or more hours. There is a prevalent idea, perhaps a true one, that the action of cantharides is more searching, and affects the deeper parts more thoroughly.

In bronchitis the whole chest of a child should be enveloped in a jacket-poultice, which may be retained in its place by the following contrivance:—The poultice is spread on a piece of linen, sufficiently large for the purpose, to which tapes are tacked; the tapes may be tied over each shoulder, and at three places in front of the chest. The poultice must be made with tepid water; boiling water evaporates the active principle, vinegar destroys it, and alcohol prevents its formation. On removing the poultice, the skin should be sponged with warm water, or, if the smarting is severe, with ether, and then the application of a layer of cotton-wool, although for the first few minutes it aggravates the pain, soon subdues it altogether.

A general mustard-bath, when appropriately used, often does great good. Although almost exclusively used for children, it is just as serviceable for adults. It may be employed on the recession of the rash of any of the eruptive fevers, to bring it back to the skin. Again, in severe general bronchitis of children, this form
of bath is of great service as a counter-irritant. A table-spoonful of mustard should be added to a bath sufficiently large for the child, who should be held in it by the nurse till her arms tingle and smart.

In cases of arrested catamenia, a mustard sitz-bath may be used to redden and irritate the skin of the buttocks and thighs, a few days before, and during the time the missing discharge is due. A course of mustard-baths assists considerably the restoration of the uterine functions.

Added to a hot foot-bath, mustard is used to relieve headache, congestion of the head, and inflammations of the internal organs. A mustard poultice, or the more convenient mustard leaf, covered with one, two, or three folds of muslin, according to the susceptibility of the patient to the action of the poultice, applied to the nape of the neck, is often serviceable in various forms of headache.

It excites in the stomach a sensation of warmth, and slight pain, which may be mistaken for hunger, giving rise to the notion that mustard sharpens the appetite, and promotes digestion; but it has been proved that mustard does not increase the secretion of gastric juice.

It is strange that a substance which acts so powerfully on the skin should affect so slightly the mucous membrane of the stomach; considerable quantities may be swallowed without other effect than the production of nausea and sickness. The mild action of mustard on the mucous membrane cannot be explained by its expulsion by vomiting; for, even when retained, it excites only a little catarrh of the stomach. Mustard is used as an emetic when no other is at hand, and when no time is to be lost. Cases of obstinate and even dangerous hiccup are reported, which have been immediately cured by drinking an infusion made with a tea-spoonful of mustard steeped in four ounces of boiling water for twenty minutes, and then strained.

Mustard appears to have very little action on the intestines, beyond making the motions moister.

With many persons even a very small quantity of mustard, or pepper, or capsicum, greatly increases their piles, and excites severe itching of the anus. Piles are, indeed, a delicate barometer as it were, and patients find that they immediately tell them when they have transgressed, even in a slight degree, their restrictive rules. Thus a little excess of food, too rich in fat, a glass of champagne, etc., will, inevitably, increase their piles next morning, which become swollen, painful, and protrude.
Some of the active principle passes into the blood, but it is unknown what influence sinapine exerts on the organs to which it is conveyed. It is reputed to be diuretic, but this is doubtful; moreover, its advocates fail to discriminate the cases in which it is supposed to be beneficial.

It is said to be useful in whooping-cough.

CAPSICUM.

Capsicum irritates and inflames the skin, producing redness, a sensation of warmth or burning, and even vesication, but its preparations are rarely employed as rubefacients. The tincture is sometimes lightly painted over unbroken chilblains, but it is inferior to the ointment, or the tincture of iodine. The following capsicum preparation of Dr. Rheims is highly lauded for chilblains:

"Make a strong tincture of capsicum pods by steeping them for several days in a warm place, in twice their weight of rectified spirits of wine. Dissolve gum arabic in water to about the consistency of treacle. Add to this an equal quantity of the tincture, stirring it together with a small brush, or a large camel’s hair pencil until they are well incorporated. The mixture will be cloudy and opaque. Take sheets of silk or tissue-paper, give them with the brush a coat of the mixture; let them dry, and then give another. Let that dry, and if the surface is shining, there is enough of the peppered gum; if not, give a third coat. This paper, applied in the same way as court-plaster to chilblains that are not broken, and burns that are not blistered, speedily relieves the itching and the pain. It acts like a charm, and effects a rapid cure. The same with discoloured bruises. It likewise allays rheumatic pains in the joints."

My friend, Mr. Henry Buck, of Newport, Essex, employs capsicum in recent lumbago, neuralgia, toothache, rheumatic pains, and acute torticollis. He infuses a large handful of crushed capsicum pods in a pint of hot or cold water for thirty-six hours; he applies a piece of lint soaked in this liquid to the affected part, covering it with thin gutta-percha. It never vesicates, and, indeed, a stronger preparation may be used. The effects, he says, are often very striking; for instance, he cures acute torticollis in ten minutes. A
quack doctor in the West of England, who told his secret to Mr. Buck, had long and successfully employed this preparation.

Preparations of capsicum have a burning, tingling taste, and act on the mucous membrane as on the skin. The tincture, as a gargle, in the proportion of a drachm to half a pint of water, is useful in some sore throats, and may be applied under the same conditions which indicate the use of nitrate of silver. Thus, in the very early stage of tonsillitis or pharyngitis, either of these substances, which acts as an irritant, will check the inflammation; but when the deep parts become involved, and the tissues much swollen, irritants of any kind do great harm. In malignant sore throat, capsicum gargles may be used with advantage to stimulate the tissues into a healthier condition, and here, again, its action is similar to that of nitrate of silver. In relaxed throat, when the mucous membrane is bathed with a grey mucus, or with pus, the same gargle may be employed, although it is probably not superior to the glycerine of tannic acid.

It acts as an irritant in the stomach, and, in large quantities, will produce gastro-enteritis. It is often used as a condiment to spur digestion, but whether it is effective in this respect is undetermined. The stomach becomes accustomed to capsicum, and at last, large quantities must be eaten to produce any effect.

I can endorse Dr. Lyon's strong recommendation of capsicum in dipsomania. Ten-minim doses of the tincture obviate the morning vomiting, remove the sinking at the pit of the stomach, the intense craving for stimulants, and promote appetite and digestion. It should be taken shortly before meals, or whenever there is depression and craving for alcohol. Capsicum also induces sleep, especially in the early stages of delirium tremens. Dr. Lyon sometimes gives twenty or even thirty grains made into a bolus with honey, and repeats the dose in three hours if the first fails to induce sleep. He says this quantity does not disturb the stomach.

Capsicum is often useful to dipsomaniacs, to enable them to overcome their pernicious habit. By removing the sinking at the pit of the stomach it often enables the drunkard to resist the drink-crave. A draught composed of ten minims of tincture of capsicum, ten grains of bromide of potassium, a drachm of spirits of ammonia, taken several times daily, is very serviceable; or the bromide of potassium may be omitted, and replaced with two minims of liquor arsenicalis, or by a few drops of tincture of nux vomica or tincture of orange-peel.

Capsicum is very useful in summer diarrhoeas, and in diarrhoeas
IPECACUANHA.

persisting after the expulsion of the exciting irritant. It is used in flatulence.

IPECACUANHA AND ITS PREPARATIONS.

When applied to the skin, ipecacuanha after some time produces a sensation of warmth, attended with redness, and the formation of papules; sometimes it even produces pustules, which on healing are not followed by pitting or scarring.

It has a disagreeable bitter taste, and excites the flow of saliva.

In some persons the minutest quantity produces peculiar effects on the membrane covering the eyes and lining the nose and respiratory tract. On smelling the drug, or even entering a room where it is kept, they are affected with swelling of the loose tissues around the eyes, with injection of the conjunctiva, repeated sneezing; abundant discharge from the nose, severe tensile frontal pain of the head, much oppression at the chest, with frequent cough, and the signs and symptoms of bronchitis. Ipecacuanha thus excites symptoms and appearances similar to those occurring in hay fever; that is, it excites a certain catarrhal inflammation in the mucous membranes. It is highly probable that ipecacuanha produces similar results in all persons, and that its action on individuals differs only in degree. Indeed, it is probable, as we shall see, that ipecacuanha affects all the mucous membranes.

Small doses produce in the stomach a slight sensation of uneasiness, with increase of mucus, whilst larger doses excite nausea and a still greater secretion of mucus from the stomach and from the bronchial tubes. Increase of mucus, indeed, occurs with all nauseating medicines, but probably ipecacuanha excites the secretion of mucus independently of its action as a nauseant and emetic. In animals, large doses are stated to produce inflammation of the mucous membranes of the stomach, intestines, and bronchial tubes.

Ipecacuanha is frequently used in catarrh of either the stomach or lungs. It is especially useful when the secretion from the lungs is abundant and tenacious.

In larger doses it produces both nausea and vomiting, and, like all other emetics, some general weakness, with sweating; and if there is any spasm, relaxation of it. Thus, in nauseating doses, the drug is both diaphoretic and antispasmodic.
IPECACUANHA.

It is a mild, tardy, but certain emetic. It produces repeated vomiting, unaccompanied by much nausea or prostration; in these respects, and also in its slighter action on the bowels, it differs from tartar-ematic. Its tardy action renders it an unfit emetic in cases of poisoning, when the sulphates of zinc or copper are to be preferred.

M. Chouppe, who has investigated the action of emetics, finds that after section of the pneumogastric nerve, the injection of apomorphia or tartar-ematic into a vein, excites vomiting as quickly and abundantly as when the nerve is uncut, whilst emetin does not excite vomiting. As regards emetin, Dr. Dyce Duckworth's experiments with emetin lead him to a similar conclusion. M. Chouppe concludes that apomorphia and tartar-emonic act directly on the vomiting-centre, and that emetin acts through the termination of the pneumogastric nerve.

On account of its slight irritant action on the mucous membrane of the stomach, and perhaps by virtue of the strong movements it produces in that organ when it excites vomiting, ipecacuanha is found useful in irritative dyspepsia, both of the acute and chronic kind. With some practical authorities, it is a favourite plan to give occasionally in such cases ipecacuanha in emetic doses. It is sometimes given to produce vomiting in the bronchitis of children, where the patients breathe with difficulty from the presence of mucus in the bronchial tubes. The movements of vomiting expel much mucus mechanically, and temporarily improve the breathing. From its mildness, ipecacuanha is fitted for such cases, and as an emetic for delicate persons.

The quantity required to excite vomiting varies greatly, the smallest quantity being sufficient for some, while with others, large doses are inoperative. As a rule, children require large doses, and babies only a few months old may need ten or twenty grains of the powder.

Few remedies are so efficacious as ipecacuanha in checking certain kinds of vomiting. In numerous instances, I have witnessed the efficacy of drop doses of the wine administered every hour or three times a day, according to the urgency of the case, in checking the following kinds of sickness:—

1. It will check the vomiting of pregnancy. This vomiting is not always of the same kind. In some cases it occurs only in the morning, and is excited by the first waking movements. This form will in most instances yield to ipecacuanha, taken in the way described; but should it fail, the administration of the medicine to
the patient on waking, and sometime before any movement is allowed, will generally give relief. In other instances, the vomiting occurs not only in the morning, but frequently during the day, recurring whenever food is taken, and may be so severe that the stomach rejects all nourishment, while during the intervals of meals, there may be constant nausea and great loathing of all kinds of food. Vomiting and nausea of this kind will, in most instances, be immediately arrested by ipecacuanha, when the appetite will return, and the stomach will bear almost any kind of food. Ipecacuanha may check the nausea and vomiting, with the exception of the early morning attack, but on taking a dose immediately on waking, this early sickness too will generally cease, though in some cases it defies treatment.

In other instances, the early morning vomiting may be absent, and the attack may occur only on taking food, increasing in severity as the day advances, and becoming most severe in the evening. Should ipecacuanha, as is sometimes the case, fail to check this form of sickness, nux vomica will generally give relief.

In some pregnancies, besides the sickness and nausea, there is much heartburn, and perhaps great flatulence, symptoms which in many cases yield quickly to ipecacuanha; but here again, should this remedy fail, nux vomica will generally afford relief, though the symptoms yield more surely to both remedies. It is singular that while ipecacuanha will remove, in pregnant patients, excessive flatulence, co-existing with sickness, yet if the flatulence occurs without sickness, this medicine is generally unavailing, and recourse must be had to nux vomica, charcoal, sulphurous acid, or sulpho-carbulate of soda; and of all these drugs, most reliance is to be placed on the sulpho-carbulate, in doses of five to fifteen grains dissolved in water, and administered immediately after a meal.

It has been stated that, in some instances, nux vomica succeeds when ipecacuanha fails; and this is notably the case when the tongue is coated with a creamy fur, when the stomach is out of order, and when there is much acidity and heartburn. In such cases, both nux vomica and ipecacuanha may be given simultaneously.

It must be confessed, however, that in certain instances, at present unexplained, ipecacuanha fails to afford the expected relief. In such cases vomiting is possibly kept up by a displacement of the uterus, or by a chronic inflammation of this organ, or of its cervix, or os, as was long since pointed out by Dr. Henry Bennett,
when of course the treatment should be directed to the removal of these conditions.

2. Some women, who, during pregnancy, are untroubled with nausea and vomiting, yet suffer with both these symptoms during the whole or part of the time of suckling. These symptoms usually begin after the first few weeks of suckling, and continue till the child is weaned, and may be so severe, and produce so much exhaustion, as to compel the mother to wean her child prematurely. Great flatulence may accompany the nausea and vomiting. Drop doses of ipecacuanha wine, administered three times a day, will commonly soon cure these symptoms.

3. Similar troubles to those just pointed out afflict some women at each menstrual epoch, occurring immediately before, during, or directly after the period. These cases, too, will generally yield to ipecacuanha.

4. The morning vomiting of drunkards; but this morbid state is more effectively controlled by arsenic.

5. The morning vomiting which sometimes accompanies general weakness, and is met with in convalescents from acute diseases.

6. Ipecacuanha will at once control the vomiting in children, with acute catarrh of the stomach. Indeed, this remedy appears to exercise greater influence over the vomiting of children than over that of adults.

Arsenic succeeds admirably, likewise, in removing the vomiting of acute stomach catarrh; and either remedy may advantageously be given with aconite, to subdue the inflammation, and reduce the fever.

7. In whooping-cough, ipecacuanha often removes or lessens the vomiting when this is occasioned by the violence of the cough, although its severity may in no degree be lessened. Cases of vomiting from this cause occur, which are unaffected by ipecacuanha, but which yield immediately to alum. (See Alum).

8. A species of vomiting occurs after meals, without nausea or pain, or even discomfort, the food being merely rejected partially, or often very little digested. This condition may persist a considerable time, but ipecacuanha wine, in many instances, quickly cures it. Arsenic, however, is a still better remedy.

Ipecacuanha, in my experience, proves of little use in the following forms of vomiting:—

(a.) In children, where the vomited matters are composed of large hard lumps of curdled milk. In such a case, when diarrhoea is present, lime-water mixed with the milk is the best remedy, but if the
child is constipated, bicarbonate of soda should be substituted for the lime-water; and, should these remedies both fail, milk must be altogether excluded from the diet.

(b.) Ipecacuanha is not generally useful in that form of vomiting met with in young children a few weeks or months old, who, almost immediately after the ingestion of milk, reject it with considerable force, either curdled or not, perhaps through both nose and mouth. At the post-mortem examination nothing may be discovered to explain this fatal form of vomiting; but sometimes the mucous membrane of the stomach is extremely soft, and looks as if made of water arrowroot. This form of vomiting is best treated by hourly small doses (one-third of a grain) of grey powder, or by calomel (one-tenth of a grain).

(c.) In hysterical vomiting.

Ipecacuanha is sometimes effective in checking the vomiting from cancer of the stomach, and has succeeded sometimes after the more commonly used remedies have entirely failed.

I have several times met with cases where the symptoms may be compared to rumination. The food, quite tasteless, has simply regurgitated into the mouth, without any effort at vomiting. These patients often chew the food a second time and swallow it without distaste. There may be no other symptoms, though, so far as I have seen, this regurgitation occurs generally when the health is disordered. I have seen ipecacuanha or arsenic promptly remove this regurgitation, though it may have continued, with intermissions, for months or years.

Ipecacuanha excites an increased production of mucus in the mucous coat of the intestines, and becomes in this way slightly purgative, and is reputed to assist the action of other purgative medicines, as jalap. It is also stated that a grain of powdered ipecacuanha each morning, while fasting, will relieve constipation depending on great torpor of the intestines. The same treatment, it is said, will remove the dyspepsia frequently associated with constipation, and characterized by depression of spirits, some flatulence, coldness of the extremities, and by the food lying on the stomach "like a heavy weight."

Rutherford, in his experiments on fasting dogs, finds ipecacuanha, when mixed with bile and introduced into the duodenum, a powerful hepatic stimulant, increasing the secretion of bile. He employed sixty grains, which did not purge but increased the mucus of the intestinal canal.

It is well known that this drug is largely and beneficially em-
ployed in dysentery. In some epidemics it answers admirably, while in others it appears to fail. Large doses are required, and will often succeed where small ones fail. Sixty to ninety grains of the powder are given at a dose, and repeated if required, oftentimes without the production of either nausea or sickness; but these symptoms, should they arise, may generally be obviated, if the patient, after taking the drug, will remain quietly on his back. In chronic cases not requiring prompt treatment, it is a good practice to administer the first dose at night when the patient has gone to bed. Should the few first doses excite sickness, it soon passes away on persevering with the medicine.

E. S. Docker, who has had a very large experience of this treatment, extols ipecacuanha. He states that its effects in suitable cases are almost instantaneous, the motions in the very worst cases becoming natural in frequency and character. Ninety grains of the powder cut short at once very severe attacks of dysentery, not only restraining the discharge off-hand, but freeing the patient from pain immediately, while inducing natural stools without straining or griping. The disposition to relapse, so common in acute dysentery, is not observed after the ipecacuanha treatment; and there is no need for after-treatment; nor for any great precautions concerning the quality of the food. After a large dose, as sixty or ninety grains, Docker recommends an interval of ten or twelve hours before repeating it, and should the bowels meanwhile remain quiet, to forego the medicine altogether. It is recommended to inject ipecacuanha, especially when it is rejected by the stomach.

An injection, three or four times a day, of half a drachm or a drachm of powdered ipecacuanha suspended in a small quantity of fluid, into the rectum, is very useful in acute and chronic dysentery.

The dysenteric diarrhoea of children, whether acute or chronic, will generally yield speedily to hourly drop doses of ipecacuanha wine. The especial indication for this treatment are slimy stools, green or not, with or without blood. Vomiting, if present, as is commonly the case, affords an additional reason for the adoption of this treatment. After the first or second dose of the medicine, and generally before the diarrhoea is checked, the sickness will often cease. Sometimes it happens, that although the ipecacuanha abates the number and the dysenteric character of the evacuations, yet supplementary treatment may be required.

The active principle of ipecacuanha, without doubt, enters the blood, and we have next to consider its action on the distant organs of the body.
It produces an increased secretion from the bronchial mucous membrane. Some maintain that this occurs only when ipecacuanha excites nausea, and that the action of the drug is solely due to the production of this physiological state; for it is well known that during nausea an increased secretion takes place from most of the surfaces of the body, including the respiratory mucous tract. Others consider that it can affect this mucous membrane irrespective of the production of any sensation of sickness; and that this is the correct view, is borne out by the powerful effect of even a minute quantity of this medicine on the bronchial tract of some persons, though the same dose may fail to produce sickness, or even nausea.

Ipecacuanha in the form of wine is of almost constant use in bronchitis, when the expectoration is profuse, and difficult to expel.

The successful use of a secret remedy by a well-known practitioner induced me, in conjunction with Mr. William Murrell, to try the effect of inhalations of ipecacuanha spray in those obstinate complaints, Winter Cough, and Bronchial Asthma. Our observations were made during January and February, and whilst undergoing this treatment, the patients took only coloured water, and continued their usual mode of living in all respects. First, regarding winter cough, we made observations on twenty-five patients, whose ages varied between 45 and 72, with one exception, that of a woman of 32 years, and we purposely selected severe cases. The following general description of a typical case will serve, in most points, to illustrate the condition of them all:—The patient had been troubled with winter cough, perhaps for many years. During the summer he is pretty well, but during the cold months, from October to May, he suffers sometimes without any intermission, occasionally getting a little better, and then catching cold; or perhaps he may lose his cough for a few weeks, but again takes cold on the slightest exposure. So short is the breathing that he can walk only a few yards, especially in the cold air, and finds it very hard work to get upstairs, and is often quite unfit for active life. The breathing grows worse at night, so that he cannot sleep unless with the head propped up with several pillows. He is troubled, too, with a paroxysmal dyspnéea, usually at night, which may last several hours, and constrains him to sit up. Sometimes the breathing is difficult only on exertion, and, in most cases, fogs, east winds, or damp, make it much worse. The expectoration, generally difficult to expel, varies greatly. In a few cases there is very little; usually, however, it is rather abundant, often with little
or no rhonchus. The cough is very violent, frequent, hacking, and paroxysmal, and the fits may last ten to twenty minutes, and even excite vomiting. They are generally brought on by exertion; nay in bad cases, so easily are they provoked, that the patient is afraid to move, or even to speak. The cough and expectoration are much worse in the morning on waking. Sometimes the cough is slight, and the expectoration is generally scanty; the distressed breathing being the chief symptom. The patient generally wheezes loudly, especially at night. In a bad case the legs swell. The patient is emphysematous; there is often no rhonchus, or only sonorous and sibilant, or a little bubbling rhonchus at both bases.

In this common, but obstinate complaint, our results have been very striking, although so bad was the breathing in many of our patients, that, on being shown into the out-patient's room, they dropped into a chair, and for a minute or so were unable to speak, except in monosyllables, having no breath for a sentence. We used the ordinary spray producer with ipecacuanha wine, pure or variously diluted. At first it sometimes excites a paroxysm of coughing, which generally soon subsides; but should it continue, a weaker solution should be used. The patient soon becomes accustomed to it, and inhales the spray freely into the lungs. At first, a patient often inhales less adroitly than he learns to do afterwards, as he is apt to arch his tongue so that it touches the soft palate, and consequently less spray enters the chest than when the tongue is depressed. The spray may produce dryness or roughness of the throat, with a raw, sore sensation beneath the sternum; and sometimes it causes hoarseness, whilst, on the contrary, some hoarse patients recover their voice with the first inhalation. As they go on with the inhalation they feel it getting lower and lower into the chest, till many say they can feel it as low as the ensiform cartilage.

The dyspnœa is the first symptom relieved. The first night after the spraying, the paroxysmal dyspnœa often improved, and the patient had a fair night's rest, although for months before shortness of breath and coughing had much broken the sleep. The difficulty of breathing on exertion also quickly abates, for often after even the first administration the patient walked home from the hospital much easier than he came to it; and this improvement is continuous, so that in one or two days, or a week, the patient can walk with very little distress; a marked improvement takes place immediately after each inhalation, and although after some hours the breathing may again grow a little worse, some permanent
improvement is gained, unless the patient catches a fresh cold. I have heard patients say that in a week's time they could walk two miles with less respiratory distress than they could walk a hundred yards before the use of the spray. In some instances two or three days' daily spraying elapse before any noticeable improvement takes place, this comparatively slow effect being sometimes due to awkward inhalation, so that but little ipecacuanha passes into their bronchial tubes. The effect on the cough and expectoration is also very marked, these both greatly decreasing in a few days, though the improvement, in these respects, is rather slower than in the case of the breathing; sometimes for the first few days the expectoration is even rather increased; it speedily alters in character, so that it is expelled much more readily, and thus the cough becomes easier, even before the expectoration diminishes. The patient is soon enabled to lie down at night with his head lower, and in a week or ten days, and sometimes earlier, can do with only one pillow, an improvement which occurs in spite of fogs, damp, or east winds, nay, even whilst the weather gets daily worse, and when the patient is exposed to it the chief part of the day. These patients all came daily to the hospital. Of course it would be much better to keep a patient in a warm room.

Of the twenty-five cases, all were benefited except one. In one case the improvement was very gradual, but each inhalation produced evident temporary improvement. In twenty-one cases, the average number of inhalations required was 94, and the average number of days was twelve, before the patients were discharged cured. The greatest number of inhalations in one case was eighteen, and the smallest, three. The case longest under treatment required twenty-four days, the shortest, four.

In order to ensure, as far as possible, only the topical effects of the ipecacuanha spray, we were careful to direct the patient to spit out, and even to rinse out the mouth at each pause in the administration, for far more wine collects in the mouth than passes into the lungs. If this precaution is not adopted, sometimes enough is swallowed to excite nausea, and even vomiting, by which means the bronchial mucus is mechanically expelled, and of course in this way effects temporary improvement. Even when this precaution is observed, a protracted inhalation will excite nausea, and sometimes vomiting, by the absorption of the wine by the bronchial mucus membrane; though, strange to say, vomiting, when thus was long delayed, even for several hours, nay, sometimes vening, though the inhalation was used in the morning.
In our cases, however, the improvement was not due to the nausea-producing effects of the spray, for we took care to avoid this contingency, by administering a quantity inadequate to produce this result. The duration of each inhalation will depend on the amount of spray produced by each compression of the elastic ball, or on the susceptibility of the patient to the action of ipecacuanha. As a rule, the patient, at first, will bear about twenty squeezes of the spray without nausea, and will soon bear much more. After two or three squeezes, especially on commencing the treatment, we must pause awhile. It is necessary to look at the patient's tongue, and tell him to learn to depress it; for if the tongue is much arched it will hinder the passage of the spray to the lungs. It is a good plan to tell the patient to close his nose with his fingers, and to breathe deeply. The inhalation should be used at first daily, and in bad cases twice or thrice in the day, afterwards every other day suffices, and the interval may be gradually extended. If the ipecacuanha wine is diluted, then the spray must be used a longer time. In cold weather the wine should be warmed.

We have tried the spray with very satisfactory results in a few cases of a more severe, though closely allied, disease, which may be thus summarised:—A patient has suffered for several years from severe "winter cough," with much dyspnœa, cough, and expectoration, and on several occasions has spat up a considerable quantity of blood. The physical signs denote slight fibroid consolidation, with excavation of both apices with much emphysema, perhaps atrophous in kind. There is little or no rhonchus, and no fever. The expectoration may be slight, or very abundant, mucopurulent, or purulent. The dyspnœa is perhaps so very severe, and is so paroxysmal as to justify calling the case bronchial asthma with emphysema and fibroid phthisis.

In this class of cases the ipecacuanha spray is almost as beneficial as in those just previously described. The spray soon controls the dyspnœa, thus enabling the patient to sleep, greatly lessens expectoration and cough, and by these means really improves the general health. As in the previous cases, the first inhalation may considerably improve the breathing, though the effects are not permanent, the dyspnœa returning in the evening, so that spraying is needed night and morning, and may be required for weeks or months, the ipecacuanha appearing rather to mitigate than to permanently cure the dyspnœa.

We have used this spray in cases of true and severe bronchial asthma, with very opposite results. In one severe case, accom-
panied by a great deal of bronchitis, it gave very great relief. The other patient, not so ill, had been all his life asthmatic, and on catching even a slight cold his breathing became greatly oppressed. In this instance each application of the spray considerably aggravated the dyspnœa, even when the wine was diluted with an equal quantity of water. Possibly a still weaker solution might have been borne, but we are inclined to think that in this case any quantity of ipecacuana would have disagreed, as the tightness of breathing increased almost immediately on commencing the inhalation. The successful case was a very severe one. For years this woman had suffered from bronchitic asthma, and when she applied to the hospital was unable to lie down, owing to violent paroxysmal dyspnœa. The worst attack began about 3 a.m., compelling her to start out of bed and struggle for breath. She was very emphysematous, the expiration enormously prolonged. She was very hoarse. The first inhalation removed the hoarseness in a few minutes, and much improved her breathing, which continued freer till midnight, when the dyspnœa returned. The cough became easier, and she expectorated more freely. Each inhalation always gave her very great and marked relief. She walked to the hospital with great difficulty, being constrained to stop frequently. On entering the room she could not speak, but laboured violently, and with loud wheezing to get her breath. A few inhalations would gradually set the breathing free, so that air entered more and more freely, with gradual diminution of the wheezing, till, by the completion of the inhalation, she could breathe without difficulty. As the breathing improved, she could feel the spray descending lower and lower in her chest. At first it would seem to reach only the back of the tongue, then the top of the sternum, then descend to mid-sternum, and at last she felt as if it reached as low as the pit of the stomach. This improvement was maintained throughout the day, but at evening a relapse would occur; yet her nights, though at first bad, were still decidedly better than before the treatment. Soon, however, the effects became more lasting, and she slept well. On discontinuing the spray, however, the breathing again grew worse, and she was obliged to revert to the treatment; but unfortunately she so easily caught cold, and so bad was the weather, that she was obliged to stay away for days together. Whilst her breathing improved, the cough and expectoration mended, but these two symptoms continued rather troublesome. So marked was the benefit from the

that the patient and her friends expressed their astonishment, y at the prompt relief it gave.
IPECACUANHA.

We have tried it in several additional cases of genuine asthma, but with unsatisfactory results; for in most cases it has considerably tightened the breathing to such an extent that patients have refused to give it a second or third trial.

We have continued to carry on our observations with ipecacuanha wine spray, and with results confirmatory of the statements made in the Brit. Med. Journal. We find, however, that some patients are very intolerant of ipecacuanha spray, which in them causes a good deal of irritation, and even tightness of breathing. It is advisable, therefore, at first to dilute the wine with one or two parts of water, a precaution especially needful for patients affected with much dyspnœa, with lividity; for the spray may for some hours much intensify the difficulty of breathing and lividity, so as to alarm the patient and friends.

It may not be much out of place to mention here that, in several instances, we have found the spray very serviceable in non-febrile inflammatory sore throats, the mucous membrane being swollen and very red. We have found it useful, too, in hoarseness from congestion of the vocal cords. Where the hoarseness has lasted a few days only, or one or two weeks, the spray often speedily cures; but where the hoarseness has persisted three months, or longer, the spray improves the voice considerably, but leaves some hoarseness.

Dr. Hyde Salter strongly recommends ipecacuanha in hay-asthma, and in other forms of asthma, employing it to cut short a paroxysm of dyspnœa. He considers that, in common with tobacco and antimony, it controls by virtue of its action as a depressant. He prefers it to the other two remedies just named, and gives it in doses large enough to cause depression, but too small to excite vomiting. Like other depressants, it must be given at the very beginning of the attack of dyspnœa, for the influence of the remedy is considerably less over a fully-developed attack. He prefers the powder to the wine, and seldom gives less than twenty grains. This treatment, directed only against each attack of dyspnœa, leaves the complaint in other respects untouched, and more permanent relief must be sought in an appropriate diet, and a climate suited to the patient.

Dr. Hyde Salter has drawn particular attention to the influence of diet on pure asthma. As persons prone to asthma suffer from tightness of the breath for some hours after a meal, and the smallest quantity of food greatly aggravates an attack of asthma, therefore the meals must be small, and digestible. Asthmatic attacks occur commonly at night, seeming to be favoured by sleep; keeping awake often
wards off an attack. The attacks are especially liable to occur after a late meal, therefore an asthmatic should take a light tea, and go without supper; in fact, should take no full meal after two o'clock. Breakfast should be the chief meal. Asthmatics must rise early, to avoid a too prolonged fast. Their food must be plain, well cooked, and nutritious. Milk and eggs form a good diet. Cocoa is better than tea, but milk is better than either. Mutton is preferable to beef or lamb, while pork and veal must be prohibited; new boiled potatoes, or succulent vegetables may be permitted. Fish is suitable. Cheese, desert, preserved meats or fruits, must not be eaten, and stimulants of any kind are generally bad. Heavy malt liquors, especially those containing much carbonic acid, are the worst beverages. The quantity of food should not be large, although food does not produce the paroxysm by its bulk, as the attack generally occurs some hours after a meal, when the stomach is becoming empty. Most asthmatics may eat what they like at breakfast. Dr. Fridham, who has had great success in the treatment of asthma, and who long ago pointed out the importance of a regulated diet, orders the following regimen:—Breakfast, at eight, half a pint of tea or coffee, with a little cream, and two ounces of dry, stale bread. Dinner at one, two ounces of fresh beef or mutton, without fat or skin, two ounces of stale, dry bread, or well-boiled rice. Three hours after dinner, half a pint of weak brandy-and-water, or toast-and-water ad libitum. Supper, at seven, two ounces of meat, and two ounces of dry bread. He prohibits drinking for an hour before dinner or supper, and till three hours after meals. When digestion has improved, he allows three ounces of meat twice a day. Dr. Salter gives the following excellent remarks on the climates suitable for asthmatics:—

(a.) Residence in one locality will radically and permanently cure asthma resisting all treatment in another locality.

(b.) The localities most beneficial to the largest number of cases are large, populous, and smoky cities.

(c.) That this effect of locality depends probably on the air.

(d.) That the air which would be imagined to be the worst for the general health is, as a rule, the best for asthma; thus the worst parts of cities are the best, and conversely.

(e.) This is not always the case, the very reverse being sometimes so.

(f.) That there is no end to the apparent caprice of asthma in this respect.

(g.) That possibly there is no case of asthma that might not be cured if the right air could be found.

(h.) That the disposition is not eradicated, but merely suspended.

Ipecacuanha will in many cases of whooping-cough often lessen the severity and frequency of the paroxysms, and will frequently arrest the vomiting they produce. Dr. Phillips, and some other observers, consider ipecacuanha especially useful when the attacks of coughing are accompanied by retching and vomiting. Like whooping-cough remedies, it often fails in cases apparently respects similar to those it benefits, and in certain epidemics appears to be all but useless.

It is also supposed to be a diaphoretic. Of course it excites it excites nausea; but even irrespective of this it perhaps be a diaphoretic.
VERATRUM VIRIDE.

It has been highly praised for its efficacy in hæmorrhages, as in epistaxis, the bleeding from the lungs or womb, and the flooding after delivery. Some of its advocates give even drachm doses of the powder.

In flooding after delivery, Higginbotham recommends ipecacuanha in quantity sufficient to produce vomiting, and to this effect he ascribes its great efficacy in arresting hæmorrhage. In his hands this treatment succeeded in the most desperate flooding cases; but it may well be doubted whether, beyond its emetic effect, ipecacuanha exerts any influence over uterine hæmorrhage. Zinc would probably answer equally well. Dr. George Bird tells me that he once witnessed, in the case of a Syrian Jewess, the prompt suppression of flooding by her attendant, who crammed down the patient's throat a handful of her hair. Probably the mechanical excitation of vomiting would prove useful in flooding.

Trousseau recommended ipecacuanha to be taken for some days immediately after childbirth, as a useful means to promote the natural functions peculiar to that time.

Ipecacuana acts more surely as an emetic when given in divided doses, at short intervals; as five grains in a little warm water every five or ten minutes.

VERATRUM VIRIDE.
VERATRUM ALBUM.
VERATRIA (Sabadilla).

Veratrum viride contains two alkaloids, viridia and veratroidia, and these differ, both physiologically and chemically, from veratria derived from Sabadilla seeds. Veratroidia is placed physiologically between viridia and veratria.

Viridia causes great muscular weakness, slow pulse, greatly lowered arterial pressure, muscular thrills, convulsions, diminution and at last loss of reflex action (in frogs), but produces no purging, nor vomiting, nor sneezing when snuffed into the nose.

* Dr. Martin, of Geneva, arrests epistaxis (the blood generally coming from one nostril) by compressing the facial artery of the side upon the upper jaw, near the nose, thus lessening the supply of blood to the nose. Is it possible to arrest flooding by compressing the aorta, in the manner adopted by Mr. Murray in aneurism?
Viridia acts directly on either the muscular substance or the ganglia of the heart; for (1) it affects the heart when the pneumogastric is divided, (2) and when it is directly applied to the heart’s substance.

The considerable diminution of arterial pressure is partly due to the effect of the drug on the heart, but it is supposed also to paralyze the vaso-motor centres.

Diminution of reflex action is not due to the influence of viridia on the muscles or nerves, and must therefore be due to the depression of the reflex function of the cord.

Veratroidia, more irritating than viridia, causes sneezing, vomiting, diarrhoea, thrills, and convulsions. Like viridia, it is a spinal depressant. It affects the circulation less than viridia.

Veratrina (from Sabadilla seeds) is an irritant, and excites sneezing, vomiting, purging, violent twitchings, and convulsions, and afterwards great muscular weakness with loss of electric irritability. The pulse is at first quickened and strengthened, then slowed, and afterwards becomes quick, weak, and irregular. The twitchings and convulsions are probably in part due to the effect of the veratrina on the muscles, and partly on the cord.

The twitchings and convulsions are not produced by the action of veratrina on the brain, as they occur after section of the spinal cord. They are partly due to the direct action on the muscles, for they occur when the cord is destroyed, and in animals whose nerves are paralyzed by curare.

Veratrina heightens the reflex function of the spinal cord, powerful muscular contraction being excited by the movements of the animal, or by an irritation. The frog soon becomes tetanised.

That veratrina affects the cord, is shown by the experiments of Kölliker and Guttmann, who found that if an artery, the femoral or aorta, were tied and the animal then poisoned, still the parts protected by the ligature from the action of the poison were tetanized.

Veratrina produces in frogs great muscular weakness, loss of voluntary power, and muscular contractility on galvanic stimulation. Veratrina produces paralysis likewise in warm-blooded animals, but tetanus very rarely.

How are these phenomena produced? By the direct action on the muscles, or by exhaustion from the convulsions (tetanic contractions) ?

The general paralysis of the voluntary muscles is not owing to muscular exhaustion produced by powerful tetanic contractions: for paralysis is produced in warm-blooded animals without tetanus, and in frogs, muscular contractility is lost in limbs protected from tetanus by division of their nerves; for, on severing the femoral nerve, the muscles lose their irritability as soon as those of a limb with an unsevered nerve, although, owing to the division of the femoral nerve, no tetanic convulsions in the limb take place. Further, by tying the abdominal aorta to protect the posterior extremities from the influence of the poisoned blood, they became tetanized, but retained their irritability for a considerable time. The para-
VERATRUM VIRIDE.

lysis is not owing to any alteration in the trunks of the motor nerves; for, so long as the muscles contract under direct galvanic stimulation, so long do nerves conduct impressions to the muscles. The rapid occurrence of rigor mortis and acid reaction of the muscles make it probable that veratria kills the muscles; for these phenomena do not set in early after nerve-poisoning. Veratium induces rigor as soon as muscular irritability is destroyed. It produces no morphological change in the muscles till rigor mortis sets in.

Bezold and Hirt believe that veratria, besides acting on the muscles, paralyzes the ends of the motor nerves.

After weak doses, a period occurred when the nerves failed to conduct impressions to the muscles, whilst the muscles themselves contracted after direct stimulation.

The effect of veratria on the sensory nerves has not been ascertained. Applied to the skin it causes numbness, and therefore paralyzes the sensory nerves.

Veratium affects the heart muscles like the voluntary muscles.

After death the heart is dilated and flaccid, and does not contract by galvanic stimulation. It probably does not influence the heart through the pneumogastric nerve; at least, after destroying the functions of this nerve by curare, veratium still paralyzed the heart.

As veratium affects the frog's heart much less than the other muscles, and as, unlike the effect of most other cardiac poisons, the cessation of the heart's contractions takes place in physiological order, Guttmann concludes that it is less markedly a heart-poison than many other toxic agents.

Experiments appear to show that veratria first stimulates, and then paralyzes the nucleus and terminations of the pneumogastric nerve, and the vaso-motor centre, and depresses the respiratory centre.

Veratium ointment excites a sensation of warmth and pricking, followed by coldness. Unless applied for some time it does not excite inflammation, but then produces a red itching rash. It is a very efficacious remedy in neuralgia, and, like aconite, has most influence over neuralgia of the fifth nerve. An ointment of the Pharmacopoeial strength is generally strong enough when applied to the face, but in other neuralgias a stronger ointment is required. Dr. Turnbull, who largely employed veratium ointment used a preparation containing twenty and sometimes even forty grains to the ounce. These strong ointments not uncommonly prove very useful in sciatica when rubbed along the course of pain for twenty minutes to half an hour, twice or three times a day. This strong ointment is sometimes useful in the neuralgic pain consequent upon shingles. The susceptibility to its action varies; thus, in some persons, it readily produces numbness and a sensation of coldness, which may last several days.
Like aconitia ointment, it is often useful in sick headache, where the pain is accompanied and followed by tenderness of the skin. It should be well rubbed over the seat of pain on the very commencement of the attack. It excites less irritation and sometimes succeeds better than the aconite, often very quickly subduing the pain, preventing the vomiting, and reducing the duration of an attack to one or two hours, or even to a few minutes, while previous to the veratria treatment it used to last one, two, or three days.

Dr. Turnbull used a strong ointment to rheumatic joints, and no doubt it relieves some cases, although unfortunately, it more generally fails.

Turnbull also applied the ointment to the chest of patients suffering from heart disease, with rapid irregular pulse, hurried breathing, much lividity and dropsy, palpitation and inability to lie down—to cases indeed usually benefitted by digitalis. These symptoms the ointment not uncommonly relieved, the patients passing a large quantity of urine, even six pints a day. He maintains that it acts differently on the system when absorbed by the skin than when administered by the mouth. He likewise employed a strong ointment to the painful joints at the onset of an attack of gout. Care must be taken, especially with the stronger ointments, not to apply them to the broken skin, or they will excite much pain and inflammation.

When sniffed up the nose the smallest quantity excites violent sneezing, sometimes lasting for hours.

The active principles of these substances pass readily into the blood, as is sufficiently proved by the symptoms they occasion; dull, heavy, frontal headache, sometimes accompanied by shooting or stabbing pain over one or both brows, in the pit of the stomach, and at the region of the heart. The heart is greatly affected; for the pulse grows slow and weak, and may sink from 70 or 80 to 40 or 35 beats in the minute, becoming at the same time so feeble as scarcely to be felt at the wrist. Pushed to the full extent, this drug greatly prostrates the muscular strength—to the extent, perhaps, of rendering walking impossible, and the muscles may twitch and jerk spasmodically. The surface is bedewed with a clammy sweat, the features are pinched, and there may be complete blindness and deafness, but delirium is rare. Dangerous as these symptoms appear, yet they speedily pass away if the drug is discontinued. Some self-experimenters have experienced dull aching pains, made worse by movement, and tonic and atonic contractions of the
VERATRUM VIRIDE.

muscles, sometimes violent, especially of the face and extremities. This substance has the same prostrating effect on birds, and in America is sometimes used to destroy these animals; it makes them too weak to fly, and thus they are easily caught; but if left awhile, the effects of the drug pass off, and they escape.

Veratrum has been compared, on the one hand, to digitalis; on the other, to aconite. Like digitalis, it is said to strengthen the contractions of the heart, and to weaken them only when the dose is excessive. The properties of veratrum appear to be more allied to those of aconite.

Veratrum has been said to lower the temperature in health; but this is not the case according to the late Dr Squarey's observations on University College Hospital patients.

Veratrum viride has been employed in the convulsions of children, chorea, typhoid fever, scarlet fever, measles, pneumonia, and pleurisy. In regard to pneumonia and pleurisy, some authorities consider that veratrum is useful only in the asthenic forms, acting then like tartar-emeti or aconite; others, however, as confidently recommend this remedy in the asthenic forms. Numerous published cases tend to support the efficacy of this remedy in pneumonia. Of forty cases published by Dr. Kieman, five died, making a percentage of 12.5; but some of these were in a desperate condition before undergoing treatment, so that the percentage is probably higher than it would have been had the medicine been employed at the beginning of the attack. Dr. Drasche has recorded seventy-three cases, showing the beneficial effect of the remedy. It greatly lessened the pulse, and lowered the temperature from 1° to 3° C., quieting the breathing, changed the character of the expectoration to a light yellow colour, rendered it scantier, and calmed the patients. It did not appear to shorten, but it seems even to lengthen, the acute stage. This observer states that veratrum retards the resolution of the lung, and sometimes produces vomiting of watery grass-green fluid, and occasionally diarrhea. On discontinuing the remedy before the decline of the disease, the pulse again immediately rises. The experience of others, though favourable to the veratrum treatment, has not been so successful; indeed, it is obvious how very difficult it is to ascertain whether the effects attributed to it were really due to the veratrum. According to some observers, veratrum reduces the pulse, but often only temporarily, and if its effects are to be maintained, it must be given in increasing doses. Further, while it is admitted that the temperature is reduced, it is not lowered to
the extent stated by Drasche, nor is the inflammation checked or shortened.

Typhoid fever, it is said, may be beneficially treated by veratrum. Oulmont has pointed out that the alkaloid veratria will not produce the effects just described, which must therefore be owing to some other constituent of the plant; hence the tincture, not the alkaloid, should be used.

In the treatment of the foregoing diseases it is better to give small doses, as one or two minims every hour, rather than larger ones at longer intervals. It has been pointed out already, that it is requisite to augment the dose gradually in order to keep the pulse down, otherwise it will sometimes suddenly rise to 120 or 140 beats, which, however, may be reduced again in a few hours by a small increase of the dose.

Veratrum is said to be efficacious in removing the pain of acute rheumatism, and in controlling and shortening the fever. It is also said to be of service in neuralgia, sciatica, and lumbago, and in the “congestive headache” which occurs at the menstrual period.

Veratrum album has been used with success in the vomiting and purging of summer diarrhoea.

COLCHICUM.

While the physiological effects of colchicum are very similar to those of veratrum, yet one drug cannot be therapeutically substituted for the other.

Strong preparations of colchicum, applied to the skin, irritate, excite redness, pricking and smarting, and the powder of colchicum sniffed up the nose excites sneezing and watery discharge from the eyes and nose.

Colchicum is acrid to the taste, produces much irritation of the fauces, with increase of saliva, sometimes in such quantity as might well be termed salivation.

Colchicum is an irritant to the stomach and intestines, and produces its effects, whether swallowed, or injected into the veins.

Small doses, continued for some time, produce a coated tongue and disagreeable taste, impair the appetite, excite more or less thirst, with pain at the epigastrium, rumblings of the stomach, and looseness of the bowels.
Should vomiting occur, the ejected matters are bilious, or composed of mucus, and after a large dose may contain blood. The stools are soft, or even liquid, and of a high colour; but after a large or poisonous quantity they are at first of the character just mentioned, but afterwards become dysenteric, consisting of slime and blood, accompanied with much straining and cutting pains in the belly. Even when injected under the skin, colchicum affects the intestinal canal in the same way.

Colchicum is rarely used in diseases of the alimentary canal. It has been employed as a chologogue. Rutherford, in his recent investigations, finds that colchicum in large doses, given to fasting dogs, considerably increases the biliary secretion, and at the same time it purges powerfully.

Colchicum, it is supposed, is most serviceable in both gout and rheumatism when it purges; but others hold purgation to be not only unnecessary but injurious; and there is no doubt that colchicum will as quickly cure an attack of gout without purging.

Colchicum quickly enters the blood, and in full doses soon excites warmth at the stomach, with a glow and outbreak of perspiration of the whole surface of the body, throbbing of the vessels, and reduction of the force and frequency of the pulse.

Poisoning by this plant, or its preparations, produces profound prostration, sometimes pain in the head, pinched features, perspiring, clammy skin, small, weak, or intermittent quick pulse, and not unfrequently strong muscular twitchings, accompanied by pain; indeed, pains have been felt in all the extremities, and Dr. Henderson narrates a case in which most of the joints were painfully affected. Colchicum is said to cause pain in the urinary tract, with smarting on micturition.

After a quantity sufficient to produce the symptoms just detailed, the stomach and intestines are found much congested and inflamed.

It is reputed to be diuretic, and to stimulate, even in healthy persons, the secretion of a large quantity of urinary water and uric acid; but these statements have not been confirmed by the observations either of Böcker or Garrod, which show that if it acts at all on the kidneys, colchicum rather lessens the amount of excreted water, urea, and uric acid.

To Dr. Garrod the profession is indebted for an exact knowledge of the nature of gout. This philosophical observer has shown that in gout there is retention, with possibly increased formation, of uric acid in the system. From the urine of gouty patients, very little, and in some cases, even no uric acid can be obtained, while
plenty can be detected in their blood. The urates, thus circulating through the tissues, are deposited in various parts of the body and excite active and painful inflammation.

It is argued, however, that urates are not deposited in the cartilaginous and fibrous tissues, for it is said if so they should be more abundant close to the vessels, whilst it is well known that they are earliest seen, and exist most plentifully, in cartilages, near their synovial surface, that is, at the greatest distance from the blood-vessels; hence it is maintained that the urates are not deposited, but are always associated in gout with much mal-nutrition; thus an excess is formed of urates which remain unabsorbed in the slightly vascular and non-vascular tissues, and, of course, accumulate in those structures at the greatest distance from the vessels. If this view is correct, the gouty inflammation cannot be set up by the irritation excited during the deposition of the urates, but is due to some hitherto undiscovered cause.

Colchicum, it is well known, gives prompt relief from the pain, inflammation, and fever of gout. But how? Does colchicum cause the elimination of uric acid from the system through the kidneys, and so remove the condition on which the gout immediately depends? Now Dr. Garrod has experimentally shown that colchicum exerts no influence on the elimination of uric acid in gouty people. Colchicum must, therefore, control gouty inflammation without in any way affecting the condition on which the gouty inflammation in the first instance depends. Hence colchicum is merely palliative, removing for a time the patient’s sufferings, but, as experience abundantly proves, in no way protecting him from their recurrence. For it is on all hands accepted that colchicum is inoperative to prevent a return of the attack; nay, many who suffer from it are of opinion that, while the medicine removes altogether an existing attack, it ensures the speedy return of another. Hence gout-ridden people commonly advise their fellow-sufferers to abstain from colchicum. But a gouty sufferer is apt to continue gout-engendering habits, and to forget that, as he grows older, his gouty tendency becomes stronger.

The effect of colchicum on the gouty inflammation is very rapid; for a large dose of the medicine, say a drachm of the wine, often removes the severest pain in the course of one or two hours, and soon afterwards the swelling and heat subside. Some observations, conducted by Dr. Rickards and myself, show that, while the pain is thus quickly subdued, the temperature of the body falls very little during the day, but on the following morning there is generally a considerable decline, and often a return to the healthy temperature; but, should the fall be postponed a longer time, then on
the second day after the use of the colchicum a continuous decline of the temperature takes place, till all fever disappears.

It has been suggested that all vascular depressants (including, of course, colchicum) act in the same way; that, by slowing the heart, less blood is directed to the inflamed tissues, and by dilating the arterioles generally, blood is drawn off from the inflamed part, and by this twofold action diminishing the flow of blood to the peccant organ, the inflammation is reduced. (See Aconite).

To a small extent colchicum may possibly act in this manner; but were this the sole explanation of its action, it ought to subdue all inflammations equally, but whilst it will abolish gouty inflammation, as if by magic, it exerts scarcely any influence on other inflammations.

There are two methods of employing colchicum. Some give small doses, others give a drachm of the wine, others even two drachms at a time. The larger dose sometimes produces sickness, diarrhœa, and great temporary weakness. But it extinguishes the pain at once. Small doses give like results only after some days.

Colchicum is sometimes of use in the treatment of various diseases occurring in gouty persons; for instance, bronchitis, asthma, chronic urticaria and other eruptions, dyspepsia, &c.

Some persons are very tolerant of colchicum. To a man convalescent from lead colic, I gave at first two drachms and a half without any effect, and on a subsequent day four, and another day six drachms without any result. An ounce slightly relaxed his bowels, and ten drachms relaxed his bowels five times and caused a little sickness. No symptoms set in till ten hours after the medicine.

PODOPHYLLUM.

PODOPHYLLUM is a powerful purgative and cholagogue.

Dr. Anstie, who has studied the action of the podophyllum on dogs and cats, found that in from two to ten hours after the injection of an alcoholic solution into the peritoneal cavity, and after the effects of the alcohol had ceased, podophyllum excited vomiting, and almost incessant diarrhœa. Dr. Anstie does not usually describe the character of the stools; but in one experiment he states that they consisted of glairy mucus, and in two other experiments the stools were highly coloured with what looked like bile. In many of the experiments the stools contained blood. The animals suffered great pain, and soon became exhausted. At the post-
mortem examination the cesophagus was healthy, but the stomach somewhat congested, induced, Dr. Anstie suggests, by the violent efforts of vomiting. The small intestines, especially at the lower part of the duodenum, were intensely congested, and in some instances the lower part of the duodenum was extensively ulcerated. The large intestines were but slightly inflamed. Although the injections were poured into the abdominal cavity, the peritoneum itself was not at all inflamed, not even around some unabsorbed granules of podophyllin. The contents of the intestines were liquid. In all the instances in which the effect of the medicine on the heart and respiration is mentioned, respiration ceased before the heart stopped.

From these experiments it appears evident that podophyllin has an especial affinity for the small intestines, and chiefly for the duodenum.

The results of these experiments, and the fact that podophyllin produced no apparent change in the liver, led Dr. Anstie to conclude that it is not a cholagogue. The Edinburgh Committee carefully investigated the action of podophyllin on healthy non-fasting dogs, and their reporter, Dr. Hughes Bennett, states that doses of podophyllin varying from two to eight grains diminished the solid constituents of the bile, whether purgation took place or not, and that doses which produced purgation lessened both the fluid and solid constituents of the bile. (See Mercury).

Indeed these investigators found that in non-fasting animals all the reputed cholagogues failed to increase the bile, and further, if they purged they even diminished it. Some experiments by Röhrig on fasting animals being opposed to these statements, led Dr. Rutherford to reinvestigate this question. He finds that podophyllin injected into the duodenum of a fasting dog increases both the water and the solid constituents of the bile; and this increase is greater when the bile is allowed to flow into the intestine than when it is drained off by a canula. The augmentation of the secretion is greatest when the drug does not purge severely; indeed, when it does purge violently, it may lessen the biliary secretion.

Drs. Rutherford and Vignal confirm Röhrig's statements concerning the influence of other drugs on the liver secretion in fasting animals. They find that aloe, rhubarb, senna, colchicum, taraxacum, and scammony, increase the biliary secretion; that podophyllin, aloe, rhubarb, colchicum, and croton oil, are the most powerful biliary excitants, senna and scammony less so; and that
they all increase the water and the solids of the bile. Taraxacum they find is only a feeble hepatic stimulant. Rutherford thinks they act directly on the hepatic cells, and not by increasing the blood supply. Röhrig found that calomel given to fasting dogs would not recall the secretion when the flow had stopped, though the drug would increase it when the bile had only diminished. Drs. Rutherford and Vignal find, however, that calomel generally lessens both the water and the solids of the biliary secretion, thus affecting alike fasting and non-fasting animals.

Drs. Rutherford and Vignal endeavour to reconcile the apparently conflicting results of their experiments and those of the committee presided over by Dr. Bennett.

The absorption of food, they say, is undoubtedly followed by increased biliary secretion. The purgative probably diminishes the amount of food absorbed, seeing that it tarry a less time in the intestines, and this probably overbalances in the course of the day the stimulation of the liver. "When such substances as podophyllin, rhubarb, aloe, and colchicum, are administered, (a) the liver is excited to excrete more bile, (b) if purgation result, absorption of biliary matter and of food (if digestion is taking place) from the intestine is probably diminished, and thus by the twofold operation of increased hepatic action and diminished absorption of biliary matter from the intestine, the blood as it passes through the portal system is probably rendered more pure."

But assuming that podophyllin is incapable of increasing the secretion of bile in health, it by no means follows that in this respect it is inoperative in disease. It is quite conceivable that podophyllin and other remedies may remove certain morbid conditions of the liver which arrested the secretion of bile, and so act indirectly but efficaciously as cholangogues; and surely it is far better to promote the secretion of bile by restoring the liver to health, than to give a drug to compel a diseased liver to secrete. In the one case we remove the hindrance to the secretion of the bile; in the other, if it be possible, we compel the secretion in spite of the obstacle. The experience of those who have largely used this drug is strongly in favour of its possessing cholangogue properties; and my experience leads me to a like conclusion.

For instance, its effects are very marked on the motions of children with the following symptoms:—During the early months of life, especially after a previous attack of diarrhœa, obstinate constipation may occur, with very hard motions, crumbling when broken, and of a clay colour, often mottled with green. Some-
times, at each evacuation, the passage of the hard stools through
the sphincter of the rectum occasions great pain, causing the child
to scream. At the same time there may be much flatulent disten-
sion of the belly, which excites frequent colic, this, in its turn,
making the child cry, often without cessation. This morbid con-
dition of the motions is frequently observed in children one or
two months old, who are fed instead of suckled. I know nothing
so effectual in bringing back the proper consistence and yellow
colour to the motions as podophyllin. A grain of the resin should
dissolved in a drachm of alcohol, and of this solution one or two
drops given to the child on a lump of sugar, twice or three times a
day. The quantity administered must be regulated by the obsti-
nacy of the bowels, which should be kept open once or twice a day.
Under this treatment the motions often immediately become natural,
the flatulent distension of the belly gives way, and the child quickly
improves. The restoration of the colour of the motions is probably
owing to the increased secretion of bile induced by the podophyllin.

That disagreeable cankery taste, unconnected with excess in
alcoholic drinks, generally occurring only in the morning, but
sometimes continuing in a less degree all day, gives way usually
to podophyllin; and, if it fail, mercury generally answers. This
symptom, it is true, when due to constipation, is removable by
many purgatives, but podophyllin and mercury answers best.

In small doses $\frac{1}{20}$ or $\frac{1}{30}$ of a grain night and morning, podo-
phyllin is useful in cases like the following:—A busy, worried,
over-worked man, who takes perhaps too little exercise, feels all
day, but especially in the morning, dull and depressed, his mind
inactive and indolent, and he is irritable. He has, perhaps, a
stupid feeling. He is often bilious-looking, and is dark round his
eyes. Now these symptoms, no doubt, often accompany sluggish
bowels and can be relieved by any purgative, but they not uncom-
monly occur when the bowels are regular, and the motions natural
in colour. In such a case, a small non-purgative dose of podo-
phyllin is most serviceable. The resin may be made into small-pills,
or dissolved in rectified spirit in the proportion of one grain
to two drachms of spirit, and six minims of this mixture should be
taken night and morning in tea or coffee.

Small doses of podophyllin are highly useful in some forms of
chronic diarrhoea. Thus a diarrhoea with high-coloured motions
with cutting pains, is generally relieved by small doses of podo-
phyllin, the bowels becoming regular, and the pain speedily sub-
siding; and this medicine is especially indicated if this form of
diarrhoea occur in the early morning, compelling the patient to leave his bed several times, but improving after breakfast, or by the middle of the day; or sometimes diarrhoea does not occur after breakfast, but returns early next morning. Indeed podophyllin will generally cure this morning diarrhoea, even if the motions are pale and watery. (Rumex Crespus is also recommended for morning diarrhoea). By means of podophyllin I have cured chronic diarrhoea of watery, pale, frothy motions, with severe cutting pain, even when the diarrhoea has lasted for many years. Two or three minims of the solution just mentioned should be given three or four times a day.

Podophyllin is very useful in some forms of sick headache (migraine). The nature and the order of the symptoms differ greatly in different cases of sick headache. Some, for instance, are accompanied by constipation, others by diarrhoea, and in each of these kinds the stools may be either too light or too dark in colour. But there are, besides, many other varieties of sick headache. Where the headache is preceded, accompanied, or followed by a dark-coloured bilious diarrhoea, podophyllin generally does good. Two or three minim doses of the foregoing solution, given three times a day, will restrain the diarrhoea, lighten the colour of the motions, and if the medicine is persevered with, either prevent the attacks, or considerably prolong the intervals. When the diarrhoea is of a light colour, and the motions evidently contain too little bile, a hundredth part of a grain of bichloride of mercury, given three times a day, is often very useful. Again, when the headache is accompanied by constipation, and the motions are of a dark, bilious character, a free podophyllin purge every day, or every alternate day, is very beneficial. Even in those nervous headaches occurring either just before, at, or directly after the menstrual period, if associated with constipation and dark-coloured stools, purgative doses of podophyllin often give relief.

It is now generally held, that in sick headaches, or, as they are often termed, nervous headaches, megraine, hemicrania, the origin of mischief is situated in some part of the central nervous system, and therefore it is asked—What is the use of giving medicine to act on the stomach, liver, or intestines?

Whilst very probably the affection in megraine is situated in the central nervous system, involving, in simple cases, part of the nucleus of the fifth, and the centre for vomiting, and in other cases a still larger area, yet the affection appears to be dormant till roused into activity by peripheral, or other exciting causes—causes
in many cases due to the stomach, the liver, or the intestines. In such cases the sickness, the diarrhœa, or the constipation precede the attack; where these symptoms accompany or follow the paroxysm, they may fairly be considered as part of the attack, depending on changes occurring in the central nervous system. The treatment of megraine, therefore, falls into these divisions: 1, removal of the exciting cause; 2, medicines directed to alter the condition of the central nervous system producing the attack; 3, treatment of the attack itself.

Where sickness, diarrhœa, or constipation precede the paroxysm they act as exciting causes, and if we can remove these symptoms by the aid of mercury or podophyllum, according to the foregoing directions, we prevent the development of the attack, or at all events render it milder. Even when these symptoms accompany the attack, and form, therefore, very probably, an integral part of the paroxysms, these remedies, or others like nux vomica, acting either on the stomach, or liver, may suppress the paroxysm; for, although it may be plausibly urged that it is folly to treat the effects in order to remove the cause, still, as we have seen, in the section treating of counter-irritants, as local applications to the seat of pain appear to control the central nervous disease, so there is no reason why a remedy, which affects the terminations of the vagus, should not also be capable of modifying the central affection.

Some American physicians go so far as to say that this drug, in America called vegetable mercury, fulfils all the indications of mercury.

The injection of podophyllin under the skin has been recommended. It is readily soluble in equal parts of liquor potassæ and water; and, if the drug is pure, the addition of water does not precipitate this solution. The injection of this solution to the extent of one-third to one-tenth of a grain quickly purges, sooner, it is said, than when given by the stomach, and it causes no pain.

Podophyllin is a rather uncertain purgative; thus, a dose adequate to purge one person violently, will be inoperative on another. Individual differences occur, it is true, with other purgatives, but the action of podophyllin appears more uncertain than other similarly acting drugs. Again, the time it takes to act varies, purging some in a few hours, whilst with others it takes twenty-four hours. Sometimes instead of freely relieving the bowels it frets them, by causing frequent attempts with ineffectual results. The pure drug causes very little griping. In too large doses, it is very apt to produce slimy and bloody stools, particularly in children.
STAPHISAGRIA.

This seed, made into an ointment, is employed only as an external application, to destroy the lice which infest the bodies of dirty persons.

Formerly the seeds were ground to a meal, which was mixed with a simple ointment, but owing to the large quantity of oil in the seeds, the meal was always very coarse, so that the ointment thus made was a gritty and uncomfortable application. This inconvenience Squire has remedied. "Finding," he says, "that this meal contained a certain amount of oily matter, the author had the oil removed from a small quantity of the meal by percolation with ether, and found that the meal was then capable of being reduced into a fine powder." This powder he tried in several cases of phthisis (louse disease), and found it quite inert. The proportion of oil extracted from the meal amounted to half the weight of the meal. On making trial of the oil, suitably diluted with olive oil, he found it as efficient as any remedy he has ever tried against phthisis. "A cheap way for preparing the oil for application is to digest the seed in melted lard, and strain while hot. The filtrate is an ointment of the seeds of staves-acre. Two drachms of the bruised seeds should be used to an ounce of lard."

This medicine is used much more extensively in America than in England. It has been employed for centuries by the Indians and Settlers for chorea and many uterine diseases, and to assist the womb to expel the child. Those with most experience of this drug speak loudly in its praise.

It is not used as a local application to the skin. Some assert that, given internally, it will prevent the pitting of small-pox.

Actaea is said to be useful in simple and malignant sore-throat, and in that troublesome, chronic, and obstinate disease, in which the mucous membrane of the pharynx is quite dry, and spotted over with inspissated mucus.

So far as I know, this remedy is not used in stomach or intestinal disease.

A decoction of the root cures the itch.
Absorbed into the blood, it depresses both the force and frequency of the pulse. Some compare it to aconite, and use it for similar purposes. It has been given, it is said, with much success in influenza and catarrhs, accompanied with headache, stiffness of the muscles, dull, aching pain in the bones, and a bruised sensation as if the body had been beaten all over.

This plant has been much used in acute rheumatism, and it is stated that it quells the pain speedily. It is also extolled for lumbago and sciatica; and it is said to subdue lumbago more effectually than any other remedy.

I have given this plant a patient trial in lumbago and sciatica, and in those cases of chronic rheumatism where one part of a tendon, muscle, or articulation in the back or elsewhere, is exquisitely painful on movement, and in cases characterized by great stiffness of the muscles of the back, loins, and hips, but unfortunately with very little if any success; yet my friend, Mr. Joseph Bartlett, has recently employed this remedy in these cases with considerable success. In my hands, however, this remedy has yielded very satisfactory results in certain forms of chronic rheumatism; for instance, in rheumatoid arthritis, where the joints are enlarged and much stiffened. It does not, however, suit all cases alike, but those best when the pains are worse at night; and this remedy may be considered especially indicated when the disease is traceable to some previous derangement of the uterus, as sudden suppression of the menses, an abortion, a painful and difficult confinement, or to the disappearance of the catamenia at the natural term. The joints, it may be, are not enlarged, and the pains may flit from joint to joint instead of lodging steadily in one place. Painful cramps of the legs which break the sleep, and are aggravated by wet and cold weather, and by certain winds, sometimes torment such patients. In these cases actaea, independently of its possible narcotic action, not unfrequently gives considerable relief from pain and cramps, and induces quiet and refreshing sleep. But, while the indications just given are for the most part to be depended upon, it must be confessed that this remedy does sometimes relieve chronic rheumatism and rheumatoid arthritis occurring in men, sometimes is serviceable in those cases in which the pains are worst during the day.

Again, in a case like the following, actaea is signally beneficial:—A patient is first troubled with pains, apparently rheumatic, in most of the joints, but with scarcely any fever or swelling. The disease soon seizes itself in one part, as the wrist and hand;
ACTÆA RACEMOSA.

the tissues here become much thickened, the bones of the wrist
enlarged, till after a time all movement is lost, and the member
becomes useless. Warmth allays the pain, which almost ceases at
night. The attack presents many of the characters of gonorrhœal
rheumatism, but there is no history of gonorrhœa. I have several
times observed the almost instant relief given by this drug in cases
like that just described, after iodide of potassium and other reme-
dies had been fairly tried in vain, the pain giving way at once, and
the joints becoming again supple and useful.

Chorea, it is said, whether rheumatic or otherwise, yields to
actœa, a statement I have put to the test of experience, and found
that actœa fails altogether when there is no history of rheumatism,
but apparently succeeds sometimes when the chorea is of rheu-
matic origin. It is greatly inferior to arsenic in chorea.

According to American therapeutists, this plant operates power-
fully on the uterus; its action on this organ is stated to be very
similar to that of ergot, stimulating the contractions of the parturi-
ent uterus, and hastening the expulsion of the child. Ergot pro-
duces a continuous contraction of the uterus, while actœa, it is said,
merely strengthens, but does not prolong the contractile move-
ments, and therefore endangers less the child’s life and the soft
structures of the mother.

Actœa is said to be useful in expelling the placenta and in pre-
venting after-pains, but ergot is preferable, as it produces more
persistent contractions. Actœa has been recommended in amenor-
rhoea, dysmenorrhœa, and in menorrhagia. Though inferior to
other remedies, it certainly controls menorrhagia.

Again, actœa racemosa, it is said, will restore the secretions,
and remove the accompanying symptoms, when the menses are
suddenly checked from cold, shock, or mental emotion, or when,
from similar circumstances, the lochia are suppressed, distressing
symptoms are apt to occur, as more or less severe pain in the
head, in the back, and down the legs, stiff sore muscles, and bear-
ing-down pains.

It has been given, too, to prevent miscarriages in irritable uterus
and prolapsus uteri.

Actœa is said to be serviceable in that common and distressing
headache occurring in nervous hysterical women, especially at the
menstrual period, or when the flow is too frequent and too profuse,
or at the change of life.

The pleurodynia dependent on uterine derangements is also enu-
erated among the many troublesome complaints over which
actœa is said to prevail.
Aconite is said by Sir J. Simpson to be highly beneficial in the cases of women who, during pregnancy and after confinement, occasionally suffer from great mental disturbance, sometimes amounting to madness. (See Bromide of potasssum).

Aconite has been recommended in the headache arising from over-study or excessive fatigue.

The tincture, made in the proportion of four ounces of the plant to a pint of proof spirit, is the form generally employed. Five minims may be given every hour, or fifteen to thirty minims three times a day.

Aconite and its preparations.

Perhaps no drug is more valuable than aconite. It may be, since the earlier editions of this handbook, it is more frequently prescribed, and its virtues are more generally appreciated, and I venture to predict that ere long it will be yet more extensively employed.

Aconite is used externally in the form of liniment or ointment, to relieve pain. In the neuralgias, especially of the brow or face, these applications are often of the greatest use, in relieving the distressing pain, either permanently, or at all events temporarily. It is decidedly more useful in facial than other forms of neuralgia, though in facial neuralgia it not seldom fails, notably in those severe forms termed epileptiform neuralgia.

We are unable as yet to predict, with any certainty, the cases wherein aconite will succeed or fail; this much, however, is clear, that neuralgias depending on diseased bone, or on tumours pressing on nerves, are beyond the control of aconite; but these are not the only forms of neuralgia which will not yield to aconite. Facial neuralgia due to decayed teeth is often obstinate, yet even these cases frequently yield to the external application of strong aconite preparations. Sometimes a case will require the assiduous application of the aconite preparation during three or four days. In neuralgia, however, due to this cause, aconite sometimes quickly loses its effect, and the pain returns with its former frequency and severity.

As no harm can follow the employment of aconite externally, it should always be tried; and if unsuccessful, then recourse can be
ACONITE.

465

had to other modes of treatment. If aconite will succeed at all, it will generally succeed at once; hence, if relief does not come speedily it is useless to continue it. The preparation should be sufficiently strong to produce decided numbness and tingling in the skin.

A piece of the ointment, the size of a bean or nut, should be applied with friction, which enhances its efficacy. This quantity should be repeated until it induces a sensation of tingling. The liniment, applied with a brush, may be mixed with one-half the quantity of chloroform liniment to assist absorption.

In cases where many branches of the fifth are affected, it is often sufficient to apply the aconite over the seat of the most intense pain; and again, in cases where other nerves, like the great occipital and auricular nerve, are likewise involved, the application of the aconite over the branches only of the fifth most severely affected, will often give complete relief.

Then we meet with cases of which the following may be taken as a type:—A woman suffers from severe neuralgic sick headache, preceded by general *malaise*, and a dark discolouration round the eyes; the pain affects, perhaps, only a small branch of the fifth, not uncommonly that twig situated near the outer canthus of the eye, and when this happens, a neighbouring vein often becomes greatly swollen. The pain lasts with great severity a variable time, extending even to one, two, or three days, accompanied with more or less severe vomiting, the rejected matter being, perhaps, intensely acid. As this pain declines, the patient feels severe shooting pains, passing up the back of the neck and head behind the ear, affording a sure indication of the approaching decline of the attack; the secondary pain lasts three or four hours, then ceases, leaving the patient limp and weak.

The application of aconite ointment, or aconite liniment, at the very beginning of the attack, over the affected branch of the fifth nerve, will cut short the pain, prevent sickness, and the occurrence of the secondary pain in the back of the neck and head. In some cases veratrum succeeds better than aconitum ointment.

When the auriculo-temporal nerve is affected, the salivary secretion may be increased, diminished, or altered in character; and the secretion of tears may be modified in the same manner when certain branches of the supra-orbital nerve are affected. The aconite application, by removing pain, will restore these secretions to their natural state.

Aconite is often of great service in *sick headache*, and is indi-
ated when the attack is accompanied and followed by tenderness of the painful region. The aconite application not unfrequently arrests the pain; moreover, in arresting the pain it prevents the sickness, thus affording an excellent example of a local application affecting a distant organ.

While using these powerful poisonous applications, care should be taken not to rub them in wounds or cracks of the skin, and to avoid contact with absorbent tissues, as mucous membranes and the conjunctiva. Spinal irritation, and intercostal neuralgia, and and sciatica yield, in some instances, to aconite ointment; but spinal irritation and intercostal neuralgia give way more readily to belladonna preparations.

Given internally, aconite at first induces a sensation of warmth at the pit of the stomach, and sometimes nausea and vomiting. The sensation of warmth spreads over the body, and tingling of the lips, tongue, and adjoining parts is soon perceived; the uvula and the tongue feel as if swollen and too large, and deglutition is frequent. A large dose induces tingling and numbness at the tips of the fingers, thence spreading over the whole body, accompanied by diminished sensibility, and some muscular weakness, which, with a very large dose, becomes extreme, and is one of the most prominent and important symptoms of the drug.

The action of aconite on the circulation and respiration is most noteworthy. Moderate doses greatly reduce the number of the heart's beats, even to 40 or 36 in the minute; but after a larger and dangerous dose, the pulse beats faster, and may become irregular; sometimes even a small quantity excites irregular heart action. Whether increased or lessened in frequency, the pulse always loses strength, showing retardation of the circulation. Dr. Achscharumow and Dr. Fothergill (see Digitalis) have shown that aconite paralyzes the heart of frogs, arresting the contraction in the diastole. The effects on respiration are very similar; moderate doses render the breathing slower, but a large and poisonous quantity often makes it short and hurried.

How does aconite affect the heart? It certainly affects either the muscular substance, or the contained ganglia of the heart. On this point all observers are agreed, for aconitia affects the heart after section of the pneumogastric, or the administration of atropia which paralyzes this nerve; and it affects the extirpated heart in the same way as it affects this organ in situ. It is maintained, however, that it acts also through the pneumogastric, Boehm and Wartmann believing that it paralyzes the terminations of this
nerve; Achscharumow that it first stimulates the inhibitory centre of the pneumogastric, and so slows the heart, and then the pneumogastric becomes exhausted, and at last paralyzed, and then the heart beats quickly and irregularly.

The heart muscle appears also to be affected, for after death it fails to respond to galvanic stimulation.

From our experiments, Dr. Murrell and I are led to conclude that aconitia paralyzes all nitrogenous tissues, and we suggest, therefore, that aconite affects all the structures of the heart, first its ganglia, next its nerves, and last its muscular substance.

So far as we may draw a conclusion from the scanty experimental evidence on the subject, it appears that aconite does not affect the vaso-motor centre or nerves, and therefore the lessened arterial pressure it induces is due to its action on the heart.

It is generally held that aconite affects respiration by its influence on the respiratory centres.

The views concerning its action on the nervous system are very diverse. Achscharumow concludes that it paralyzes both the trunk and terminations of the cerebro-spinal motor nerves, but leaves the muscles unaffected.

He tied the aorta of frogs, thus protecting the hinder extremities from the poisoned blood, and then injected aconitia under the skin of the back. All except the protected parts speedily became paralyzed, and the nerves of the upper extremities failed to conduct impressions on the muscles, whilst electrical stimulation of the sciatic nerve provoked energetic muscular contraction. The muscles, subjected to the influence of the poisoned blood, contracted on the direct application of galvanic stimulus, though they failed to respond to irritation of the motor nerves distributed in them.

Boehm and Wartmann conclude, from their experiments, that aconitia first paralyzes the sensory, and then the motor part of the cord.

Liegeois and Hottot believe that it first paralyzes the "perceptive centres," above the spinal cord, and afterwards the terminations, and, lastly, the trunks of the sensory nerves.

They found this conclusion regarding its influence on the sensory nerves on these experiments:—They (Journal de Phys., 1861) find that frogs poisoned with aconitia lose sensation, whilst voluntary and reflex action remain, and reflex action itself ceases, whilst the animal still retains voluntary power.

Was this loss of sensation due to the action of the poison on the sensory perceptive centres, or on the afferent (sensory) nerves? On administering strychnia, they produce tetanus, paroxysms of which could be excited by irritating any part of the body; they therefore conclude, that at this stage the afferent (sensory) nerves are not affected, and that the anaesthesia depends on the influence of the
aconite on the sensory perceptive centres. After a time, however, irritation of the terminations, and subsequently of the trunks of the afferent nerves, fail to excite a tetanic paroxysm; whence they conclude that aconite next paralyzes the terminations, and then the trunks of the sensory nerves. It may be pointed out that this reasoning holds good only on the assumption that sensory nerves have a double function, and, besides conveying impressions to the brain, will excite reflex action in a frog; but if it should happen that sensory nerves differ from those which conduct impressions to be reflected through the cord, then the experiment would simply prove that afferent reflex nerves are not so soon paralyzed as afferent sensory nerves.

They find that, at a certain stage of the poisoning, sensation is abolished, but voluntary and reflex action remain; for an impression on the skin is conveyed to the cord, and being reflected, produces a reflex act, but is not perceived by the brain, and consequently does not excite voluntary movement. In fact, at this stage, the afferent nerves, the sensory and reflex portion of the cord, is unaffected, and the sensory perceptive centre only is paralyzed. (In my experiments I have never witnessed this order of the outcome of the symptoms.)

Again, they state that before poisoning the animal, when they ligatured the aorta close to its abdominal bifurcation with the intention of cutting off the poison from the posterior extremities, this procedure failed to prevent the development of anesthesia; and further, that on tying the artery nearer its origin, so as to shut off the circulation from the cord and spinal nerves, yet so as to allow it to reach the brain, then the poison produced loss of sensation as quickly as in poisoned frogs with unligatured vessels.

From experiments detailed in the Journal of Physiology, 1878, I conclude that aconitia is a protoplasmic poison, and destroys the functions of all nitrogenous tissue; first, of the central nervous system, next, of the nerves, and last, of the muscles; but it has an especial affinity for the sensory apparatus, paralyzing first the sensory perceptive centre. Aconite, like tartar-emetic and potash salts, is a powerful depressant, and we suggest that these drugs do not merely depress through their paralyzing effect on the heart, but that they depress also by their poisonous action on the central nervous system, and on the motor nerves and muscles.

During the administration of aconite, cutting pains in the joints and other parts of the body are often complained of, and sometimes an eruption of itching vesicles breaks out on the skin. Delirium occurs in some cases, but after fatal doses, the mind often remains clear to the last. The muscular weakness is extreme, and frequent faintings occur. Blindness, deafness, and loss of speech, occurred in some fatal cases.

As aconite diminishes sensibility, it has been used internally in various painful diseases; but for the relief of pain, other internal remedies have for the most part superseded it.

The power of aconite to control inflammation and subdue the
aconite. It will sometimes cut short an inflammation. Though it will not remove the products of inflammation, yet by controlling inflammation, aconite will prevent their formation, so saving the tissues from further injury. It is therefore in the early stage of inflammation more conspicuously serviceable: still, although the disease may have advanced to some extent, and injured the implicated organs by the formation of new and diseased products, yet while the inflammation is still going on, aconite does good; indeed, its beneficial effects are often visibly apparent in pharyngitis, tonsillitis, etc.

Dr. Fothergill has recently advanced some ingenious views regarding the way cardiac depressants, like aconite, reduce fever and inflammation.

First, regarding their influence on the preternatural heat of fever, Dr. Fothergill holds that aconite slows and weakens the heart, hence the circulation becomes less rapid, with corresponding decrease in its chemical changes, this diminished oxidation involving, of course, diminished production of heat. Aconite likewise increases the flow of blood to the skin, rendering a dry skin moist and perspiring, and in this way, too, yet more heat is lost by radiation and evaporation.

Now, by making a dry skin moist, we must, of course, abstract a certain amount of heat by evaporation, and to this extent cool the patient, but I think various valid reasons may be given why the loss of heat induced in this manner plays but an insignificant part in causing that great fall of temperature so often produced by aconite.

1. Whenever aconite promotes perspiration, a proportionate reduction of temperature ought to take place in all diseases; but whilst in many cases, as in tonsillitis, etc., the fall of temperature is considerable in other forms of fever, though the perspiration may be very free, scarcely any, or even no fall of temperature takes place; for instance, in many cases of erysipelas, pneumonia, pleurisy, and especially in the specific fevers over which, as we shall see, aconite exerts very little control, the fever continuing unchecked by it.

2. Aconite not uncommonly quickly reduces the temperature without promoting sweating, especially with children, in whom this drug, in many instances, fails to produce perspiration.

3. Sometimes we see cases like the following:—In typhoid or scarlet fever a patient, with a hot, dry skin, whilst taking aconite, becomes in a few hours freely bathed with perspiration, which continues several days, but afterwards, in spite of aconite, the skin again becomes quite dry. Now in a case like this we find the temperature undergoes no change, remaining as high during the sweating as before the administration of aconite, and not rising on the cessation of the perspiration.

4. In order to test the influence of perspiration on the temperature of fever, I have three times performed a testing experiment, in conjunction with Mr. Alfred Gould. We gave to a fever patient with a dry skin a hot-air bath, with the exception of her head and face. When very free perspiration came on, the bath was removed and the patient lightly covered with clothes, and in this state the perspiration continued some hours afterwards. Whilst in the bath the temperature did not increase, nor did it fall at all after the bath, notwithstanding the free perspiration and light clothing. If it be objected that the clothing prevented evaporation,
and the consequent reduction of temperature, we may reply that these are the same conditions under which aconite, in so many instances, causes such marked decline of the temperature.

Like Dr. Fothergill, many other observers attribute the preternatural heat of fever, to diminished loss of heat through dryness of the skin. Whilst the production of heat continues in undiminished amount, and finds no outlet through the skin by evaporation, it must accumulate and raise the body’s temperature. To test the validity of this view, I gave to a patient with quotidian ague, whose temperature in the fever-stage rose to 105° and 106° Fah., half a grain of piolepapine (the alkaloid of jaborandi) just before the onset of the fever, and in twenty minutes produced copious perspiration, and yet in spite of this, the temperature rose six degrees (to 104.4°), and the fit lasted as long as on previous days; the temperature falling short of the attacks on the previous days by about a degree. As in ague, the untreated fits often differ to a greater extent than this, it is doubtful if even this slight diminution was due to the jaborandi. A similar experiment is often seen ready made to our observation in cases of acute rheumatism, with high fever and a drenched skin.—In regard to the ague cases, we may add that the sweating produced by the jaborandi had very little influence on the shivering and blueness of the lips, nose, and extremities.

Fothergill attributes the effect of aconite and other cardiac depressants on inflammation to their influence on the vascular system. It has been shown that the vascular system is always in a state of semi-contraction, and that, by paralyzing the vaso-motor nerves, it is possible to double its capacity. Aconite, he says, dilates the arterioles, and greatly increases the capacity of the vascular system, and by this means drains blood away from the inflamed organ; in fact, this drug “bleeds the patient into his own vessels.” As the vessels leading to an inflamed organ are already paralyzed, aconite does not augment the supply of blood to it. Were this view correct, a remedy should produce the same effect on all inflammations, but we know that whilst colchicum promptly subdues gouty inflammation, it produces very little influence on other inflammations, as pneumonia. Again, many observers believe, with reason, that aconite exerts an especial action in tonsillitis. The inflamed tissues, it may be urged, are here of small extent, so that the depletion will consequently be much more effectual than when a larger tract of tissue is involved.

The results of aconite are most apparent when the inflammation is not extensive, or not very severe, as in the catarrh of children, in tonsillitis, or in acute sore-throat. In these comparatively mild diseases, especially if the aconite is given at the earliest stage, when the chill is still on the patient, the dry, hot, and burning skin becomes in a few hours comfortably moist, and then, in a little while, is bathed in profuse perspiration, often to such an extent, that drops of sweat run down the face and chest. With the sweating comes speedy relief from many of the distressing sensations, as restlessness, chilliness, heat, and dryness of the skin, aching pains and stiffness, the quickened pulse simultaneously becomes far less frequent, and in a period varying from twenty-four to forty-eight hours, both pulse and temperature reach
their natural state. If caught at the commencement, a quinzy or sore-throat rarely fails to succumb in twenty-four to forty-eight hours. After the decline of the fever, the sweating, to the annoyance of the patient, may, on slight provocation, continue for a few days. If administered early enough, the beneficial effects of the drug soon become strikingly apparent. Thus, large, livid, red, glazed, and dry tonsils, will in twenty-four hours present the aspect indicative of the subsidence of the acute stage of inflammation, the disappearance of the swelling, with much redness, whilst the membrane becomes moist, and bathed with mucus or pus. Just at this stage, some strong astringent, as glycerine of tannin, or nitrate of silver, will remove most of the remaining diseased appearance, and the pain, if any should remain. To those who may not have tried it, these visible effects of aconite on inflamed tonsils, etc., may seem exaggerations, but any one who will employ the aconite in the way we are about to point out, can verify my statement.

Its effects on catarrhal croup, or, as it is sometimes termed, spasmodic laryngitis, an hereditary disease often traceable through several generations, and leaving the child when about eight years old, are just as conspicuous. It removes the urgent dyspnœa in a few hours, and shortly afterwards subdues the fever, and almost extingishes, in a few hours, an attack lasting usually three or four days. When there is little or no fever, it apparently checks spasms and croupous breathing, and in those rarer cases where these symptoms continue after the subsidence of the fever. Aconite is equally serviceable in severe colds, with much chilliness, great aching of the limbs, a hot, dry skin, and quick pulse.

Aconite is often of great service in an attack of asthma, with the following symptoms:—The patient, generally a child, is first seized with coryza, accompanied, perhaps, with repeated and severe sneezing, then the inflammation passes down to the lungs, causing, perhaps, sore-throat, before the bronchial tubes are reached. The coryza may precede the bronchial symptoms by three or four days, ceasing when the chest symptoms begin, which, in the early attacks, may consist only of cough with wheezing, and but little shortness of breath, with inability sometimes to lie low at night. As the disease advances, the asthmatic character becomes more developed, and the coryza symptoms often simultaneously decline, till at last well-marked bronchial asthma becomes established, without any preliminary coryza, or the coryza and asthmatic symptoms begin simultaneously. I believe that with children
asthma often begins in this way, and throughout life it may retain more or less of its coryzal character. During the coryzal stage there is decided fever, and then is the time when aconite proves so serviceable; for given at the onset of the fever, aconite cuts it short, and arrests the inflammation before it reaches the chest, and in this way averts the asthma. In other cases of asthma, though there is no coryza, the attack is ushered in by chilliness and fever, which for some days precedes the tightness of breathing, and here aconite, given at the very commencement of the fever, may avert the attack of asthma. (See Arsenic).

In a variety of the above-described diseases, of which the following account may be taken as a type, aconite is likewise beneficial. A patient is very prone to catch cold from the slightest exposure to a draft or to damp cold. The symptoms always follow a definite order: the throat, first attacked, becomes sore, swollen, red, and beefy-looking; the soft palate, its arches, and the uvula may be implicated. The inflammation in a very variable time, sometimes almost at once, oftener after three, four, or five days, spreads upwards to the nose, causing coryza, and downwards to the chest, producing catarrh and cough; sometimes the disease tends to pass upwards, sometimes downwards, to the chest. In bad cases, or cases that have lasted some time—and the affection may harass a patient for years—the aspect of the throat never becomes natural, the mucous membrane always remaining swollen, red, and beefy-looking; exposure to cold or damp intensifies this condition; which then invades the nose and chest. This condition, if left unchecked, will induce emphysema toward middle age, through the repeated attacks of pulmonary catarrh. In the throat stage there is often fever, and aconite with belladonna given at the very outset of the attack, will often summarily cut it short and prevent the coryzal and lung symptoms. Applications to the throat are very useful in this troublesome and pertinacious affection. It is a good plan to "harden" the throat, to diminish its tendency to catarrh, by the nightly use of the cold wet compress, and daily swabbing with an astringent like glycerine of tannin. I have found the Turkish bath and the inhalation of sulphurous acid and of carbolic acid useful in these cases.

In pneumonia, pleurisy, and the graver inflammations, the effects of this valuable drug, though not so rapidly, are often manifest.

In pericarditis accompanied with violent throbbing and extreme pain, aconite will speedily quiet the undue action, and so relieve the pain.
ACONITE.

Most observers ascribe its influence on inflammation to its action on the heart, and point out, truly enough, that it is most useful in the sthenic forms of disease; and, indeed, it may do harm unless care is taken where there is great weakness, with feebly-beating heart.

It appears to me that in fevers we can considerably reduce the frequency of the pulse without lessening the rapidity of the circulation. A moderate dose of aconite, whilst it makes the pulse less frequent, renders it fuller, stronger, and less compressible. This, indeed, we should expect, for if the heart does the same amount of work, after it beats slower, each individual beat must do much more work, so that if we reduce the pulse from 120 to 60, the heart must do twice as much work after it has been slowed by aconite. It may be said that though each beat is stronger, yet the heart is doing less work than when it was beating quicker. As tending to support the view that aconite weakens the heart's contractions, it must be admitted that even small doses, after a time, sometimes make the pulse unsteady and even irregular.

I would venture tentatively to suggest whether the slowing effect of aconite may not be useful by increasing the heart's period of rest and nutrition. The diastole of the heart occupies nineteen out of twenty-four hours, and is the period for rest and nutrition. When the heart is made to beat quicker, the acceleration takes place at the expense of the diastole, thus shortening the time for rest and nutrition. By slowing the heart, aconite prolongs the diastole, and thus increases the time for the heart's rest and nutrition.

The method of employing the drug has much to do with its efficacy. It should be given, as already stated, without delay, at the very onset of the disease, every hour being important. Half a drop or a drop of the tincture in a teaspoonful of water, should be given every ten minutes or quarter of an hour for two hours, and afterwards hourly; but if there is much prostration with feeble and weak pulse, a still smaller dose. Now and then a patient experiences nausea and even sickness after each dose.

We feel constrained to point out here the signal service rendered by the thermometer in enabling us to decide whether or not to give aconite. Indeed, in the treatment of inflammations, the thermometer and aconite should go hand-in-hand. If the symptoms and physical signs are not sufficiently developed to enable us to decide whether or not an acute inflammation of some deep-seated part has set in, the thermometer will often clear up the doubt. No acute inflammation can exist without preternatural heat. Hence, in a doubtful case, if the temperature after careful investigation, is found natural, the case is not one for aconite; while, on the other hand, if the other symptoms doubtfully indicate an inflammation, a rise in the thermometer will add considerably to the probability that we have to deal with an inflammation, and will indicate the
advisability of employing aconite. Sometimes the throat is swollen, very red, and presents the appearance of an ordinary sore throat accompanied by fever, but fever is absent. Without the thermometer we are unable to discriminate with certainty these two kinds of inflamed throat, and the inability to distinguish the one from the other has often led, no doubt, to the mistaken use of aconite, so bringing discredit on this valuable drug. The non-febrile form is affected very little, if at all, by aconite.

Again, the use of the thermometer after scarlet fever is very important; for, as is well known, a patient is then liable to acute inflammation of the kidneys, the first onset of which is at once indicated by a rise in the body temperature. It is well, therefore, during the convalescent stage, to direct the nurse to take the temperature night and morning; and if this should rise beyond the healthy standard, she should at once give aconite, so as not to allow some hours to elapse before the patient can be visited by the medical attendant. The fever, it is true, may depend on some other cause than inflammation of the kidneys; but even then it will probably be inflammatory in character, arising from gastric catarrh, over-feeding, and the like, and in any case aconite is indicated.

Aconite does not shorten the fever of acute specific diseases, as scarlet fever, measles, &c., but it has a beneficial influence in these diseases, soothing the nervous system and favouring sleep by inducing free perspiration. Whether it can lessen the severity of the fever, or diminish the duration of the acute specific diseases, is doubtful; but there is no doubt that it can control the inflammatory affections which often accompany them, and which by their severity may endanger life. Thus aconite will moderate, but neither prevent nor shorten the course of the throat inflammation in scarlet fever and the catarrh and bronchitis in measles, and in this indirect manner it may lessen the height of the fever.

Aconite proves useless in certain epidemics of febrile inflammatory sore throat. These cases are met with chiefly during the prevalence of scarlet fever. The throat is much swollen, of a very dusky red colour, and the pulse is very frequent and very weak. There is great prostration, and the symptoms are of a marked typhoid character. Here stimulants, with the application of a strong solution of nitrate of silver, do most good.

The thermometer, again, renders notable service whilst giving aconite in the acute specific fevers and the sore throat just described. Under the influence of this drug, the skin becomes moist
ACONITE. 475

and the pulse falls perhaps to its normal state, and we might conclude that the temperature likewise had become natural, only the thermometer shows that it remains unaltered.

Aconite is of marked service in erysipelas. Administered at the commencement, it often at once cuts short the attack; and even when, in spite of it, the disease continues, aconite will reduce the swelling and hardness, lessen the redness, and prevent the inflammation from spreading.

In children after vaccination, perhaps when the spots have nearly healed, an erysipelatous redness occasionally appears, spreading over the arm and a great part of the trunk, usually ceasing in one part, then successfully attacking contiguous parts, and leaving a yellow discoloration and desquamation. The redness is often intense, the tissues being very hard, painful, and shiny, and this inflammation may continue for weeks. It may run down the arm, involve the hand, and implicate the greater part of the chest; or it may appear in the leg, and gradually spread to the foot; or, again, it may spread from the hand up the arm, and once more down to the hand, and this may be repeated many times. Sometimes the inflammation terminates in small abscesses. In cases like these, aconite generally at once arrests the inflammation; and even when it persists aconite renders the redness less intense, and the swelling less hard and painful. The troublesome inflammation often arising after the vaccination of adults, ordinarily yields to aconite, especially if supplemented by the local application of belladonna ointment twice daily.

In the treatment both of simple inflammations and acute specific diseases, aconite may be appropriately administered in conjunction with any other remedy which may be indicated.

Aconite has been much praised by eminent authorities in the treatment of acute rheumatism, but its good effects are not so apparent as in acute inflammation. Acute rheumatism, having no regular course or duration, may last untreated only a few days, or may endure for many months. It is difficult, therefore, to decide whether, in certain cases, the speedy decline of the fever is a natural decline, or due to the aconite. It is certainly ineffectual in many cases, which appear to run their course uninfluenced by this drug; so that it is still required to determine in what class of cases it is useful, and in what class of cases it is useless. It often appears to be of service, however, in subduing the pain from inflamed and swollen joints.

Gouty pains are said to yield to this remedy. It has been given
in neuralgia, apparently with good results. Gubler, indeed, maintains that aconitia is highly useful in trifacial neuralgia, and that it cures the most unpromising cases. He insists on its being given in solution, and begins with $\frac{1}{90}$ grain of the nitrate, increasing the dose till $\frac{1}{50}$ th grain is reached. This treatment must be avoided if the patient suffers from heart disease. Seguin confirms this statement, but points out that susceptibility to the drug is greater in some persons than in others. He finds that as a rule distinct physiological effects follow $\frac{1}{50}$ th grain thrice daily.

It has been elsewhere shown that aconite lessens the rapidity of the circulation. It may, therefore, be used in all cases where it is needful to subdue vascular excitement; in fact, it may be given in precisely those cases which were formerly treated by bleeding.

In sudden check of the menses, as from cold, aconite will often restore the flux, and thus obviate the distressing and peculiar train of symptoms produced by arrested menstruation.

Dr. Bayes recommends aconite in otitis, and states that it quickly relieves the pain.

Small doses of aconite, administered frequently, will often quickly check the nose-bleeding of children and of plethoric people.

Aconite will usually subdue the "fluttering of the heart" of nervous persons, and also nervous palpitations. More general treatment is often required; but when the conditions causing the disturbance are undetectable or irremovable, then aconite may be usefully employed.

In several cases I have seen aconite quiet the distressing restlessness or "fidgets," which affects men as well as women, and have known one drop at bedtime calm the patient and permit sound refreshing sleep; if one drop is insufficient, it may be repeated hourly for three or four hours.

A drop of tincture of aconite each hour yields satisfactory results in the acute stage of gonorrhoea; and it is even said to remove chordée.

DIGITALIS AND ITS PREPARATIONS.

Large doses of digitalis excite nausea, vomiting, and diarrhoea; the matters voided, either from the stomach or bowels, being of a grass-green colour, due to the action of the gastric juice on some
DIGITALIS.

constituent of the digitalis. These results may follow even a medi-
cinal dose.

The digitaline readily passes unchanged from the intestines into
the blood; for the same symptoms ensue whether the alkaloid is
swallowed or injected into the veins.

The action of digitalis on the heart is very noteworthy, and our
knowledge of its influence on this organ, whether healthy or dis-
eased, is becoming daily more exact.

Drs. Fagge and Stephenson have published some interesting and
important investigations concerning the influence of digitalis on the
frog.

"Its effect on the frog is the production of irregularity of the
heart's action, followed by complete stoppage of the pulsations,
the ventricle remaining rigidly contracted and perfectly pale after
it has ceased to beat, the muscular power of the animal at the time
being unimpaired, and persisting as long as in frogs in which the
circulation has been stopped by other means, such as ligature of
the heart. The irregularity of the heart's action, which precedes
its stoppage under the influence of the poison, is peculiar. The
rhythm is but little altered, and the beats are not necessarily
diminished in number, as has been supposed. Sometimes, how-
ever, the ventricle makes only one pulsation for two of the auricles,
the number of its contractions being therefore lessened by one-
half.

"More frequently the irregularity consists in one or more por-
tions of the ventricle (especially the apex) becoming rigid, white,
and contracted, while the remainder of the organ continues to
dilate regularly. When the yielding portions are small, a peculiar
appearance, as if the wall of the ventricle formed crimson pouches
or protrusions, is produced." *

In these experiments the digitalis certainly did not weaken but
strengthened the heart's contractions, and at last tetanized this
organ; at the same time the contractions were rendered peculiar
and irregular.

Dr. Fothergill finds "that first the contractions became some-
what quicker and more complete; then the distension became less
complete, especially at the apex, which remained white, and firmly
contracted. Here and there were little sections, apparently be-
longing each to a separate cardiac ganglion, which did not seem

* These authorities point out that "upas antiar, helleborus viridis, and perhaps
other species of helleborus, the Tanghinia venenifera, the dajaksch, the carroval,
and scilla maritima influence the heart in the same way."
affected, and in the general contraction pouched out, contrasting in colour with the contracted and whiter portions."

Two other experimenters, Eulenberg and Ehrenhauß, have ascertained the influence of solutions of digitaline, applied directly to the frog’s heart after its separation from the body, in order to ascertain if the effects of digitalis are due to its action on the pneumogastric nerve. When partly submerged in a solution of digitaline, composed of one-fourth of a grain of the alkaloid to the ounce of water, the contraction of the still pulsating heart increased in force, but every now and then a pause occurred in its beat.

With a still weaker solution (gr. i. to $\frac{3}{8}$ viii.) the same phenomena were observed. The pulsations grew fewer and fewer, while the duration of each contraction was proportionately lengthened. The heart continued to pulsate two hours and a half.

These investigations show that digitaline strengthens the contractions of the heart, and prolongs the systole, while it does not at all shorten the time the heart usually continues to contract after its removal from the body.

Dr. Nunneley has made numerous observations on the action of digitaline on frogs. The following, in his own words, is a summary of what he has observed:

"The physiological action of digitaline on the heart of the frog would appear to be widely different from its therapeutical action on the dilated and weakened human heart in disease. In the former case the heart is thrown into violent and disorderly contractions, which quickly end in a cessation of movement; in the latter, clinical examination of the heart and pulse appear to show an increase of contractile power, and a restoration of its regular performance.

"1. The first visible effects on the heart occur a short time after the injection of a moderate dose under the skin of a frog, and consist in a diminished range of the heart’s movements, whilst the organ itself appears somewhat shrunken. The most marked alteration, however, is a certain embarrassment and want of smoothness in the contractions, as if the separate muscular fibres acted with undue energy, but in an irregular manner, or as if there was a want of co-ordination in the contractions of the individual fibres.

"2. The heart does not contract with greater frequency after a dose of digitaline, and no change at all occurs in this respect until its action becomes embarrassed, when the frequency of pulsation is diminished, and does not again increase."
"3. The ventricular systole is lengthened, but it presents a very different appearance to the systole in health. The ventricle seems no longer to act as a single large muscle, but as if made up of numerous small ones, which contract energetically, but in an irregular and disorderly way; hence there are projected bundles of contracted muscular fibres which give the ventricle a rough and uneven surface, and an irregular outline. During the diastole the ventricle does not everywhere assume a red colour, but one or more red spots appear, as if the ventricle were so tightly compressed that only a small quantity of blood could enter it by chance. Sometimes a red spot is elevated a little above the general surface, forming a kind of pouch. These spots become smaller and smaller, until at last the ventricle is left very pale, strongly contracted, and motionless, while the auricles are distended with blood.

"4. The rhythm of the contraction of the three cavities is generally little interfered with. Two contractions of the auricles sometimes occur to one of the ventricles, but often there are also two ventricular contractions, one of them being very slight and transient.

"Sometimes, after the injection of a dose under the skin, the frog has paroxysms of gasping movements, in which it remains perfectly still, leaning on its fore-paws, which are widely separated, and holding its head up, and opening its mouth widely. Whilst in this state, which lasts from about half a minute to a minute and a half, or more, the frog scarcely notices irritation of its skin, or shaking of the dish containing it; and the mucous membrane of the tongue and mouth are seen to be extremely pallid in consequence of the small quantity of blood sent from the heart. When the paroxysm has passed off, the frog jumps about with energy. It is worthy of remark that whilst the embarrassment to the action of the heart is continuous, the gasping movements are paroxysmal, as in human beings where the cardiac dyspnœa occurs in fits, whilst the condition of the heart remains constant. The posture and appearance of the frog are chiefly noticeable, however, from the vivid picture they present of extreme and urgent dyspnœa."

It thus appears that, in the main, all these experimenters agree as to the action of digitalis on the frog's heart.

Messrs. Bouley and Reynal, in giving large doses to horses, found the circulation became more rapid, the heat-beats more abrupt, their energy much increased, and accompanied, after a certain time, with a vibratory thrill, with a decided metallic tinkl-
ing, and, as poisoning went on, a distinct bellows' murmur was heard, becoming more audible on exertion; the heart-beats then show a decided intermittence, and the pulse is small, thready, and intermittent.

In doses less rapidly fatal, there is, at first sight, excitement of the heart, with a little quickening of its beats, then they soon grow less frequent, and fall to 25 or 20 a minute. The cardiac sounds are more clearly heard, more distinct from each other than normally, and with a different rhythm, there being occasional intermissions occurring regularly or irregularly, and after a time a vibratory thrill is detected, followed by a bellows' murmur. As death approaches, the beats become rapid, 90, 100, or 140. Dr. Brunton, who has heard the blowing murmur several times, says it occurs in horses, dogs, and in the human subject, and that it is probably due to mitral or tricuspid regurgitation, from irregular contraction of the columnae carneae.

Dr. Fothergill found that when introduced into the circulation digitalis contracted the heart of minnows till no cavity could be seen, the organ becoming hard and glistening, like gristle; the auricle was distended, and could not drive the blood into the firmly-contracted ventricle; hence the blood regurgitated into the venous sinus behind, which, on being pricked, the auricle drove out the blood, and became firmly contracted, showing that, in these animals at least, this agent affects the auricle in the same way as the ventricle. Dr. Fothergill likewise found that digitalis, given to sparrows, contracted the left ventricle, the right side of the heart being very distended, and the lungs congested; showing that this drug affects either exclusively the left side, or affects it earlier and more powerfully than the right side, otherwise the right cavities should become as contracted as the left.

Dr. Fothergill records likewise the following curious and important observations, showing the opposite action on the heart of digitalis to aconite under certain circumstances. On poisoning a frog with aconite, the ventricle became gradually more and more distended, its contractions slower and more feeble, until each contraction drove only a small quantity of blood off the top of the distended ventricle, and at last the greatly distended heart ceased to beat. At this crisis he administered digitalis, and soon contractions, at long intervals, took place imperfectly, the gaps becoming shorter and shorter, and the contractions more and more complete, until the heart beat naturally. Then, on poisoning a frog with digitalis, he found that aconite acted but little on the heart, and was incapable of dilating it.
DIGITALIS.

Many modern writers, as Handfield Jones, Fuller, Winogradoff, Traube; Brunton, Balthazar Foster, in opposition to the views formerly held, consider that digitalis strengthens the heart's contraction; for it strengthens a feeble, dilated heart, and, as we have seen, the ventricles are found strongly contracted in frogs, minnows, sparrows, and occasionally in mammalia. In addition to this effect it produces irregular and disorderly action in frogs; different parts of the ventricle appearing to act without any relation to each other, and a similarly disorderly action probably occurs in the hearts of other animals.

Sometimes, after a large dose, the pulse, as we shall see, becomes very frequent and feeble, which does not show that the heart itself is weak; for at this very time the heart may be beating strongly. The weak pulse is due to dilatation of the arterioles, whereby the blood passes quickly and easily from the arteries into the veins. Traube and Brunton, however, evidently regard digitalis as a heart-tonic only when given in moderate doses, for, as will be shown presently, they consider that large doses paralyze the nervous ganglia of the heart.

Boehm's experiments tend to confirm the view that digitalis strengthens the heart's action. The isolated heart of a frog was made to pump serum through a glass tube; on applying digitalis the heart acted with greater force, but larger doses diminished its power. Finally the heart stopped, with every drop of serum squeezed out of the ventricles. Each individual beat of the heart was greatly increased in strength, in some instances nearly doubled. The loss of power after large doses appeared to be due partly to the great slowing of the heart, partly to the incompleteness of the diastole, and the consequent imperfect filling of the ventricles.

Blake, Brunton, Foster, and others, find that digitalis sometimes considerably increases arterial tension. Digitalis injected into a vein, causes the tension to reach its maximum in four to ten minutes, and this heightened blood-pressure Brunton attributes chiefly to the contraction of the arterioles. Dr. Boehm finds, as Traube has stated, that after section of the cervical spinal cord destroying communication between the arterioles and the vaso-motor centre, digitalis causes no rise in arterial pressure. Dr. Fothergill has seen the arterioles in the web of the frog's foot contract on the local application of digitalis; on the other hand Dr. Nunneley carefully investigated the subject, and concludes that digitalis locally applied to the web of a frog's foot produces no
effect whatever on the calibre of the small arteries, nor when it is injected under the skin any alterations in their size, until the irregular or more or less persistent contractions of the ventricle diminish the blood-stream to which the arteries then to some extent adapt themselves. Dr. Boehm, too, has often examined the small arteries of the frog’s mesentery, studying for hours the action of digitalis upon them, but has never found them affected by it. Dr. Brunton, with the aid of Traube’s modification of Ludwig’s kymographion, re-investigated this question, and he holds to his original conclusion that digitalis causes contraction of the arterioles. For example, he paralyzed a dog with morphia, inserted a canula into the crural artery, and then compared the curves indicating blood-pressure before and after the injection of digitalis. After the injection the pulse grew slower and the mean blood-pressure increased, whilst the height of the wave due to each cardiac pulsation remained much the same; and the blood-pressure continued to rise, although the pulse grew slower and slower, and the oscillations of the mercurial column at each pulsation diminished in extent. The increase of blood-pressure may be due either to the heart at each pulsation propelling a greater quantity of blood into the aorta, or to the contraction of the arterioles lessening the facility of the blood-flow from the arteries through the capillaries, to the veins.

A study of the form of the pulse wave proves that the increased pressure is due to contraction of the arterioles, since a much longer time was occupied in the descent of the pulse-wave after digitalis, showing that the blood passed more slowly out of the arteries into the veins. With heightened blood-pressure, the arterioles remaining unchanged, the blood would pass more quickly into the veins, and consequently the descending line of the pulse-wave should occupy a shorter instead of a longer time.

A poisonous dose of digitalis, after a time, paralyzes the arterioles, which therefore dilate, and the arterial tension falls.

According to Saunders, Jörg, Hutchinson, and others, digitalis, in moderate doses in the first instance, quickens the pulse, though other observers deny this effect. All, however, agree, that moderate doses render the pulse less frequent, and that if the drug is pushed, the pulse becomes irregular, very frequent, and feeble; feeble, according to Brunton, owing to the paralysis of the arterioles, whence the blood passes more readily from the arteries into the veins; and quick and irregular, as Traube apparently believes, owing to the previously stimulated vagi becoming paralyzed.
DIGITALIS.

Various and contradictory explanations have been advanced regarding the way digitalis affects the heart.

The following seem to be the leading phenomena requiring consideration:

1. Increased contraction, ending in tetanic contraction of the ventricles, as evidenced in the case of frogs and many other animals.

2. The slowing of the heart’s action in man and the higher animals, followed, after large doses, by very frequent and feeble pulse.

3. Irregular action of the heart.

4. Increased arterial tension.

It has been proved that moderate stimulation of the vagus slows the heart, but if the vagi are divided, it beats quickly, tumultuously, and irregularly. We have just seen that in the higher animals digitalis at first slows the heart, but that poisonous doses make the heart beat quickly and irregularly. These facts induced Traube to conclude that digitalis at first stimulates, but afterwards paralyzes the vagi; thus he found that a moderate dose injected into the veins of dogs greatly reduced the frequency of the pulse, but a larger dose increased it in one case from 32 to 160 beats, and in another case from 33 to 202 beats. He made seven further observations to discover if this effect were really exerted through the vagus. After slowing the pulse by digitalis, he cut the vagi, when the pulse at once became very frequent. Further, after dividing the vagi, the digitalis, in most cases, reduced the pulse very little. Subsequently it was shown that whilst stimulation of the vagus, reduced the blood-pressure, digitalis greatly heightened it; proving that the effects of digitalis are not applicable without admitting the influence of the cardiac ganglia ("musculo-motory") as well as the vagi ("regulatory").

This led Traube to re-investigate the question. After paralyzing the vagi by injection of woorari, to obviate the effects resulting from their section, and performing artificial respiration, he divided the vagi and injected infusion of digitalis into the veins, and found that a great increase of the blood-pressure (arterial tension) took place; a result which led him to the conclusion that digitalis at first stimulates the vagi and the motor nervous ganglia of the heart itself, but afterwards paralyzes both.

Dybkowski and Pelekan maintain that digitalis acts solely through the regulating and musculo-motory (ganglia) apparatus.

* But this increased arterial tension is, in large part, due to the contraction of the arterioles by digitalis.
of the heart itself, and not through the vagi, as the drug’s influence is not affected by destruction of the medulla oblongata, by division of the vagi, nor by their paralysis with woorari. Eulenberg and Ehrenhause have shown that digitalis will produce its effects through its action on the heart itself, for, as we have seen, the heart’s contractions are arrested when the lower third of the extirpated heart of a frog is placed in a strong digitaline solution, whilst a weaker solution renders the movement slow and intermittent. Brunton considers that Traube’s experiments prove that digitalis likewise acts through the vagus, and that after division of the vagi, digitalis acts on the terminations of this nerve, but less energetically than on the trunk, and consequently produces less effect than when the vagi are intact. Brunton believes that digitalis "acts on the regulating apparatus of the heart chiefly through the vagus, thus causing slowing of the heart, and stimulates the musculo-motor apparatus (ganglia and nerves of the heart), causing increased force of the cardiac contractions. This primary stimulation then gives way to paralysis, at first partial, and then complete." Subsequent observations led him to conclude that digitalis slows the heart in part by its contracting influence on the arterioles, thus heightening arterial pressure, and not altogether by direct influence on the vagus, for after slowing the heart-beats by the drug, he administered nitrite of amyl, and thus induced dilatation of the arterioles, and diminution of the blood-pressure. Whenever the blood-pressure fell after the inhalation of amyl, he found that the pulse became quick. On the other hand, Traube finds that after cutting the cervical spinal cord of a frog, thus separating the arterioles from the vaso-motor centre, digitalis induces marked slowing of the pulse, simultaneously with great diminution of arterial pressure, this proving, as he believes, that this slowing is not due to increased arterial pressure. Dr. Boehm likewise finds that after section of the cervical spinal cord of rabbits, digitalis produces no increase of arterial pressure, showing that this drug affects the arteries through the vaso-motor centre.

Brunton, Foster, and others, are led to conclude from sphygmographic observations, that in the healthy human subject digitalis, while diminishing the frequency of the heart’s beats, increases the force of each beat, and augments arterial tension.

We can conceive that in a given disease digitalis may afford relief in one of the four following ways:—

I. By strengthening the action of a weak heart.
DIGITALIS.

II. By reducing the strength of the beats of a heart acting too powerfully.
III. By lessening the frequency of the heart's beats.
IV. By correcting irregular action of the heart.

It is possible that in certain affections, digitalis may give relief through each of these effects, or through one or more of them in combination. Further, it is a question of interest whether digitalis affects both sides of the heart, or the left only, and whether it affects both auricles and ventricles, and, if so, whether in an equal degree. These questions cannot be satisfactorily solved; but from the recorded experiments on animals, and from the fact that digitalis equally reduces the frequency of the contractions of both cavities, it is probable that it affects the whole heart, but especially the ventricles.

Dr. Balthazar Foster ascribes the effects of digitalis on most diseases of the heart to the reduction in the frequency of its beats, and explains the influence of the drug in certain cardiac diseases in the following manner:—In most cases of aortic regurgitation it is well known that digitalis does harm by slowing the heart, and giving more time for the blood to regurgitate into the ventricle, and by increasing arterial tension, digitalis correspondingly increases the regurgitation, and thus greatly aggravates the severity of the symptoms. In mitral obstrusive disease it is serviceable, for, "by slowing the action of the heart, the period of time during which the blood from the distended auricle can flow into the ventricle is increased, and as the extra time allows more blood to pass through the narrowed mitral orifice before the final effort of the auricle is made, that effort is made on a smaller quantity of blood, and is consequently more effective." He thinks that digitalis also strengthens the contraction of the auricle.

I believe that we obtain better indications respecting the advisability of using digitalis by considering the totality of the symptoms rather than by confining the attention simply to the nature of the valvular affection, and therefore, I will fully indicate the heart diseases in which this drug will prove useful, and those in which it will be found of little or no use.

Digitalis will be found of eminent service to a patient presenting the following symptoms and physical signs:—There is dropsy, which may be extensive; the breathing in the earlier stages of this condition is much distressed periodically, and especially at night; but when the disease reaches its worst stage, the breathing is continuously bad, although it becomes paroxysmally worse. The
patient cannot lie down in bed, and is perhaps obliged to sit in a chair, with the head either thrown back, or more rarely leaning forward on the bed, or some other support. The jugular veins are distended, the face is dusky and livid, and the pulse very frequent, feeble, fluttering, and irregular. The urine is very scanty, high-coloured, and deposits copiously on cooling. The heart is seen and felt to beat over a too extensive area; and the chief impulse is sometimes at one spot of the chest, and sometimes at another. The impulse is undulating, and the beating very irregular and intermittent. The physical examination betrays great dilatation of the left ventricle, with often a not inconsiderable amount of hypertrophy. A murmur is ordinarily heard having the character of that produced by mitral regurgitant disease, and also there may be disease of the aortic valves.

In such cases, Dr. Foster ascribes the symptoms to mitral obstruction, and he considers that digitalis affords relief by slowing the heart’s beats; but this view fails to explain those instances where, after digitalis has relieved the patient, the drug may be discontinued for a long time without a return of the symptoms. Dr. Foster says, that digitalis strengthens the heart, thus increasing arterial recoil, so promoting its own nourishment, and in this way permanently strengthening the heart; but this hypothesis fails to throw light on those cases where, after two or three days, the medicine may be discontinued without return of the symptoms; in so short a time the heart can hardly have become permanently strengthened by increased nutrition.

A case presenting these symptoms and physical signs will generally respond quickly to digitalis, if it be given in the way here set forth. In all treatment, the object should be to obtain the greatest therapeutic effects with the smallest possible dose, a condition particularly important with a powerful drug like digitalis; large doses sometimes appear to increase the heart’s embarrassment, and relief comes only when the dose is diminished. It is highly important to give a dose no larger than is necessary, since the patient may require to take it for a long period; in a case like that just described, the patient, after a time, becomes accustomed to the medicine, and the dose, which at first afforded relief, seems partially

* These, and other sufferers from diseases of the heart, who often become much exhausted through inability to sleep, may obtain relief from the dyspnoea, and sleep more or less refreshing, by the hypodermic injection of small quantities of morphia (one-sixth or one-twelfth of a grain) without fear of any disagreeable consequences.
DIGITALIS.

487
to lose its effect, and requires augmentation; but this could be
done only with the greatest caution, and even then with some
hazard, if, in the first instance, the maximum quantity had been
given.

I believe that with digitalis the formula has much to do with the
success of the drug. The fresh and well-made infusion generally
gives far better results than the tincture. It is advisable to begin
with a drachm of the infusion twice, or not more than three times
a day, and in many instances this quantity will suffice. The effects
on the pulse, the urine, and the dropsy, are to be carefully watched.
When the drug is properly administered, the pulse grows consider-
ably stronger, more regular, and much slower, till in very many
cases all irregularity ceases, and the pulse becomes natural in fre-
cquency and rhythm. At the same time the urine, which previously
may not have amounted to more than half a pint in the twenty-four
hours, increases to one, two, four, or even eight pints a day, and in
proportion to this increased flow, the dropsy diminishes till it
finally disappears. Should the influence of the drug be small or
imperceptible, the quantity may eventually be increased; but it
must be remembered that the efficacy of digitalis may not become
apparent for three or four days. A drachm may be given every
three or four hours, as circumstances indicate, or one drachm may
be given in the morning, two in the middle of the day, and two at
night; should the symptoms resist this additional dose, another
augmentation must be made in a few days. A small dose often
succeeds admirably at first in removing much of the dropsy, but
fails to effect all that is desired; the dose should then be gradually
increased. *

When a patient with the foregoing symptoms dies, the post-
mortem examination generally reveals great dilatation of the left
ventricle, with much true hypertrophy of its walls. Sometimes
there is incompetence of the aortic or mitral valves, or of both;
but it sometimes happens that both these sets of valves are healthy
and admit of no regurgitation when tested with water, although a
murmur of a mitral character had existed during life.

Digitalis will be found especially useful when there is much dil-
atation and hypertrophy of the left ventricle without valvular dis-
ease, although a mitral murmur may have been heard during life;
but in many cases it is at present, unfortunately, impossible to
decide before death whether or not there is mitral disease.

* The cases we are now treating of require, in most instances, free alcoholic
stimulation, and the best agent, on account of its diuretic action, is gin.
Eminent authorities have asserted that in aortic disease digitalis will embarrass the heart still further, and increase the difficulty of breathing, and indeed is worse than useless; but a prolonged and careful investigation of this question has convinced me, that in a case presenting the physical signs and symptoms above described, the existence of aortic disease, whether obstructive or regurgitant, or both, does not in any way contra-indicate the employment of digitalis.

The irregularity of the pulse is the capital indication of the necessity of giving digitalis.

Earlier stages of the foregoing condition are not unfrequently met with, when the symptoms, though troublesome, have not yet become very severe. These forms sometimes occur in children some time after an attack of rheumatic fever. The strong and heaving impulse of the left ventricle, strong enough sometimes to shake the patient, gives evidence of great dilatation and hypertrophy; and there is generally a systolic apex murmur (mitral), with perhaps apex thrill. The patient at first is troubled only with palpitation on exertion; but after a variable time, perhaps many years, paroxysms of palpitation set in, accompanied by urgent dyspnoea, and the attacks may recur so often, that the child, unable to lie down at night, is obliged to be propped up with pillows. As a further stage the dyspnoea is continuous, but becomes paroxysmally worse, and the child is unable, either night or day, to assume a horizontal position. In all these stages the pulse is ordinarily quite regular, but is generally very frequent and feeble, although, at the same time, the heart throbs violently against the chest. There is no dropsy, or it is slight and transient, appearing for a few days, and then passing away, till, for some reason, the heart again becomes embarrassed.

Digitalis will often quell the tumultuous, strongly-beating heart, strengthen the pulse, at the same time reduce its frequency, and improve the patient in every respect. It must be given till the pulse falls to 60 or 70 beats. In these cases very large doses are sometimes required, even two grains of the powdered leaf every three hours.

In cases such as we have just described, two important circumstances may be frequently observed; the pulse may be very weak and feeble, while the heart contracts with unnatural strength; and while the digitalis strengthens the pulse, it subdues the unnatural force of the heart’s beats.

The first circumstance is of great importance, as in the cases
now treated of, it is commonly thought that the weak pulse indicates a correspondingly weak heart, whence it is concluded that, as digitalis is eminently suitable for the cases in question, it is useful when the heart is feeble—a conclusion certainly erroneous; for, as we have said, while the pulse is very weak, the heart can be felt to strike the chest with considerably increased force; and further, when these patients die, the left ventricle is found largely dilated it is true, but also greatly hypertrophied.

This want of correspondence between the pulse's strength and the heart's contraction, becomes still more apparent when a patient thus affected is seized with an attack of palpitation. The heart then sometimes beats with strength sufficient to make its movements visible through the clothes, or even to shake the bed, yet the pulse, at the same time, is very small and feeble. Digitalis will often correct this discrepancy between the pulse and the heart; hence, while under its influence the heart's action becomes quieter, the pulse grows stronger, as well as slower, affording one illustration of the power of digitalis to control a heart contracting too strongly.

An early stage of the severe disease just depicted, may also be witnessed in older people, in whom there is much irregularity of the heart's action, with a pulse irregular and intermittent, neither quick nor very weak, and with no alteration in the size of the organ. A mitral murmur may very generally be detected, and perhaps an apex thrill. These patients may suffer from constant dyspnoea and from attacks of palpitation, during which the embarrassment of the breathing is much aggravated. There is no dropsy nor lividity of the skin, and the urine is secreted in natural quantity. Here digitalis will give complete relief, quieting the palpitations, removing the dyspnoea, and regulating the pulse. The disease may persist for years in this form, requiring the use of digitalis for months or years, sometimes in very large doses, and may even then fail to restore perfect cardiac action, the irregularity becoming marked on exertion; yet digitalis will remove all or most of the symptoms, though a little irregularity may remain.

The existence of aortic valvular disease in any of the milder (as also in the severer) forms, is not to be considered a prohibitory indication to the administration of digitalis.

An important question is, how long can digitalis afford relief and preserve life? As might be expected, this will depend on the more or less advanced stage of the disease. In its earliest stages the
relief may be so complete as to permit the discontinuance of the medicine, and the patient may remain relieved for many months or many years; but generally, occasional evidence of the symptoms recur, to be removed again and again by a fresh recourse to digitalis. Thus life may be greatly prolonged and made useful, although the sufferer is unfit for very arduous work. Even when dropsy has appeared, and sometimes even when it is extensive, digitalis will often give great and permanent relief; but in most instances where the disease, having lasted for some time, has much advanced, the relief—although it may be to the extent of getting rid of the dropsy and dyspnea—is of short duration, and the disease, as it were, over-rides the medicine and progresses in spite of it. It is of bad augury if a considerable dose is required to mitigate the symptoms, or when it is necessary to give the drug in increasing doses to maintain the ground at first gained.

If no dropsy is present, the digitalis will not notably increase the quantity of urine, indeed will not act as a diuretic; for usually where there is no dropsy, the urine is excreted in natural quantity.

I suggest the following explanation of the action of digitalis:—By restoring order to the heart’s movements, the regurgitation caused by the irregular action of the columnae carneæ is obviated, and regurgitation from the left ventricle to the auricle, and thence through the lungs to the right side of the heart, is prevented. If this be the true explanation, then digitalis will remove the symptoms completely only when the mitral regurgitation is dynamic, and will fail to remove those dependent on organic disease of the mitral valves, and where, as frequently happens, in addition to irregularity of the heart’s action, there is organic disease of the mitral valves admitting of regurgitation, the digitalis, by quelling the irregularity, will remove so much of the dropsy and concomitant symptoms as are referable to this condition, but will leave unaffected the residue of the dropsy and that share of the symptoms dependent on the structural valvular disease. This view explains the fact that digitalis is generally less useful in the cardiac dropsy of children than in that of adults, for in children we rarely meet with irregular action of the heart, the symptoms with them being generally referable to serious disease of the mitral valves.

The truth of this statement may be verified by cases which unfortunately too often occur. A patient with dropsy, and with symptoms and physical signs like those just described, derives partial benefit from digitalis, which removes much of the dropsy
and dyspnœa, but fails to give complete relief. There is found after death much disease of the mitral valve permitting regurgitation, and the left auricle is in consequence much distended. Such condition of the mitral valves the digitalis of course could not remove, but that share of the dropsy and of the other symptoms produced by the irregular action of the heart the digitalis will remove. The truth of these statements may be verified by post-mortem examination, combined with clinical observation. Such testing investigations will show that digitalis is useful generally in proportion to the degree in which the dropsy, &c., are due to irregular action of the heart, and are independent of organic disease of the mitral valves.

It must be admitted, however, that sometimes the foregoing explanation altogether fails: thus, we meet sometimes with cases of which the following is a type:—A patient, generally a child, suffers from mitral regurgitant and obstructive disease, with ventricular dilatation, but chiefly on the right side. There is unintermitting inability to lie down, paroxysms of severe palpititation, lasting hours or days, with a pulse at these times very frequent, but always regular. Dropsy sets in; digitalis checks the palpititation and removes completely the water-logged condition by greatly augmenting the kidney secretion. In this condition, sometimes better and sometimes worse, the patient remains, perhaps, for years, then the pulse becomes irregular, but without any increase in the severity of the symptoms. The relapses from time to time recur, promptly giving way on each occasion to digitalis, as soon as it has greatly lessened the frequency of the pulse. It also regulates the pulse, but in these cases, as we shall presently see, the improvement is not due to this effect. After death the mitral orifice is found much contracted, the valves united, leaving only a small circular opening; indeed, so extreme is the diseased condition of the valves that the columnæ carneæ could not possibly act on them, so that any irregularity in the action of the columnæ could not increase regurgitation, a condition which makes it evident why no aggravation of the symptoms took place on the occurrence of irregular action of the heart. The post-mortem shows that the chief disease is mitral obstruction. Now in such a case digitalis could have no beneficial influence on irregular action, for it removes the symptoms before the occurrence of irregularity; and irregular action of the columnæ carneæ, as we have seen, could not increase the regurgitation: we are then constrained to assume that digitalis acts in the way suggested by Dr. Foster, either by
strengthening the auricle or by slowing the heart. There are, however, difficulties in accepting either view, for after a few days' administration of digitalis, and as soon as it has considerably reduced the pulse's frequency (a circumstance much in favour of Dr. Foster's view), the digitalis may then be discontinued, and the patient will remain for weeks or months without recurrence of the symptoms. Yet the mechanical impediment to the passage of the blood from the auricle to the ventricle still remains, and we should expect that the tonic or slowing influence of the digitalis must be kept up, unless it be that the auricle becomes temporarily much distended, and thus weakened, and the tonic or slowing action of the digitalis removes this embarrassing distension.

Many authors believe, and Dr. Fothergill has recently espoused the view, that the good effects of digitalis in the foregoing diseases are owing to its strengthening the contractions of the heart. Very likely digitalis does act as a tonic, and it appears to be serviceable in certain instances where from exertion or other causes the heart becoming embarrassed, and perhaps, as Dr. Fothergill supposes, the left ventricle becoming distended, severe symptoms are suddenly produced.

I cannot help thinking, however, that the tonic theory regarding digitalis fails in most instances to explain its usefulness in heart disease. Admitting that digitalis strengthens the heart, it seems to me that in this respect the clinical evidence is very small as to its efficacy.

1. Thus in aortic disease, when the left ventricle is weak and unable to overcome the obstruction offered by the diseased aortic valves, the good effects of the drug are very slight, and, indeed, in my experience, nil.

2. Digitalis is not only useless but harmful in fatty and other degenerations of the left ventricle.

3. In obstruction to the circulation in the lungs, from emphysema or from extensive retraction due to pleurisy (especially if the other lung become emphysematous), causing tricuspid regurgitation, digitalis appears to have little or no strengthening effect on the right ventricle in enabling it to overcome the lung obstruction.

4. In many of the cases most successfully treated by digitalis, the heart is not weak, but, on the contrary, is felt to beat with excessive force, and after death the left ventricle is found well nourished and much hypertrophied, as well as dilated.

5. The efficacy of digitalis is most decided in cases where the heart acts irregularly, and not where it simply acts weakly.
DIGITALIS.

It is said that irregularity is a sign of weakness (of the muscular or nervous structure?), and that the tonic virtue of digitalis removes this condition. But, firstly, over and over again, we meet with great cardiac weakness, without irregularity; secondly, we may have much irregularity, without weakness of the heart’s impulse or the pulse; and thirdly, we find the heart well-nourished and hypertrophied in cases in which digitalis proves of marked service; the irregularity being the only sign of weakness; it is, indeed, a strong-acting, well-nourished heart, misapplying its force through imperfect co-ordination.

Moreover, in estimating the effect of digitalis on the heart, we must be careful to discriminate its influence on that organ, from its influence on the pulse. Under the influence of digitalis the pulse, no doubt, grows fuller and less compressible; but it must be borne in mind that digitalis slows the heart, and therefore, if the heart does only the same amount of work, each beat must be stronger: for instance, if we reduce the pulse from 120 to 60, the heart, to do an equal amount of work, must, with each beat, pump double the quantity of blood, and thus each beat will feel stronger. Again, digitalis contracts the arterioles, thus increasing arterial tension and rendering the pulse larger and less compressible.

In the heart disease of children, with regular pulse, it is difficult to explain the good effects of digitalis by its influence in regulating an irregularly acting heart; but I think the difficulty is still greater in ascribing the good results to the tonic action of digitalis. Dr. Fothergill holds, that in these cases, the left ventricle is weak and becomes distended, being too feeble to empty itself, and that digitalis strengthens the left ventricle, which then contracts fully, empties itself, and the dilatation diminishes. The pulse, it is true, is very feeble and frequent; but, at the same time, the heart beats forcibly, and even violently enough to shake the patient. What prevents this powerfully acting ventricle from emptying itself, or, at all events, propelling enough blood to produce a full instead of a very weak pulse? And can digitalis be required as a tonic for a heart beating already with such undue force, which, after death, is found hypertrophied and well nourished, there being no obstruction to the circulation from the left side? In these cases with a very feeble pulse, we find a powerfully acting heart misapplying its force. This misappropriation of force may be due to want of co-ordinated action—a form of irregularity amenable to digitalis. Certainly, digitalis prevents this waste of heart-power, for, whilst this drug notably strengthens the pulse, the heart's
action becomes much weaker, so that a far less powerful ventricular contraction propels more blood. It may be objected that the strong impulse is due, not to the left, but to the right ventricle; but from mitral regurgitans, or obstructive disease, causing impediment to the circulation through the lungs, the right side becomes unduly distended, and contracts with great force. This explanation, however, fails entirely in many cases where the physical signs and post-mortem examination prove that the impulse was mainly due to a hypertrophied dilated left ventricle. The strong, cardiac impulse is sometimes, no doubt, due to the right ventricle, and, when the impediment to the free circulation depends on mitral obstructive disease, digitalis probably acts beneficially in the way explained by Dr. Foster.

Digitalis is often very useful in cases of the following kind which we sometimes meet with:—A patient who has been, perhaps, troubled with slight palpitation of the heart for some years, on catching a cold, is attacked with bronchitis, and finds, in consequence, much increase of the palpitations, which, in their turn, excite severe paroxysms of dyspnea. The heart may appear healthy, or there may be only a slight mitral murmur. In such a case digitalis quells the palpitations, and calms the breathing.

This medicine, however, leaves the bronchitis untouched, except that by easing the breathing it indirectly assists expectoration, and by the same means enables the patient to obtain refreshing sleep. In this indirect way digitalis may benefit the bronchitis, but the medicine here acts on the heart; and, if with bronchitis there is much palpitation or irregularity of the pulse, this remedy is indicated. But sometimes a very violent fit of palpitation yields more promptly to one or two drops ofaconite, given every quarter of an hour.

M. Jaccoud teaches, that diminished cardiac energy and arterial pressure, indicate the administration of digitalis, and that when the energy of the heart and the arterial pressure are augmented, it is contra-indicated. Digitalis and caffein, he says, stimulate the heart, and give tone to the blood-vessels.

Da Costa strongly recommends digitalis in the condition termed by him "irritable heart." This disease occurs frequently among soldiers, and may come on suddenly or gradually, with proneness to fatigue, palpitation, and dizziness. It is characterized by pain, generally persistent, but also paroxysmally intensified, lacerating; or more rarely burning or tearing, increased by exertion, and situated most frequently over the apex of the heart, sometimes
DIGITALIS.

radiating in all directions, and shooting down the left arm, and accompanied by hyperæsthesia of the cardiac region, increased by each attack of palpitation. The patient complains also of palpitation, varying in frequency and severity, occurring at all times of the day, and accompanied by much distress and pain. The palpitation is generally brought on by exertion, although it may occur while in bed. These attacks are accompanied by dull headache, giddiness, and dimness of sight. The violent seizures may even produce insensibility. The sleep is much broken and troubled by disagreeable dreams, and the patient cannot usually lie on the left side. The pulse is rapid, varying from 100 to 140 per minute, small, compressible, and sometimes jerking, often irregular in force and rhythm—always remarkably affected by posture, being very frequent while standing, much slower while lying down, the difference amounting to from thirty to forty beats per minute. Palpitation greatly increases the frequency, in one instance to the extent of 192 beats per minute. The respirations are but little hurried, varying from twenty-four to thirty-four, and the patient complains of oppressed breathing, rendered worse by an attack of palpitation. The impulse of the heart is extended, but is "quick, abrupt, or jerking;" and the heart may beat irregularly. The first sound is deficient in volume, "feeble, or short and valvular, like the second sound." Murmurs, as a rule, are absent. This condition is produced by over-work and fatigue, and is fostered by depressing influences. It commonly leads to hypertrophy, when, of course, the physical signs are modified. When the heart is not hypertrophied, Da Costa found that tincture of digitalis, in ten-minim doses thrice daily, quieted the excited organ, reduced the frequency of, and often strengthened the pulse, and rectified irregular cardiac action. If much hypertrophy existed, then digitalis proved less serviceable, and sometimes failed to give any relief; but here aconite in three to six minim doses was very useful; though, in purely nervous cases, this remedy was not only useless, but often even increased the frequency of the pulse. In much irritability, with slight hypertrophy, a combination of digitalis and aconite did good. Belladonna was useful in cases accompanied by irregularity of the pulse, but proved of little service in other cases, modifying but little the frequency of the pulse. It was of no service in cases complicated with hypertrophy. He often continued the digitalis for months without producing any toxic effects. In addition to the foregoing treatment, Da Costa employed rest in the recumbent posture.
In the cases of cardiac dropsy, previously described, so much benefited by digitalis, it appears to me that in these a condition existed closely related to, if not identical with, that set forth by Da Costa under the term "irritable heart," but in a more advanced form; that this condition is more or less associated with a variable amount of valvular disease, mostly but not necessarily of the mitral valves, and that it is this peculiar "irritable" state, probably due to some affection of the co-ordinating nerves of the heart, that digitalis controls and benefits so effectually. Hence if all, or the major part of the symptoms are due simply to irritability of the heart, digitalis will cure either all, or most of the symptoms; but if the symptoms are mainly or entirely due to valvular disease, then digitalis is far less serviceable.

Digitalis is often very useful in pure hypertrophy of the heart, which may be due to valvular disease, especially of the aortic valves, or to Bright’s disease, or to excessive muscular exertion. In all these forms, digitalis affords relief by quelling the attacks of palpitation. In aortic disease the hypertrophy is compensatory, hence, in most cases, especially of aortic obstruction, no treatment is needed for the hypertrophy itself.

B. Foster recommends digitalis in aortic regurgitant disease, when there is more compensatory hypertrophy than the impediment to the circulation requires, indicated by violent action of the heart, bounding vibratory arteries visible all over the body, almost constant headache, flushed face, and noises in the ears. It must be borne in mind, however, that these symptoms occur only in severe cases, and that digitalis is useful where the symptoms are much less pronounced. Dr. Balthazar Foster points out that in these instances the action of the medicine must be watched, for too large a dose may induce alarming prostration, with aggravation of the palpitations, effects which he attributes to the slowing of the heart by digitalis, and the increase of the regurgitation at each diastole; but, although this explanation may be partially, it is not wholly true, for the same consequences follow too large a dose of digitalis in other forms of hypertrophy unassociated with valvular disease. In cases like these, two to five minims of the tincture is as much as can be tolerated. For the most part they are best treated by one to three drops of tincture of aconite, given thrice daily.

Digitalis exerts little or no control over certain forms of heart disease, which may produce dropsy.

General dropsy, dependent on heart disease, is, in some in-
stances, produced by the lungs becoming degenerated, then em-
physematous, thus obstructing the free circulation of the blood
from the right to the left side of the heart, whilst to meet and
overcome this condition the right ventricle grows hypertrophied,
but only to an extent sufficient to meet the obstruction offered to
the circulation; and, unlike the healthy heart, little reserve power
is left in it, so that, on the occurrence of any sudden access to the
obstruction of the circulation through the lungs, the right ventricle
becomes unequal to the task thrust upon it. This happens fre-
quently in an attack of bronchitis, when the blood, unable to pass
readily through the lungs, accumulates in the right cavities of the
heart, overloads them to distension, till the tricuspid valves become
incompetent, and permit of regurgitation from the ventricle to the
auricle, and thence into the veins, when, if there is obstruction in
the lungs, dropsy will ensue, and the dropsy vary with the amount
of bronchitis; as this increases or declines, so does the dropsy
augment or diminish. If the distension of the right cavities lasts a
considerable time, then, on the subsidence of the bronchitis, the
cavities fail to regain their natural size, and the tricuspid incom-
petency and the dropsy become permanent.

Digitalis here appears to possess very slight, if any, power to
strengthen the heart to overcome the obstruction in the lungs,
unless indeed the heart acts irregularly. A considerable degree
of cardiac irregularity, even without either hypertrophy or dilata-
tion of the left heart, or disease of its valves, adds to the difficulty
of the breathing, diminishes the quantity of urine, and produces
dropsy, or increases it if already present. Digitalis will remove
this irregularity, together with so much of the symptoms as are
referred to this cause.

A case like the following will exemplify the inefficiency of digi-
talis to strengthen the heart, and thus enable it to overcome any
obstruction offered in the lungs.—A patient of middle or advanced
age, with irregularly acting heart, much dilated on the left side,
and who has consequently suffered from dropsy, dyspnœa, etc.,
symptoms which digitalis has thoroughly removed, will, on catching
cold, and on the occurrence of bronchitis, suffer from dyspnœa,
lividity, dropsy, etc. Here it would naturally be inferred that
digitalis, having previously removed these identical symptoms,
would again give relief. But this is not necessarily the case, and
a nice discrimination must be made of the circumstances producing
the return of dropsy, etc.; for instance, if there is much emphy-
sema, the relapse is not uncommonly due solely to the obstruction
in the lungs, caused by the bronchitis and emphysema, and is in no way dependent on any effect the bronchitis has produced on the dilated left ventricle. Digitalis here can do no good, but remedies are needed to control the bronchitis. If, however, as is not unfrequent, the bronchitis affects the dilated left ventricle, and brings back the conditions which existed when the digitalis erewhile did so much good, then it will again afford relief. In deciding the question whether digitalis should be given or not, attention must be directed to whether, on the return of the dropsy, etc., fits of palpitation come on, with attacks of dyspnœa, and if the heart is excited to beat irregularly, in which case digitalis is required; but on the other hand, although there is hurried breathing, and a very quick pulse, yet, if the symptoms just mentioned are absent, the patient will derive no benefit from digitalis.

Digitalis does no good in other serious diseases of the heart that induce dropsy; and, indeed, unless care is taken, it may do much harm. For instance, a patient in the prime of life, and it may be without any rheumatic fever antecedents, has suffered for some time, perhaps for years, from palpitation after exertion. Auscultation reveals an aortic obstruction, or regurgitant murmur, or both combined. To overcome the obstruction to the circulation, occasioned by the aortic valvular disease, the heart becomes hypertrophied, and this compensation saves the patient for a time from any troublesome symptoms except some palpitations; but after a variable time serious symptoms arise, which generally increase rapidly in severity, and in the course of a few weeks or months the patient dies. The aggravation of the disease is denoted by paroxysms of palpitations, accompanied by urgent dyspnœa. The attacks may be occasioned by the slightest exertion, or may occur without any such provocation.

The dyspnœa soon becomes constant as well as paroxysmal, and about this time dropsy invades the legs, and rapidly extends till it involves the greater part of the body, and is often in excess in the pleural or peritoneal cavities. During the whole progress of the disease, and to its termination in death, both heart and pulse beat regularly and without any intermissions, and the pulse often manifests the characters significant of aortic regurgitant disease. There is no lividity of the skin, but, on the contrary, it is strikingly pale and waxy looking; nor is there any fulness or regurgitation into the jugular veins. In addition to the aortic murmurs, a murmur may exist having the character of mitral regurgitation, but after death the mitral valves are generally found healthy and competent.
DIGITALIS.

The pathological history of such patients appears to be that disease of the aortic valves induces hypertrophy of the left ventricle, thus enabling it to overcome the obstacle to the circulation offered by the valvular affection. While the compensating hypertrophy keeps pace with the disease, the patient is troubled only by the increased action of the hypertrophied heart, and he may live many years in this condition, little incapacitated for work. Continuing in this state for a variable time, the disease of the heart may at last produce serious and fatal symptoms in the following ways, the effect on the circulation in each case being the same.

I. In one instance the disease in the aortic valves advances with great rapidity, so quickly, indeed, as to make it impossible for the left ventricle to hypertrophy sufficiently to combat the obstruction to the circulation offered by the aortic disease, whence ensues much derangement of the circulation, on which depends the serious symptoms just detailed.

II. In the other instances the disease of the aortic valves remains either stationary, or progresses very slowly, but the left ventricle undergoes degeneration, sometimes with great rapidity, and becomes consequently too enfeebled to meet the increased work thrust upon it by the diseased aortic valves, whence arises disturbance of the circulation, the setting in of dyspnoea, palpitations, etc., as described in the previous case.

In such cases digitalis will do little or no good. Brunton points out that by contracting the arterioles, it causes increased obstruction to the circulation, thus throwing more work on the weakened and inefficient heart, and hence he explains the bad effects of digitalis in fatty heart. Sometimes, indeed, it appears to control, in a slight degree, palpitation and the paroxysms of dyspnoea; but it happens, not unfrequently, that the pulse grows both feeble and intermittent, an effect I have witnessed in a case of great degeneration of the substance of the left ventricle. When it does relieve by controlling dyspnoea and palpitations, it effects no permanent benefit, for the other symptoms, such as dropsy, etc., gradually increase, and the patient dies, digitalis apparently failing to prolong his life.

Before concluding these remarks, I ought to add that the administration of digitalis must always, to some extent, be experimental. It is easier to tell in what cases it will fail than in what cases it will succeed. It is impossible to know how much benefit it will confer, or how long the benefit will last. Neither is it easy to tell the dose that may be required. Thus we meet with cases in all respects
apparently identical: in one case digitalis will wonderfully improve, whilst in others it does little or no good, or may even do harm by weakening the pulse, and rendering it still more irregular. When digitalis works but little good, it appears to me that the symptoms are mainly due to the valvular affection, not much to the irregularity; where it does marked harm, the left ventricle is degenerated.

Digitalis is a diuretic, acting directly on the kidneys as well as indirectly through its influence on the heart, and is therefore useful in some cases of Bright’s disease. When it lessens the cardiac disease, its diuretic effects are astonishing. I have been led to believe that the diuretic action of digitalis is limited by the dropsy, for when dropsy disappears, the remedy no longer causes an increased secretion of urine. This also is the case with some other diuretics.

How does digitalis, in certain heart diseases, cause so great an increase in the quantity of urine? First, it removes those kidney conditions secondary to the heart disease, which diminish the kidney function, when the unburdened organ acts as in health, and secretes a natural quantity. But in the cases now referred to, we find the urine increased, from perhaps half a pint, to three, four, or even eight pints daily. Is this excess of urine due to the direct action of digitalis on the kidneys? Were this the true explanation then this excessive secretion should continue as long as the digitalis is administered; but we find, as I have said, that when the dropsy has disappeared the kidneys no longer secrete in excess. The copious flow of urine must be explained by the fact that digitalis, by relieving the heart, checks the conditions that produce dropsy, when the dropsical fluid returns quickly into the circulation, and the kidneys eliminate the excessive quantity of water in the blood.

How does digitalis affect the kidneys in heart disease, thereby increasing the secretion of the urine?

The separation of the water of the urine is effected chiefly through the Malpighian bodies, probably by simple filtration, and therefore, the amount of the secretion depends on the lateral pressure in the blood-vessels of glomeruli.

Thus, section of the cord below the medulla, i.e., below the vaso-motor centre, causes great dilatation of all the blood-vessels, and thus produces general lowering of the blood-pressure. The diminution of blood-pressure in the kidneys is followed by diminution, and even arrest of the excretion of urine. Section of the renal nerves causing wide dilatation of the renal vessels, and thus, heightening their lateral pressure, causes a great increase in the urinary secretion.

Now, in the forms of cardiac dropsy, benefited by digitalis, there is tricuspid regurgitation, causing great repletion of the venous system, with corresponding emptiness of the arterial system, and thus arterial tension is greatly lessened.
Some writers ascribe the diminished urinary secretion entirely to this loss of tension. It is true that the venous engorgement causes distension of some of the capillaries of the kidneys, and thus heightens their tension, and it might be expected that this increase of lateral pressure would cause an increase in the secretion of the urine. It is urged that the venous congestion only affects the capillary of the tubules, and does not reach the Malpighian bodies, the capillaries of the tubules preventing this; thus the blood-vessels of the Malpighian bodies, through which the water of the urine filters, become partly empty, their pressure greatly diminished, and hence the secretion of the urinary water is diminished. But is this statement true? Are the blood-vessels of the glomeruli partially empty in cases of tricuspid regurgitation and venous engorgement? To this question I should answer, certainly not, for in the post-mortem I have made, these bodies have always been greatly enlarged and engorged, and consequently the lateral pressure increased, and thus the water of the urine should be increased. The diminution of the secretion appears to me to be due to the venous congestion. In tricuspid regurgitation, the passage of blood from the arteries to the veins is very slow; it, in fact, partially stagnates. The blood, on reaching the glomeruli, loses much of its water by pressure, but, having reached a certain degree of concentration, the further separation of water is much slower. In order to get a rapid filtration of water through the Malpighian bodies, it is necessary not only that there should be high arterial pressure, but also a rapid flow of blood. It appears to me that in venous engorgement, we have high lateral pressure, but a slow flow of blood, and that digitalis acts by removing congestion, and allowing a free circulation through the kidneys.

Digitalis has been employed in the treatment of acute inflammation. Mr. King, of Saxmundham, held that no good was to be effected in inflammation, unless with a large dose, and he gave from half an ounce to an ounce of the tincture; with these formidable doses he declared he could subdue most inflammations if attacked at their very commencement, and before the organs involved became disorganized. He administered a dose and then waited twenty-four hours to watch its effects; at the expiration of the time if the pulse did not become much less frequent or irregular, he repeated the dose. He gave as much as two drachms of the tincture to a child of nine months old. Vomiting sometimes quickly follows these very large doses. No serious or dangerous symptoms, says Mr. King, ever followed his extensive and startling use of digitalis. Aconite, I believe, will be found far safer and better in the treatment of acute inflammation than these huge doses of digitalis.

Dr. Royston Fairbank finds digitalis, employed both locally and internally, useful in inflammations. He narrates cases of acute inflammation of joints, acute inflammation of the leg from varicose ulcers, severe inflammation of the breast, and of erysipelas, yielding speedily to fomentations, made by infusing a small teaspoonful
of the dried leaves in half a pint of boiling water, or by adding a drachm of tincture to half a pint of boiling water, and applied by means of flannels wrung out in this decoction. Sometimes, after simple hot fomentations, he advises the rubbing in of some tincture.

Digitalis will reduce the temperature of fever, though large doses are often required. This treatment is now freely used on the continent in all febrile affections.

In typhoid fever, Wunderlich recommends digitalis, asserting that in two or three days it will reduce the temperature of the body by 2° or 3° Fah., and will slacken the pulse, sometimes, by thirty or forty beats in the minute.

Digitalis controls epistaxis, haemoptysis, and menorrhagia. In cases of menorrhagia, unconnected with organic disease, this medicine, independently of the state of the circulation, is said to be more efficacious than any other remedy; and, when organic disease gives rise to this form of bleeding, the effect of the medicine is scarcely less manifest, although the advantage may be temporary.

The late Dr. Brinton highly esteemed it in bleeding from the lungs, stating that when it reduced the frequency of the pulse the bleeding ceased. The infusion is to be preferred for menorrhagias, and large doses may be required.

In rare instances, digitalis occasions great strangury, with a desire, almost incessant, to pass water, accompanied by great and painful straining, and, in women, by strong "bearing-down" pains.

Few remedies are of more avail in arresting spermatorrhea than digitalis in drachm or two-drachm doses of the infusion twice or thrice daily. The free application of cold water to the testicles and perineum aids the effect of the medicine; and it is a useful practice to let the testicles hang in cold water night and morning for five or ten minutes at a time.

The late Mr. Jones, of Jersey, excited considerable astonishment by the announcement of the good effects he obtained from very large doses of tincture of digitalis in the treatment of delirium tremens. He gave half an ounce of the tincture, and repeated it when necessary in four hours, and again in six hours; and again when needful in two-drachm doses. Mr. Jones says of this treatment, "The pulse, so far from being lowered in force, becomes fuller, and stronger, and more regular soon after the first dose. The cold clammy perspirations wear off and the skin becomes warmer. As soon as the remedy produces its full effect, sleep for
five or six hours commonly follows. Sleep is the guide to the repetition of the dose. No action on the kidneys is evinced by an unusual secretion of urine. Sometimes the bowels are acted on slightly, but not commonly." Mr. Jones never saw any alarming symptoms follow these large doses, although he treated in this way about seventy cases of delirium tremens. It would appear that he adopted this treatment only in the severer asthenic forms of delirium tremens. With regard to this treatment of delirium tremens, the following conclusions appear to be established:—

I. The medicine may be given in the manner directed without danger.

II. That it very often does good, producing speedily, in most cases, refreshing, quieting sleep; and, even when it fails to induce sleep, it generally calms undue excitement.

III. That some cases appear to be uninfluenced by the drug.

It yet remains, however, to ascertain the forms of the disease amenable to digitalis.

Under this treatment some severe asthenic cases, when owing to great prostration death seemed imminent, have rallied astonishingly and ultimately recovered. The evidence of this is too strong to be disputed. Under the influence of digitalis, the weak, rapid and fluttering pulse grows strong and steady, the skin comfortably moist and warm, while, with the improvement in the circulation and state of the skin, the general condition of the patient improves. On the other hand, it appears equally certain that asthenic forms of the disease are also amenable to this drug; in several instances I have seen this form of the disease yield speedily to huge doses of digitalis; but on two occasions the patients suddenly fell back dead, although, to the moment of death, no warning occurred of this sudden and untoward termination. Whether in these instances death was to be ascribed to the digitalis or to the disease, it is impossible to say:—it is well known that delirium tremens, even untreated, sometimes ends in this sudden fatal manner.

I give a short account of a case of delirium tremens recently treated with large doses of tincture of digitalis. The man, aged about 50, had been a very hard drinker for many years. He was well-nourished, but his urine contained a considerable amount of albumen. After trying large doses of chloral, and bromide of potassium, we gave him a grain of hyoscyamia, which quieted him for several hours, but did not produce sleep, and as he was in no way benefited by our treatment, we resolved to give him half-ounce doses of tincture of digitalis according to Jones's directions. Before giving him this first dose his pulse was 90, regular, and fairly good; in half an hour the pulse rose to 108. In three hours' time the
TOBACCO.

was increased; in an hour the pulse was 120; in three hours 150, irregular; in an hour, very irregular, very feeble; in four hours and a half it had to 12:4, and was much stronger and more regular; during the height it varied in 130 and 140. Next day at noon it fell to 90, and was intermittent, bicular; in the evening it was 60.

TOBACCO.

Ointment of tobacco leaves is said to relieve pain, and an ointment, made by boiling half an ounce of tobacco in eight ounces of water, kept constantly applied to the breasts, is also said to arrest secretion of milk. In this respect it is probably inferior to Belladonna. (Vide Belladonna).

Several deaths have occurred through the application of tobacco to the abraded skin, it must be used externally with caution.

Tobacco, when introduced into the eye, dilates the pupil, also when taken by the stomach.

Tobacco produces nausea and sickness, accompanied by great dullness and faintness. It confuses the ideas, dims the sight, accelerate the pulse, and makes the skin cold and clammy with profuse sweating. Owing to its prostrating effects it removes spasm.

Tobacco in the form of clyster, or administered by the stomach, has been employed in colic of the intestines, and in strangulated hernia; but in spasmodic diseases chloroform has quite superseded it. Tobacco-smoking excites an abundant secretion of saliva; hence some persons maintain that tobacco-smoking aids digestion. Smoking acts on the intestines as a slight purgative, and no doubt a pipe or cigar smoked after breakfast is often sufficient to ensure an easy and satisfactory relief of the bowels; and is, perhaps, a practice not without advantage in habitual constipation.

Smoking in excess is, no doubt, a very injurious habit, disordering digestion, lessening the appetite, inducing restlessness at night with disagreeable dreams, and weakening both mind and body. Chronic pharyngitis, the mucous membrane looking like dirty-red velvet, with constant hawking, and also chronic dyspepsia may, in some instances, be clearly traced to excessive smoking. Even amaurosis is said to be sometimes produced by excessive smoking. The habitual smoker has generally a thickly-coated tongue. The
symptoms produced by excessive smoking soon cease when the habit is discontinued. If the tobacco is of good quality, and contains but little nicotine, the evil consequences are much less marked. In the cultivation of the plant, it is a point of importance to develop the aromatic principles, and to diminish nicotine.

Nicotine causes in frogs tetanus and general paralysis. In warm-blooded animals there occur twitchings and startings, and tetanoid convulsions, excited by the slightest stimulus; the breathing is greatly hurried, and the animal becomes very weak, or if the dose is large, completely paralyzed. It excites perspiration, and in cats free salivation. It contracts the pupil whether administered internally or applied topically. We have here an instance of a solanaceous plant contracting the pupil and increasing most of the secretions, in these respects acting in exactly the opposite way to most other solanaceous plants, with the exception of pituri, to which tobacco is very closely allied.

Nicotine tetanizes by its action on the cord. It paralyzes the cord, motor nerves (Vulpian, Rosenthal, Krocker), the peripheral nerve endings being first affected; it also paralyzes the muscles (Rene).

Nicotia appears to tetanize the heart, for when this organ, from a mechanical cause, has ceased to contract after death, the direct application of nicotia excites the pulsations, and the heart soon becomes rigidly contracted—tetanized, in fact—and then, of course, the beats cease. In birds and mammals killed by chloroform, when the ventricles are immobile and dilated, and respond most imperfectly to stimuli, the application of a drop of nicotine immediately occasions strong contractions in the heart, and causes the organ to respond energetically to mechanical and galvanic stimuli.

The experiments of Fraser and Brown show that nicotia, like other tetanizing substances, as strychnia, brucia, thebaia, codeia, and morphia, loses its tetanizing properties when converted into ethyl or methyl compounds; but, unlike these, the methyl and ethyl compounds of nicotine do not possess any paralyzing action on motor nerves. This difference inclines these observers to believe that the convulsions of nicotia are not produced in the same way as those arising from strychnia, brucia, thebaia, etc.

Nicotia has been highly praised in tetanus, and many recorded cases appear to show its usefulness in this fatal disease. It must be administered either by the rectum, or hypodermically; when put into the mouth, it very generally excites a severe paroxysm, which may destroy life, by firmly fixing the muscles of the chest till asphyxia is produced.
CONIUM.

Applying commonly affords some relief in spasmodic
attacks; like all other asthmatic remedies, it succeeds much
in some instances than in others.

The active principle of tobacco is destroyed in the sys-
tem, or is eliminated with any secretion, is, at present, unknown.
Oxotin is supposed to be diuretic, but we are not told under
circumstances.

CONIUM AND ITS PREPARATIONS.

Many statements of the physiological action of conium, made by
various observers, coincide in the main; but they contain a few
omissions, which cannot, at present, be reconciled.

We are chiefly indebted to Christison, Schroff, Kölliker, and
Graumann, for our knowledge of the action of this medicine. Paul
Graumann, who has lately published some excellent investigations
on the action of this alkaloid, says, it is one of the most active and
potent poisons, being, in this respect, scarcely second to prussic
acid; yet some vegetable-feeders, as goat, sheep, and horse, are
able to eat hemlock with impunity.

Conium exerts no influence on the unbroken skin, even when
applied in large quantity; but strong preparations applied to
wounds excite inflammation, with its usual accompaniments of heat
and pain.

The pounded leaves, or the expressed juice, or other preparation
of the drug, smeared over a poultice, will ease the pain of ulcers,
both simple and malignant, and, at the same time, improve the
color of the sore. The pain-easing property of hemlock rests
on the evidence of highly competent observers, and cannot be
gainsaid; yet it is now rarely employed for this purpose, although
formerly it was in constant use as a soothing application to broken
cancers and malignant sores.

The alkaloid, whether directly applied to the eye or swallowed,
causes dilatation of the pupils, sometimes with subsequent contrac-
tion. According to Harley, the dilatation is never very great.

The smell of conium has been compared to the urine of cats and
mice. It has a burning, acrid taste, provoking an increased se-
cretion of saliva. Conia dissolved in alcohol, introduced into a
hollow, painful tooth, has been employed in toothache.
CONIUM.

Hemlock has scarcely any influence on the stomach and intestines. It may produce nausea, vomiting, and diarrhoea; but such occurrences are not common. Walshe has seen it relieve the pain of cancer of the stomach.

That conia enters the blood is proved by the symptoms arising when it is swallowed; but the physical or chemical changes, if any, it undergoes in the blood are at present unknown. Added to blood after its removal from the body, it produces in it no perceptible alteration.

The deficient coagulability and dark colour of the blood, after death from this drug, noticed by some, according to others are often absent; and, when present, are due probably to the fatal asphyxia.

The effects of conium on man and animals is very similar. The best account of the symptoms occurring in a human being, from a poisonous quantity of the plant, is given by Dr. H. Bennett, who has recorded the case of a man who ate hemlock in mistake for salad. Weakness of his legs, so that his gait was faltering, was first noticed; as the weakness increased, he staggered as if drunk, and, at the same time, his arms began to be similarly affected. Perfect loss of all voluntary movement followed, and he was unable even to swallow. Lastly, the muscles of respiration were slowly paralyzed, and he died of asphyxia. Up to his death his intelligence was apparently unaffected, but his sight was destroyed. Slight movements in the muscles of the left leg took place.

The same, or nearly the same, sequence of events happens in animals poisoned by hemlock. With rabbits, early and severe convulsions occur, but in frogs these are absent. In all the experiments and observations of Guttmann, gradual paralysis of the voluntary muscles, and then of the respiratory muscles, took place. The paralysis began first in the hind extremities, next, affected the anterior, soon afterwards the muscles of the trunk, and lastly those of respiration.

How this paralysis is produced will be next considered. It is to Kölliker and Paul Guttmann we are indebted for most of our exact knowledge on this subject.

The paralysis is certainly not due to the action of the hemlock on the muscles, for in an animal completely paralysed by conia, to such an extent that galvanic irritation through the nerves entirely fails to excite contractions, yet a current made to pass through the muscles themselves will excite energetic contractions. Nay, further, the irritability of muscles, through which blood, poisoned with
conium, has been permitted to flow, is as great and as enduring as that of muscles of the same animal protected from the action of the poisoned blood, by a ligature of the blood-vessels.

Nor does hemlock paralyze by its effect on the spinal chord, for if a limb is protected from the influence of the poisoned blood by ligature of both its artery and vein, and the animal (frog) is then poisoned, and thoroughly paralyzed by conium, the ligatured limb can still manifest powerful movements. Moreover, irritation of any of the paralyzed parts is answered by energetic contractions in the ligatured limb.

This last experiment greatly narrows the question before us, namely:—Through what tissue does hemlock paralyze? In this experiment the only muscles which retained their power of movement were those protected from the poisoned blood by ligature of the vessels; and it follows that conium operates on some of the tissues thus protected, that is, either on the nerves or muscles; and it follows as conclusively that the paralysis is due in no respect to the action of the poison on the brain or cord; for these parts were freely supplied with poisoned blood, while their nervous communication with the ligatured leg was intact, and yet this limb remained quite uninfluenced. We have, therefore, to decide whether conium affects nerves or muscles; but this question was answered already when it was proved that the poison exerts no influence on the contractility of muscle.

The investigation may be carried a step further; for an experiment of Guttmann proves that the poison affects the periphery of the motor nerves earlier than their trunks. The leg of a frog, after the vessels leading to it had been tied, was separated from the trunk, except the chief nerve, and the animal was then poisoned. The uninjured limb in free vascular communication with the trunk, the extremities of the nerves being exposed to the action of the poisoned blood, became quickly paralyzed, while at the same time contractions through the femoral nerve were easily produced in the limb protected from the poison by its partial separation from the body. In this experiment the main trunk of the nerve of each leg was equally subjected to the poison, but in one instance the termination of the nerve was exposed to the poison, and in the other was protected from its influence. The paralysis, as we have seen, occurred speedily in the limbs whose peripheral nerves were subjected to the poison, showing that the primary action of conium is exerted on the terminations of the nerve; but, ultimately, the trunks, themselves become paralyzed, for after a time the partially severed
CONIUM.

limb became paralyzed below the point of section, even when the trunk of the nerve exposed to the poison was irritated.

Are the sensory or afferent nerves in any way affected? Apparently not, as they can certainly convey to the cord, or brain, afferent impulses in an animal rendered quite motionless by the poison.

This is shown by the following experiment. If the legs of a frog are protected by a ligature of both arteries and veins, and the animal is then completely paralyzed by conia, energetic movements can be excited in the ligatured limbs by irritation of the paralyzed parts. Whether these movements are purely reflex, or whether they are voluntary and are occasioned by pain, it is in this case impossible to decide; but at all events this experiment conclusively shows that in frogs the afferent nerves of completely paralyzed parts can convey impulses to either the cord or brain. When the paralyzed parts of animals higher in the scale than frogs, as rabbits, are pinched, they exhibit signs of pain, if we may judge from their aspect, and from the noise they make, till the face and larynx are themselves affected, and it is therefore probable that sensory nerves convey impressions to the brain, even when the animal is almost perfectly paralyzed in respect of voluntary movement.

The vaso-motor nerves of some parts appear also to be affected by conia; thus the arteries of the frog’s foot fail to contract on irritation when the animal is poisoned by hemlock, but the motor nerves of some other involuntary muscles are uninfluenced by conia, as the peristaltic contraction of the intestines of the rabbits killed by the alkaloid continued active after death.

Applied directly to the nerves, hemlock destroys their conductivity. The poison produces no pain.

Its influence on the brain will next be considered. No doubt both man and animals remain conscious of pain so long as they are capable of giving any signs of it; that is before the muscles of expression become paralyzed. But consciousness is possible, though at the same time the brain may, in some way, be affected. Schroff states that the poison, soon after it is taken, is followed by a sensation of heaviness in the head, with giddiness, inability to think, great impairment to common sensibility, blunted taste, dimmed sight, dilated pupils, and a sensation as of insects crawling on the skin.

The mind is evidently in some degree weakened, and many of the special senses suffer. In Dr. Bennett’s case there was total
blindness, but the hearing was little; if at all, dullled. Some observers assert that the mind remains quite uninfluenced by hemlock.

In poisoning by hemlock, as I have said, the pupil dilates, at the same time there is drooping of the upper eyelid, due, of course, to paralysis of the third nerve which leads Dr. H. Wood to conclude that hemlock, affects the pupil by paralyzing the third nerve, not by stimulating the sympathetic.

At an early part of this section it was stated that convulsions resulted from poisoning by conium. Convulsions occur in some animals, not in others. Rabbits appear to suffer from convulsions but frogs die unconvulsed. These spasms, Kölliker has suggested, may be due to asphyxia from paralysis of the muscles of respiration. This explanation, however, appears to be insufficient, as convulsions are often among the earliest symptoms, before any asphyxia has resulted; nay, if a tube is introduced into the trachea and artificial respiration is performed, they still occur. In man convulsions are certainly sometimes absent, and in the case recorded by Bennett, only slight movements in the left leg were witnessed.

In their recent investigations, Drs. Crum Brown, and Fraser, for the most part, confirm the conclusions of Kölliker and Guttmann. They have shown, that specimens of conia are not of identical composition; for, while each specimen produced the same symptoms, these they find were not always produced in the same way. In other words—some specimens affect chiefly the motor nerves, while others act on both motor nerves and cord. Their observations on hydro-chlorate of conium, methyl-conia, and iodide of dimethyl-conium, in a great measure explain these differences. They conclude that conia “produces paralysis solely by influencing the motor nerves,” and that hydrochlorate of methyl-conia acts “on the motor nerve and spinal cord; with large doses the former action is completed before the latter.” They conclude that commercial specimens of conia consist of mixtures in variable proportions of conia and methyl-conia; sometimes methyl-conia is present in small, at other times in large, quantities; and that this variety of composition explains the varied physiological effects of different specimens of conia.

Their observations on iodide of dimethyl-conium “show that the paralysis produced by dimethyl-conium is dependent on an action on the motor nerves primarily restricted to the peripheral terminations,” and that the substance “is entirely free from spasmodic and paralyzing actions.”
Dr. John Harley's physiological experiments lead him to the conclusion that succus conii is a depressant of the motor tract of the cord, and the motor ganglia of the brain. Dr. Fraser's observation, that succus conii generally, if not always, contains methyl compounds of conia, serves to explain the discrepancy existing between Guttmann, Kölliker, and Harley.

Concerning the action of this poison on the heart, very conflicting statements have been made. Some authorities state that it reduces the frequency of the pulse, especially when the heart beats too quickly from disease, as from fever, etc. Even a small dose under such conditions, they say, suffices to produce a decided effect on the pulse, while in health the same quantity exerts no influence. Such are the conclusions of Wertheim.

Kölliker, Guttmann, and J. Harley, conclude that conium does not affect the heart. Harley, who gave the medicine in sufficient quantities to produce partial paralysis, says, "excepting as a transient emotional effect in nervous individuals upon the sudden accession of the symptoms after a first dose of hemlock the heart and blood-vessels are absolutely unaffected by its operation. I have carefully determined this in persons of all ages—in the weakly infant not three months old, in the strong, in the debilitated, and in those who have intermittent action of the heart.

In experiments with warm-blooded animals poisoned by hemlock the heart, it is true, soon ceases to beat; but this can be for a long time retarded if artificial respiration is performed, and in the case of the frog, the poison appears to leave the heart unaffected. Hemlock has been recommended in fevers and acute rheumatism, and in these diseases its efficacy has been supposed to be explained by its action on the heart. But, as we have just seen, it is very doubtful whether conium exerts any influence on the heart.

In doses sufficient to produce physiological effects, conium, Harley says, may be taken for months without affecting nutrition.

It is supposed to be useful in whooping and other coughs. The succus conii in one to four drachm doses, or even more, has been recommended lately by J. Harley in chorea; and these large doses certainly control the movements temporarily, and impart steadiness to the patient, but the improvement wears off if the medicine is not soon repeated. Some cases, no doubt, are cured; but in my experience this treatment, in most instances, only palliates, and, on discontinuing the drug, the symptoms return with customary severity. In order to maintain the effects of conium on the choreic
CONIUM.

A dose must be quickly increased, for patients speedily resist the drug, and after a short time will bear enormous doses without the induction of any physiological effect. Thus, on one occasion, I gradually increased the dose, till the patient—a man of sixty—took, except when asleep, seven drachms of succus conii.

I have the high authority of Dr. Neligan in favour of hemlock in cases of various painful affections, as cancer, rheumatism, and neuralgia, but this has not yet been shown, in any well-authenticated case, that it produces either sleep, coma, or delirium.

Considering the physiological action of conia, it would appear that it is not indicated in convulsive diseases dependent on affection of the cord, as tetanus and strychnia poisoning; for the effects of this drug, and the symptoms of these diseases, are not antastic. Guttmann, from whose valuable paper on the action of conia the chief part of our remarks has been extracted, put to the test of direct experiment the power of conia to arrest or check in some degree the tetanus from strychnia. He strychnized frogs, and gave them conia, but, even when administered in doses sufficient to completely paralyze the animals, this drug failed to check, in any degree, the tetanic spasms produced by the strychnia.

Professor Christopher Johnson, of Maryland, however, reports cases of recovery from severe traumatic tetanus under the use of conia. In one case he injected hypodermically, every two hours, fifteen minims of a solution composed of two minims of conia, one minim of dilute sulphuric acid, to one drachm of water. In the second case he commenced with twenty minims of the same solution every three hours; he then increased the conia to one-third, then to two-thirds, of a drop, and, ultimately, to rather more than a drop every hour, when the symptoms abated. Afterwards he used two minims of conia hourly, but owing to the weakness of the pulse, he returned to one minim every two hours, but the spasms continuing, he again used two minims every hour, and immediately the spasms diminished. But these cases, unfortunately, are much less satisfactory than they might have been. In the first case, the cicatrices of the wound were removed by a hot iron, and in the second, bromide of potassium and morphia were administered. But Dr. Johnson says that the spasms were considerably reduced after each conia injection.

Dr. Crichton Browne strongly recommends conium in acute mania. In common with Dr. John Harley, he believes that it represses undue activity of the motor centres.
CALABAR BEAN.

It will be obvious how very similar the action of conia is to that of curare. One difference there is between these substances which has not been noted. Curare, when swallowed, is not poisonous, but is strongly toxic when injected under the skin; conia, in either way, is equally poisonous.

Claude Bernard believes that the innocuousness of curare administered by the stomach is due to its slow absorption, as contrasted with its much more rapid elimination by the kidneys, so that a very minute quantity is retained in the blood.

Dr. Neligan draws particular attention to the fact, that the only preparation of any value is the juice; and so true is this, that the various statements made concerning the success and failure of conium in various diseases must be accepted with caution, unless the conclusions have been deduced from observations founded on the employment of the juice.

CALABAR BEAN.

The following account of the Calabar bean is for the most part an abstract of Dr. Fraser's very valuable and elaborate investigations concerning the physiological action of the Calabar bean.

Dr. Fraser finds that this poison destroys birds most easily, while frogs require as much as will kill a dog.

Little is known at present of the influence of the Calabar bean or its alkaloid on the stomach. Dr. Fraser has ascertained that gastric juice does not destroy the power of this drug; and further, that a solution of it injected into a vein may be detected in the contents of the stomach, whence it has been concluded that the active principle is eliminated by this organ. It is, however, possible that it may find its way there by mere imbibition.

The active principles of Calabar bean quickly enter the blood. An animal under the influence of a small but fatal dose speedily manifests a slight tremulousness, which, beginning in the hind-quarters, spreads to the rest of the body; the posterior limbs soon grow powerless, next the anterior extremities, and then the trunk, till muscular movement ceases, and the whole animal frame becomes limp and flaccid. Next follows general paralysis, the bowels and bladder are emptied involuntarily, and the pupils
generally contract. At this stage all reflex action of the cord is destroyed, and if the animal is anywhere irritated, no contractions respond to the call. Under the influence of the poison, respiration grows gradually slower and slower, and at last ceases. So long as the animal retains the power of expression, evidence of consciousness appears to be preserved throughout. Immediately after death the pupils dilate. After death the muscles appear to be unaffected; they contract as they are cut, and respond to the irritation of their nerves. The heart, moreover, continues to beat the usual time after death, its parts ceasing to contract in definite order. After a large fatal dose, the symptoms and post-mortem appearances are much the same as those just described, but of course death occurs sooner, and the symptoms follow each other in quicker succession. After a very large dose, death may be almost instantaneous, and it appears to be owing to syncope; for when the body is opened, the heart is motionless, dilated, flaccid, and contracts but languidly on stimulation. The vermicular movements of the intestines are also more sluggish than after a smaller dose.

Whether Calabar bean produces its effects by influencing the muscles, nerves, cord, or the brain, are questions which will now be severally considered.

As muscular contraction could be easily and abundantly excited by direct irritation of the muscles, after the motor nerves had quite lost their power to conduct impressions, Dr. Fraser concludes that his poison exerts no influence on the voluntary muscles. Moreover, in his experiments the contractility continued long after death, and in frogs the rigor mortis was long postponed, while it certainly was not hastened in warm-blooded animals—additional evidences of the absence of any paralyzing influence on the muscles by Calabar bean. The tremors in warm-blooded animals were generally slight, though sometimes excessive, and might indeed be called convulsions, and were due probably, like curare, to the direct action of the poison on the muscles; for if the sciatic nerve was divided before poisoning the animals, the limb thus cut off from nervous connection with the nervous centres still trembled; while, on the other hand, if the sciatic nerve was uninjured, but the arteries leading to the limb were tied or divided, then, while the muscles of the body generally trembled, those of the ligatured limb remained at rest. This tremulousness often continues after death, and is excited by exposure and by the knife in cutting. It does not affect the whole muscle at the same time, but different parts in succession.
CALABAR BEAN.

Observing that consciousness is intact whilst paralysis is marked and progressing, and that if a frog's brain is removed before the animal is poisoned, paralysis ensues as usual, Dr. Fraser concludes that the paralysis is not produced by any changes in the brain; but from the effects of the drug on himself, he thinks the bean does exercise some influence on the faculties of the mind.

That paralysis is not produced by the action of the poison on the spinal nerves is evident; for long after the induction of general paralysis, and even after death, they conduct motor impressions to the muscles.

But though muscular paralysis and death are not to be accounted for by the action of the poison on the motor nerves, but in another way, as we shall shortly see, still after a time the poison does affect these nerves, and robs them of their power to conduct impressions to the muscles. As with conium, so probably with Calabar bean, the peripheral terminations of the nerves are first affected, and next their trunks. The afferent nerves remain unaffected, and certainly their power of conduction is not lessened; indeed, Dr. Fraser thinks it is increased.

The spinal cord, then, is the only part left on which the paralysis can depend, and Dr. Fraser has shown that paralysis of the muscles is due to changes effected by Calabar bean on the cord. Thus, he found he could excite no muscular contractions by galvanizing any part of the cord of an animal poisoned by the bean, while the motor nerves still retained their functions, and easily transmitted impressions to the muscles, which on their part freely responded to very slight stimulation of their proper nerves.

The reflex functions of the cord were destroyed long before the nerves lost their conducting power. After the loss of reflex power, in animals poisoned by Calabar bean, pretty active muscular contractions could be excited by mild galvanic stimulation of the motor nerves, showing that the arrest in reflex action is not owing to lowered activity of the motor nerves. Again, if the lower half of the cord is protected from the poisoned blood by ligature or section of its vessels, while the blood is permitted to flow to all other parts of the body, and the animal is then poisoned, reflex action is speedily lost in the anterior, while it is retained for hours in the posterior limbs. As the nerves of every part of the body are equally subjected to the poison, the loss of reflex power cannot be due to alterations in them, otherwise the hind and front limbs would be equally paralyzed. The only part protected from the poison was the lower half of the cord, and it must be that Calabar
bean destroys reflex power through the changes produced in the cord itself.

From its physiological action on the cord, Fraser recommends the ordeal bean as an antidote to strychnia, and he points out its superiority to curare, which paralyzes only the motor nerves, while Calabar bean paralyzes first the cord, and then, after some time, the motor nerves.

Large doses of the bean instantaneously arrest the movements of the heart, smaller doses reduce their frequency.

Dr. Fraser contrasts Calabar bean with other cardiac poisons, such as antiaris toxicaria, tanghnia venenifera, digitalis, helleborus niger, helleborus viridis, and the green resin of nereum oleander, all of which, after a time, diminish the frequency of the heart's contractions, by prolonging the systole, and finally stop the heart in the systolic act. Physostigma also diminishes the number of the heart's contractions, but it lessens the duration of each systole, and at last the heart ceases to beat in the diastole.

How does Calabar bean effect these changes in the functions of the heart? The paralysis of the heart in diastole, and the diminution in the frequency of its contractions by protracted periods of rest in a dilated condition, as well as the frequent renewal of its action after a long pause in diastole, might, in the first place, suggest the interference of the inhibitory functions of the vagi nerves. Dr. Fraser, however, adduces conclusive experiments against this supposition. He finds after section of each vagus, or after paralyzing them with curare (which it effects in a few minutes in both the motor and vagi nerves), Calabar bean acted on the heart just as before. Again, when before poisoning frogs, their brain and cord were destroyed, the bean produced the same effects on the heart.

Arnstein and Sutschinsky while agreeing with Fraser that physostigma does not affect the heart by its influence on the inhibitory centre, conclude, experimentally, that it heightens the activity of the terminations of the pneumogastric nerve; for they find that after Calabar bean poisoning, a much weaker electric current is required to slow or arrest the heart's action, and further, if the ends of the pneumogastric nerves are poisoned by atropia, physostigma will restore the function of the paralyzed nerve.

Physostigma heightens arterial pressure, which is partly due to the action of the poison on the vaso-motor centre, for, to a considerable extent, this increased pressure is lost or prevented when the cord is divided below the vaso motor centre.
Physoistigma is also a respiratory poison, and, indeed, generally kills by paralyzing the respiration.

Dr. Fraser finds that solutions of Calabar bean, added to blood, made the red corpuscles of rabbits and dogs irregular, but effected no changes in those of birds or frogs, nor in the white corpuscles of any animal he examined.

The solutions appear to produce no change in the respiratory functions of the blood.

The lymph hearts of frogs became paralyzed at an early stage of the experiments.

The intestines of animals poisoned by the bean moved at first with increased vigour, but at last contracted so as considerably to lessen the calibre of the gut, which afterwards became again dilated. The movements continued some time after death, except after a large dose of poison, when they were slight, and soon ceased. Large doses administered in tetanus often excite severe colicky pain in the abdomen, due probably to increased peristaltic action, whilst the bowels are relaxed, probably from increased intestinal secretion. Physoistigma also increases perspiration, and this is often one of the earliest signs of its toxic effects.

In rabbits poisoned by this bean Fraser noticed peristaltis in the cornua and body of the uterus and in the ureters.

The ingestion of Calabar bean, as is well known, causes the pupil to contract, an effect still more marked when a solution is dropped into the eye. Whether this contraction is produced through the sympathetic or otherwise is still an open question.

Dr. Robertson finds that even before the pupil begins to contract, the power of accommodation is lost, and that objects can be seen only at a limited distance of about a foot, all beyond appearing hazy and indistinct. The accommodating power being affected before the pupil, is also the first to recover itself. Objects at all distances appear nearer and larger than they really are. The bean induced in the affected eye a sensation as of much straining and heaviness, like that occurring after a close inspection of fine objects.

About twenty minutes after the application of the solution, the pupil contracted to one-half, and the field of vision was still further shortened. The contraction may increase for an hour or more, the sight of the other eye meanwhile remaining natural. The contraction ultimately slowly yields, but more than twenty-four hours may pass before the pupil resumes its natural size. The contraction may be extreme, when, but little light finding its way through the narrowed pupil, the opposite pupil may dilate sympathetically.
Dr. Robertson has further shown that, in their action on the eye, belladonna and Calabar bean are directly antagonistic. The bean is freely used to produce contraction of the pupil.

Dr. Fraser has obtained some curious results from the topical application of solution of Calabar bean to different structures of the body. He applied some solution to the trunk of the sciatic, choosing this nerve on account of its comparative freedom from blood-vessels, and found, to his astonishment, that sensory conductivity was lost sooner than motor, and became at last completely destroyed. This loss of power to conduct sensory impression was not produced by mere imbibition of the fluid altering the physical state of the nerves, as other nerves kept moistened by water for a like time underwent no similar functional alteration. The completeness of this loss of power to conduct afferent impression was well shown by poisoning the animal by strychnia, after which no convulsive movement could be excited by irritating the structures below the poisoned sciatic nerve. The irritability of the gastrocnemius was also destroyed by the local employment of strong solutions of the bean. This, too, was proved not to be due to mere imbibition.

When the solution was painted on parts of the intestines, these became relaxed, and the vermicular movements, on reaching these points, skipped over them, and continued in the portions beyond.

We now come to the therapeutical application of this remedy. It was some time ago suggested that the Calabar bean might prove of much service in tetanus and chorea, and Dr. Fraser has lately written an interesting paper on this subject, from which we again largely borrow. Finding that the effects of strychnia on the frog can be arrested, he believes that the bean may be used with the greatest benefit in tetanus. Dr. Fraser very naturally insists on the importance of employing the drug at the very beginning of the attack, and enforces the value of this advice by the remark, that it has now been shown that when muscles contract, they beget a substance which excites muscular contraction; and, further, that only a limited part of the cord, or of the ganglia of the brain is affected at the beginning of tetanus, but as the attack goes on, the whole of the structures become speedily involved. It may be administered by mouth, anus, or subcutaneously. When the convulsions are severe, and when the slightest movement excites them, it is obvious that, till the severity of the paroxysms is subdued, only the subcutaneous method can be used. Yet, whilst the patient can still swallow, my experience leads me to prefer giving the drug by
the mouth; for the drug to be of any use, it must be given in quantity sufficient to produce paralysis, and must be given, indeed, to such an extent, that but a little more would permanently arrest breathing. The drug, therefore, must be given with great care and watchfulness, and to get the necessary effects without inducing serious symptoms, it is better to give small and increasing quantities every hour, or oftener, for then, should serious paralytic symptoms arise, the drug can be stopped. Moreover, it is impossible to tell the dose adequate to subdue the paroxysms and produce paralysis, some persons requiring a much larger quantity than others. Hence it is evident that it is more convenient to give the liquid extract by the mouth, than subcutaneously. I have already, in part, spoken of the dose. It is generally, nay, probably always, necessary to produce a certain degree of paralysis, amounting to heaviness of the limbs. Sometimes the dose of the spirituous extract must be very large; thus, Dr. Eben Watson, who failed to obtain good effects from hypodermic injection, prefers to administer the drug by the mouth, or rectum, and insists on the necessity of giving enough extract to produce relaxation of the spasms. He has given it to the extent of seventy-two grains in twenty-four hours.

In a successful case under my care, reported in the Practitioner, the patient, for a day and half, took \(\frac{2}{3} \) grains of the watery extract hourly, and for a short time 4 grains hourly. It is, of course, too much to expect that Calabar bean will cure every case of tetanus, but I feel convinced that, were the treatment begun at the outset of the attack, and the drug pushed sufficiently, the results would be more successful than those at present attained.

Dr. Fraser next makes a few remarks on the influence of this remedy over chorea, but at present there appears to be little evidence on this subject. "The treatment of this disease," he says, "will rarely require to be so active or energetic as that recommended for tetanus. Physostigma should be administered either in the form of powder, or of tincture. From three to six grains of powder, three or four times daily, may be given to children, and from ten to twenty grains, as frequently, to adults."

Dr. Crichton Brown finds Calabar bean markedly useful in general paralysis of the insane; indeed, he has even cured some of his patients of this severe disease. I have known it arrest the progress of general paralysis, and even slightly improve the mental and physical condition. I have seen it not only arrest progressive muscular wasting, uncomplicated with much mental disorder, but also
effect considerable improvement in the muscular power. Moreover, it has appeared to me to be serviceable in some cases of long-standing hemiplegia. I have given the extract of physostigma in one-thirtieth of a grain doses every two hours.

In conjunction with Dr. Murrell, I have made observations on the influence of Calabar bean on certain nervous affections, giving one-tenth of a grain of the extract every three hours, and in some instances we have continued this treatment more than a year. We gave it in five cases of paraplegia, due probably to myelitis. In one case no improvement ensued; and but slight amendment in another; but even when the drug failed to produce any improvement, it yet seemed to us to arrest the disease. In old-standing cases we could hardly hope for any amendment, where the lower part of the cord had become disorganized; but we might fairly hope to control the march of the disease in the less affected parts. In two cases very marked improvement occurred, an improvement so decided as fairly to astonish us, but in both, relapse took place, and the patients became as bad almost as before undergoing treatment.

In the fifth case the treatment effected a considerable and permanent improvement, so that the patient who was unable to move his legs even in a slight degree, was enabled, before his discharge, to walk about the ward without his stick. These cases, it will be said, do not tell conclusively in favour of the efficacy of physostigma in paraplegia; we were both, however, struck by the evident temporary improvement in some of the cases, and the decided and permanent amendment of one patient, which we could not help attributing to the drug, and we feel sure that this subject is well worth further investigation. We gave the drug in the same dose to two cases of locomotor ataxy, in one case for a year, in the other for three months: both cases improved, and one, a very bad case, considerably. We gave it also in a recent case of writer's cramp, and in two months the patient recovered.

Between Calabar bean on the one hand, and chloral, atropia, and strychnia respectively, there is a well-marked antagonism. Here we shall have occasion to speak only of the antagonism between physostigma and chloral, referring the reader for an account of the other antagonisms to the chapter on belladonna, and that of strychnia. The Committee of the British Medical Association, in their recently-published investigations concerning the antagonism between drugs, concluded that the antagonism between physostigma and chloral is greater than that between physostigma and
MUSCARIN.

atropia. They point out that the antidotal properties of a drug are, of course, modified by its more or less rapid action on the system. Serious and even fatal symptoms ensue from Calabar bean much more speedily than from chloral; therefore, to obtain the antagonistic effects of chloral, it must be given either before, or immediately after the ingestion of Calabar bean. The antagonism is not complete, for, in spite of an antidotal dose of chloral, physostigma, although it averts convulsions, still produces muscular twitchings, tremors, salivation, and contracted pupil; moreover, a quantity of Calabar bean beyond a minimum fatal dose will kill, notwithstanding chloral.

MUSCARIN.

MUSCARIN, the active principle of poisonous fungi, was first extracted from the Amanita muscaria, and physiologically tested by Schmiedeberg. His conclusions regarding this substance have been confirmed and our information extended by the researches of Koppe, Prevost, Alizon, Lauder Brunton, and Schiff. Great interest attaches to muscarin on account of the close similarity of its action to pilocarpine and its almost complete antagonism to atropia. It excites copious perspiration and salivation, a flow of tears, and it increases the intestinal mucus and the biliary and pancreatic secretions. Muscarin affects especially the heart and intestinal canal. It produces "uneasiness in the stomach, vomiting, purging, a feeling of constriction in the neck, want of breath, giddiness, fainting, prostration, and stupor." The stools sometimes contain mucus or even blood. Topically applied, the merest trace at once arrests a frog's heart; it slows the heart of mammals, reducing the beats from 120 to 60, 40, or even 9 beats per minute, and sometimes it causes intermittency. M. Alizon maintains that it first quickens the heart. It arrests the heart in diastole; according to Prevost, by exciting the intracardiac nerve-centres. It diminishes blood-pressure partly by its action on the heart, but partly by dilating the blood-vessels. Respiration is depressed in proportion to the depression of the pulse. It causes strong contraction of the intestines and bladder; it lessens urinary secretion, even to the point of suppression; it contracts the pupils.

In all these particulars atropia promptly antagonizes muscarin.

* Lauder Brunton.
When a frog's heart is arrested by the topical action of a minute quantity of muscarin, the application of a little atropia will immediately restore the pulsations.

Lauder Brunton has shown that muscarin has a singular effect on the pulmonary vessels. Schmiedeberg had noticed that muscarin produces intense dyspnoea—a condition in which the arteries contain very little blood, scarcely bleeding when cut across. Brunton's experiment on a narcotised rabbit shows that this dyspnoea is due to the muscarin causing strong contraction of the pulmonary blood-vessels, so strong that the lungs become blanched, and, owing to the contracted state of the pulmonary blood-vessels, the right side of the heart becomes greatly distended. A small quantity of atropia injected into the jugular vein at once removed this spasm of the pulmonary vessels, and unloaded the gorged right heart.

Muscarin, like pilocarpine (jaborandi), is supposed to arrest the heart by stimulating the intracardiac inhibitory apparatus.

Stimulation of the vagus inhibits the heart's action. Thus the application of a weak electric current prolongs diastole and so slows the heart; a strong current completely arrests the heart. After poisoning by curare, stimulation of the vagus no longer affects the heart, but on applying the electrodes to the sinus venosus the heart's action is immediately inhibited. It is therefore concluded that urari paralyzes the vagus but leaves the intracardiac inhibitory apparatus unaffected. After poisoning by atropia neither stimulation of the vagus nor of the sinus affects the heart; therefore, it is concluded that atropia poisons both the vagus and the intracardiac inhibitory apparatus. After the local application of either muscarin or pilocarpine the heart is quickly arrested in diastole, "like a heart inhibited by profound and lasting vagus stimulation. This effect is not hindered by urari. The application of a small dose of atropia at once restores the beat. These facts are interpreted as meaning that muscarin (or jaborandi) stimulates or excites the intracardiac inhibitory apparatus which atropia paralyzes." (Poster's Physiology).

Recent investigations, made by Mr. Morshad and myself, show that pilocarpine and muscarin paralyze the cardiac excito-motory apparatus and the cardiac muscular substance. Atropia, therefore, antagonizes the action of muscarin and pilocarpine on these structures. As atropia itself paralyzes the excito-motory apparatus and muscular substance, we have an instance of a substance which paralyzes a structure antagonizing the action of another substance which paralyzes the same structure.

Pilocarpine and muscarin paralyze the excito-motory apparatus, and yet pilocarpine removes the paralyzing action of muscarin on these structures, and in this respect is nearly as powerful as atropia. Here we have another instance of a paralyzer of the excito-motory apparatus and cardiac muscle antagonizing the action of a substance which also paralyzes the excito-motory apparatus and cardiac muscle. We have suggested that this antagonism is due to chemical difference; that atropia and pilocarpine, whilst paralyzing the cardiac structures much less degree than muscarin, have a stronger affinity for the cardiac...
structures and muscular substance than muscarin; hence atropia and pilocarpine displace muscarin and substitute their weaker action for the more powerful action of muscarin.

Schiff believes that poisonous mushrooms produce other symptoms than can be accounted for by the action of muscarin, as restlessness, convulsions, and dilatation and contraction of the pupils; and he is led to believe that poisonous mushrooms contain two active ingredients—one having an opposite, the other a similar, action to that of atropia.

In conjunction with Mr. E. A. Morshead, I have made some investigations regarding the action of muscarin on the human body.

Our observations were undertaken to endeavour to ascertain whether the action of muscarin on man is the same as on animals. The muscarin we employed was synthetically prepared by Merck, of Darmstadt. In the following experiments we administered the drug hypodermically. We have made thirteen experiments on four men, seven, three, two, and one respectively. These men, it is well to state were not in good health; three were in a delicate anæmic state, the other had slight fever from some obscure cause, though his pulse was not quickened.

A large number of preliminary observations were made to ascertain the minimum dose adequate to produce symptoms. This we found to be a third of a grain given hypodermically.

We find that the action of muscarin on man is identical with that on animals. It contracts the pupil, excites profuse perspiration, free salivation, running at the eyes and nose; it purges, sometimes excites nausea and vomiting, and a strong desire to pass urine.

We shall now speak more in detail of these different effects.

Perspiration.—Sweating occurred in eleven of the thirteen experiments. Half a grain always made it free, whilst larger doses, as three-quarters of a grain and a grain, rendered it very abundant; indeed, it was quite as free as the perspiration excited by a third to half a grain of pilocarpine. The perspiration stood in large drops on the face after the larger doses, the night-dress became soaked, and the skin felt sodden. In one man, though we gave one-third of a grain and one grain respectively in two experiments, we produced no sweating, but free salivation, amounting to four ounces. Perspiration began in from three to fifteen minutes, occurring earliest after the larger doses. It lasted from half an hour to an hour and a half. On testing the reaction of the sweat in six experiments, we found it neutral in four and alkaline in two.
Salivation was not so constant as perspiration; moreover, the saliva varied in quantity more than the perspiration, corresponding in this respect to pilocarpine. Salivation occurred in eleven experiments, and was absent in four. In three it was slight, in the rest free or profuse. It began in from two to fifteen minutes, and lasted from twenty to eighty minutes.

Lacrymation occurred in eight cases, amounting in some instances only to suffusion of the eyes, but generally the tears trickled down the face, so that the patient was obliged to wipe his eyes. It began in six to ten minutes, and lasted generally about twenty to thirty minutes.

Purgation.—In the cases in which it purged, the injection took effect in from ten to twenty minutes. In two experiments the drug excited an inclination to pass a motion; in four experiments on the same man, it produced a loose motion, one of a green colour, though his bowels were opened naturally a short time previously.

Pulse.—In one of our four men the pulse was always very quick; in the other three it was natural. The effect on the normal frequency was nil, or almost nil, though in one man, on whom only one observation was made, it reduced the frequency ten to sixteen beats. The medicine reduced the quick pulse from 120 to 80 and 60 beats per minute. Our observations are too few to enable us to speak with certainty of the influence of muscarin on the pulse, but it appears to us that the doses we employed affect the frequency very little, but the larger doses made the pulse softer and more compressible.

Respiration.—The frequency of breathing was unaffected in every experiment.

Sight.—We have notes of the states of the pupils in only ten experiments. In each case the pupils became contracted, often considerably; the contraction beginning in about fifteen minutes. The vision seemed unaffected.

In three of our experiments made on one man with the larger doses, the drug induced vomiting once, and once nausea.

In five experiments the patients were obliged to pass urine in from nine to fifteen minutes after the injection, and two complained of suprapubic pain. In five the drug produced a frequent hacking cough. In none did headache or other nervous symptoms arise.

To show how close is the similarity in the action of muscarin to that of pilocarpine, we give a short account of the effects of the latter drug.

Jaborandi (pilocarpine) flushes the face and produces copious
perspiration and salivation. It increases the bronchial secretion, exciting a slight cough, and produces slight running at the eyes and nose. It causes nausea and sickness, and, according to some authorities, diarrhoea, though this never occurred in the numerous experiments made by me in conjunction with Mr. Gould and Mr. Murrell. It considerably quickens the pulse. It often produces headache, generally frontal, with heaviness over the eyes, associated with giddiness and a stupid feeling. The sight is generally hazy, and in about two-thirds of our observations, when the drug was applied to the eye, it contracted the pupil, often considerably; though, when administered by the stomach or hypodermically, it had but little influence on the pupil. It often produces suprapubic pain, and still oftener a strong and irresistible impulse to pass urine.

The similarity between the action of muscarin and pilocarpine is evident. There are, however, slight differences. The perspiration and salivation are generally greater after pilocarpine, and last a longer time, though possibly larger doses of muscarin might in this respect rival pilocarpine. We are led from our experiments to conclude that muscarin acts rather more on the lachrymal glands than pilocarpine. Muscarin certainly acts on the bowels far more powerfully than pilocarpine. Muscarin, internally administered, contracts the pupils far more strongly than pilocarpine. On the other hand, jaborandi produces more suprapubic pain, and more frequently and more strongly the impulse to pass water. Moreover, pilocarpine produces headache and giddiness, symptoms never yet noticed by us after muscarin. In our experiments with muscarin, none of our patients complained of any disturbance of the sight, but on this point we have not sufficiently examined them. Pilocarpine produced a little drowsiness, but we have not observed this after muscarin. In our experiments on man, pilocarpine in every case quickened the pulse, and as this fact has been amply corroborated by other observers, we may conclude that it is established, though Langley, in his experiments on animals, finds that it slows the heart, acting thus on animals like muscarin. In our experiments on man, muscarin produced very little effect on the pulse; if it altered frequency at all, it reduced the number of beats.

Whilst muscarin thus so closely resembles pilocarpine in its action on the body, in one respect it strangely differs. Administered internally, either by the stomach or subcutaneously, pilocarpine slightly contracts the pupil; topically applied to the eye it
strongly contracts the pupil. Muscarin, given hypodermically, contracts the pupil far more than pilocarpine; but, strange to say, when applied to the eye itself, it widely dilates the pupil. Thus, whilst it is so generally antagonistic to atrophia, in this one respect it is similar. In respect to its action on the pupil it corresponds to gelseminum, which, administered by the stomach, contracts the pupil, but applied locally, widely dilates it.

We tested the topical effect of muscarin in nine cases, using a solution containing one part of the drug in ten of water. This solution produces very little or only transient smarting. In every case the pupil became dilated, generally widely dilated, the dilatation beginning in from a quarter to three-quarters of an hour, and continuing about twenty-four hours or a little longer.

So far as we can judge at present, from only a few careful observations, the dilatation very little interferes with the sight.

In some of our experiments, it seemed to us that the doctored pupil contracted very slightly before it dilated, whilst in other cases, both pupils certainly at first contracted somewhat. To test the early effect of the local application, we dropped some of the solution into a cat's eye, and watched the effect; but, although after a time the pupil widely dilated, we could not detect any initial contraction.

De Haen, Andral, and Trousseau, used agaricus with great success in the sweating of phthisis. Recently, Dr. Peter has highly recommended it in doses of 20 to 30 centigrammes shortly before bed-time. It is also used to arrest the secretion of milk.

JABORANDI (Pilocarpine).

This active and interesting drug, long in use in South America, was lately brought from Pernambuco to Paris, by Dr. Continho, who recommended it as a powerful diaphoretic and sialogogue. Dr. Continho advises the patient to drink the infusion with the suspended leaves, then to go to bed and cover himself with warm clothing. In about ten minutes, the face, ears, and neck, become deeply flushed, and soon drops of perspiration break out over the body, whilst at the same time the mouth waters. In a short space of time the perspiration rapidly increases, the sweat running down the body and soaking the clothes, whilst the salivation becomes profuse, oozing from the mouth, sometimes in an almost contin-
uous stream. The sweating and salivation persist from two to four or five hours. Occasionally it happens that perspiration fails to follow the medicine, and salivation is more frequently absent; but when the drug fails to cause sweating, it salivates, and *vice versa*. The symptoms come on, as I have said, in about ten minutes, but sometimes, if the external conditions are not favourable, the symptoms may be much delayed, and not appear for an hour or longer, and then, perhaps, are brought on by brisk exercise. Hypodermically injected, the alkaloids act in three to five minutes.

The amount of saliva secreted may amount to a pint, or a pint and a half.

Langley shows that it produces salivation of the submaxillary gland even after section of the corda tympani nerve, and the sympathetic supplying this gland.

Pilocarpine promotes other secretions, as the tears, the bronchial and intestinal secretions, though to a far less degree than the salivary and cutaneous secretion. Thus the eyes water slightly, and sometimes there is a little running at the nose, and a slight loose cough; moreover, some observers state that it relaxes the bowels, an effect I have never witnessed in my numerous observations. In many cases these effects on the tears, &c., are absent.

During the sweating the body temperature falls from 0.4° to 1.4° Fah., the average in my observations conducted with Mr. Gould being 0.9°. The depression lasts from one to four hours. This effect on the temperature is no doubt due to the perspiration, heat being lost by increased evaporation and radiation, more blood being probably sent to the skin during the sweating period.

In the human subject jaborandi always quickens the pulse, my original assertion on this point having been subsequently abundantly confirmed. Strange to say, Mr. Langley finds that it slows the heart of warm-blooded animals and frogs, and as regards frogs I have repeatedly verified this statement. The pulse is increased in man from 40 to 50 beats, the accelerated rate continuing for more than four hours; at the same time the pulse is weaker. Jaborandi slows, and at last arrests the heart of frogs, whether injected under the skin, or applied directly to the heart. The heart stops in wide diastole. If, when the heart is greatly slowed, or even stopped, a minute quantity of atropia is directly applied, the heart soon begins to beat again, and, ultimately, quite or almost recovers from the effect of the pilocarpine. Mr. Langley's experiments lead him to conclude that jaborandi slows and arrests
the heart by stimulating the same nervous apparatus that atropia paralyzes, and so quickens the heart, namely, the intracardiac inhibitory apparatus.

It is curious that whilst jaborandi slows and arrests in diastole the heart of frogs, and, according to Langley, of warm-blooded animals, it greatly quickens the heart of man. We see the same contradiction in the action of atropia on man and the lower animals. Atropia quickens and strengthens the heart in man and horses, dogs, &c., whilst a full dose swallowed, or topically applied, arrests the frog’s heart in diastole.

Jaborandi at first flushes and then pales the face. The pallor comes on when the sweating is active, showing that the sweating is not due to the excess of blood sent to the skin.

It often produces frontal headache, sometimes with giddiness and dulness. After the internal administration, the sight frequently becomes hazy, without any alteration in the size of the pupils. But the topical application to the eye, as I have shown, causes decided contraction of the pupil. Mr. Tweedy concludes from his investigations, that jaborandi, locally applied, causes (1) contraction of the pupil; (2) tension of the accommodative apparatus of the eye, with approximation of the nearest and furthest points of distinct vision; (3) amblyopic impairment of vision from diminished sensibility of the retina. These effects, however, do not last long.

Jaborandi seems to be slightly narcotic, for patients often fell asleep during our experiments.

It not unfrequently excites sickness. This can, in part, be accounted for by the large quantity of saliva swallowed; often, indeed, the vomit consists solely of saliva.

In many cases jaborandi produces pain, often severe over the pubes, with a distressing irresistible desire to pass water, the pain at once subsiding on emptying the bladder. As the quantity of urine is not increased, it is probable that jaborandi excites contraction of the bladder.

From a few experiments I have made, I think it probable that jaborandi promotes the secretion of milk.

Jaborandi affects children far less easily than adults.

It is evident, from the previous account, that there is a marked antagonism between atropia and pilocarpine. But in three respects they correspond, for both produce frontal headache and infrapubic pain, with desire to pass water, and both affect children less than adults. In order to test the antagonism between these two drugs, I have, on many occasions, administered pilocarpine, and when the sweating was profuse, I have injected hypodermi-
cally, grain \(\frac{1}{16} \) of atropia, and in five to ten minutes the skin became quite dry, and the salivation ceased. Strange to say, not only did atropia remove the antagonistic effects of pilocarpine, but likewise those symptoms common to both drugs, namely, headache and desire to pass water.

Jaborandi is useful in Bright’s disease. Drachm doses of the liquid extract should be given several times a day. Large doses of the extract or full doses of pilocarpine produce much depression and cannot be continued.

Dr. Berkart recommends the hypodermic use of pilocarpine in asthma.

Pilocarpine, in doses of \(\frac{1}{16} \) grain, given thrice daily, will check profuse perspiration.

It may be administered in the form of infusion, made with sixty or ninety grains of the powdered leaf, or as tincture, a drachm of which is equal to thirty grains of the leaf, but best as the alkaloid pilocarpine, of which half a grain to three-quarters of a grain may be given by the stomach, or a quarter to half a grain hypodermically.

Remedies excite sweating through their influence on the nervous system, some acting on the sweat centres in the cord, others on the peripheral secreting apparatus.

Acetate of ammonia, physostigma, nicotine, and picrotoxine, act on the cord; physostigma and picrotoxine on the sweat centres in the medulla. Pilocarpine acts on the peripheral nervous apparatus (Marmie and Nawrocki).

Ott concludes that muscarin acts on the gland cells, for after section of the sciatic nerve, in a warm-blooded animal, after an interval of nine days, stimulation of the peripheral end excites no perspiration, showing that the sweating nervous apparatus is paralyzed, but muscarin will still excite sweating in the foot of the leg with the divided sciatic.

Not only do arresters of secretion like atropia, &c., check excessive perspirations, but sweaters in small doses are equally effectual in checking undue perspiration. Thus I have shown that pilocarpine is a most efficient remedy in excessive perspiration, as in phthisis. Agaracus (muscarin) and Dover’s powder, also check too free sweating, and recently Dr. Murrell has shown that picrotoxine effectually checks the night-sweats of phthisis in \(\frac{1}{16} \) grain doses.
GELSEMIUM SEMPERVIRENS.

This powerful drug has long been employed in America. Its physiological action has been investigated by Dr. Roberts Bartholow, Dr. Ott, and Dr. Berger.

In conjunction with Dr. Murrell I have made numerous observations regarding the physiological action of this drug. The following is a condensed account of our papers, published in the Lancet for 1876 and 1877.

Gelsemium, lately introduced into this country, as a remedy for neuralgia, is especially useful in non-inflammatory toothache, and in neuralgia of the nerves supplying the teeth and the alveolar processes of the jaw.

Gelsemium is a powerful paralyzer and respiratory poison. Its paralyzing action is best studied in the frog. In these animals it often produces tetanus as well as paralysis. Whether we produce paralysis alone, or paralysis followed by tetanus, depends on the dose. Thus, as a rule, with small doses of the alkaloid, we only get paralysis; with rather larger, quiverings and tetanoid movements; and only after large doses decided tetanus.

Is the paralysis due to the influence on the brain, the cord, the motor nerves, or the muscles?

It paralyzes the spinal cord, the motor nerves and the muscles being unaffected.

The tetanus is due to the action of the poison on the cord, and I draw special attention to the fact, that the paralysis of the cord always precedes the tetanus; that gelsemium (the alkaloid) has the property of first weakening and then tetanizing the cord, thus corresponding to jaborandi, buxus sempervirens, and other drugs.

Gelsemium is a powerful respiratory poison; indeed, this drug generally, if not always, destroys warm-blooded animals by asphyxia, before it produces complete paralysis. It produces no primary quickening of respiration, and does not paralyze the phrenic nor the intercostal nerves, and it acts after the division of both vagi. It asphyxiates, as Dr. Burdon Sanderson has shown, by paralyzing the automatic respiratory centre. It salivates cats.

In order to test the effects of gelsemium on man, I gave it to six persons on seventeen occasions, in doses sufficient to produce decided toxic effects. The tincture used was made with one part of root to four of rectified spirit. To excite the symptoms charac-
teristic of this drug, I found it generally necessary to give drachm doses, hourly, for three hours—a quantity which may be given with perfect safety. Some individuals, however, as might be expected, are much more prone to be affected than others. Thus, a woman suffered from diplopia headache and hazy sight after a second dose of ten minims; and, in another case, two doses of twenty minims, at two hours' interval, produced well-marked symptoms presently to be described. On the other hand, I have given drachm doses hourly, for six hours, with very slight effect; and in one instance, I gave twenty minims to a delicate young woman every three hours for several days, finally causing only slight heaviness in the eyelids.

Unless given in dangerous doses, gelsemium affects first and chiefly the eyes and brows. The symptoms generally occur in a certain order; not without exceptions, however, both in the order and number of the symptoms. The drug ordinarily first produces pain in the brows, followed soon by giddiness, then by pain in the eyeballs, and soon after by dimness of sight. A larger dose produces double vision without apparent squinting, with a sensation of great heaviness in or under the upper eyelids, with somewhat contracted pupils. A still larger dose causes drooping of the upper lid, sometimes so marked that the edges become nearly closed, and can be opened only by a strong and painful effort; and after straining to open them, sometimes the upper eyelid is so tired that ptosis for a short time becomes complete. The movements of the eyeball are restricted, and associated in one case with a strong double internal squint. The patient next complains of weakness in his legs, and we have never pushed the drug beyond the production of this symptom. When decidedly under the drug's influence, the patient is pale, with a heavy sleepy look. Some say their eyes feel sleepy; others yawn frequently, and say they can hardly keep awake, and when left to themselves, fall asleep. Others complain of dryness of the mouth, though the tongue looks moist, and to the finger feels so. Some keep moistening the mouth with a little water even hours after the discontinuance of the medicine.

These symptoms, except the internal squinting, were all produced in the greatest number of cases; but, in some instances, even large doses of the tincture induced only a few of the slighter symptoms. Thus, a woman took a drachm dose hourly, for six hours, without exciting headache, diplopia, or giddiness—only great heaviness of the eyes, and dimness, almost amounting to temporary loss of sight; though on a former occasion, in this
very woman, we produced extreme diplopia with giddiness, with
four one-dram doses of the tincture. Diplopia, as we have
shown, is generally preceded by headache, giddiness, and dim-
ness of sight; but, in one instance, diplopia occurred without
these preliminary symptoms, though, strange to say, on a sub-
sequent occasion, in this same woman, with a larger quantity—
that is, six one-dram doses hourly—we produced much giddi-
ness, and mistiness without diplopia.

The symptoms from gelsemium come on early and soon subside.
A single dram dose rarely produces any marked symptom, but
in from ten minutes to a quarter of an hour after the second hourly
dose the symptoms appear, and reach their highest point in about
half an hour, and then quickly subside, most of them ceasing in
about an hour. With the repetition of four or six hourly dram doses,
the symptoms may persist six or eight hours after the last
dose; but the symptoms are most marked half an hour after each
dose, and then decline.

I shall now describe each symptom separately and fully.

Pain in the head and eyes.—Patients described this pain variously.
It was generally limited to the forehead, and most marked just
over the eyes. Some called it a dull sensation over the eyes;
others, a heavy pain; others, a giddy pain; and one patient ex-
perienced pain over the occiput, with a sensation as if the crown
of the head was being lifted off in two pieces. This headache
was sometimes absent, sometimes followed instead of preced-
ing the other symptoms. Dull aching pain in the eyeballs, now
and then shooting in character, occasionally worse in one ball,
sometimes followed and sometimes preceded the headache. The
headache and pain in the eyeballs were often severe, and were
intensified on moving the eyes. When ptosis was well-marked,
the effort to open the eyes widely, caused considerable pain, and
the patient seemed to get relief by closing his eyes.

Giddiness was another prominent and early symptom. Some
felt it over the whole head, but by far the larger number said it
was limited to the brows. Standing or walking made it much
worse. When well-marked, the patients staggered, and were
afraid even to stand, much less walk. So giddy was one patient,
that he nearly fell off the form. Some described their heads as
going round and round. They felt and seemed drunk, though
without any incoherence, or mental excitement.

Sight.—In every case the sight was affected; indeed, dimness of
sight and giddiness appear to be the most constant symptoms, and
may exist without headache, pain in the eyeballs, or double vision. At first, the sight, without being misty, is not so clear as usual; then slight mist comes before the eyes, one patient comparing it to a “lot of smoke rising before his eyes,” and another to a “thick veil.” At last the sight becomes so affected that it fails almost completely, failing first with distant objects; then, with further impairment of vision, nearer and nearer objects look hazy. Gelsemium affects, too, the sight in animals. Thus, we poisoned a dog, and, after the production of slight muscular weakness, the sight became almost lost, for the animal ran straight against objects without trying to avoid them, evidently not seeing them.

Diplopia.—The drug seems to produce two kinds of diplopia, one much more persistent than the other. As to the transient kind, we find it, on many occasions, a very passing phenomenon, lasting only a few seconds, then disappearing, then, after a few minutes, reappearing. In this transient form, images in the median vertical line appear double, distant objects at first undergoing the duplication. Sometimes the patient was conscious of the onset of the diplopia; thus one woman said, “I know it is now coming on; I feel such a heavy weight under my upper eyelid.” The double vision then came on, and with the heaviness, passed away in a few seconds. One image was higher than the other; the images, in this respect varying much. Mr. T. Fox rapidly recorded, from the patient’s lips, the phenomena occurring as fast as they could be written:—“One gas jet appears about six inches above the other, and there are six inches between them horizontally; the upper one is to the left; now the right is uppermost; now the left slightly again; going over to right now again; exactly over one another now, and quite close together; now again separated, left the highest; now over one another.” With other patients, the two images seem on a level. Sometimes the drug produces only this transient kind of diplopia; at other times both kinds; and sometimes one kind preceded the other, the transient usually preceding the more constant form, recurring from time to time, while the constant form persisted.

The phenomena of the constant form of diplopia follow a definite order, and take place in the upper half only of the field of vision. They occur first with objects held at the extreme right or left of the visual field; and, as the patient passes more under the influence of the drug, then with objects held nearer and nearer the middle line; and at last, usually for a short time only, objects in the median vertical plane seem double. As the effect of the drug wears off,
the double vision disappears in the inverse order. The outer lateral image is the higher, and the further the object is carried to the right or left, the greater is the horizontal and vertical distance between the images. When a coloured glass is placed before either eye, the outer and higher image is seen by the covered eye. When the object is carried high above the head, the two images gradually coalesce, and the object looks very much thinner, "like a thread." With well-developed diplopia, there is impaired movement of the eye-ball, chiefly affecting, as far as could be ascertained, the external and internal rectus, especially the external, for the outward and inward movement of the eye-ball is less free than before the action of the medicine. The ball appears to be moved by a greater effort, so that when carried as far as the weakened muscles are capable, it oscillates; as though the patient, with a great effort, moved it as far as he could, and then the tired muscles gave way a little, but being roused to an effort, they carried the eye back again; the frequent repetition of this effort giving rise to an oscillation.

The external rectus is generally first affected, and not infrequently one external rectus sooner than, and in excess of, the other. Even when the diplopia is strongly marked, the loss of power over the muscles is not very great, and there is no obvious squinting. (We may remark here that we could not detect any squinting during the transient form of diplopia.) Then, as the patient becomes still more affected, ptosis supervenes, and a great part, or the whole of the upper half of the field of vision is cut off. The loss of power in the eye muscles is then more marked, but without the occurrence of obvious squinting. At this time the symptoms no longer follow the order previously described, but assume various forms, often changing rapidly. Thus, whilst on one side the outer image is the higher, if the object is carried to the other side of the field the inner image becomes the higher; or, perhaps, for the first few seconds the outer and then the inner is the higher.

To test the effect of gelsemium on the circulation, I made thirty-three series of observations on patients in whom we induced the full toxic effects. The observations were taken every quarter of an hour, whilst the patient was fully under the influence of the gelsemium, and subsequently, as its effects began to decline, at hourly intervals. In twenty-two out of thirty-three series of observations, the pulse remained unaffected in frequency, whilst in the remaining eleven it was quickened, the increase ranging from six to twelve beats in the minute. Curiously enough, even in the same
patients, the effects were variable, for, although the drug quickened the pulse on some occasions, on others, it failed to affect it. This was not a mere question of dose, for an increase in the dose did not affect the result. With a patient fully under the influence of the drug, we were inclined to think that the pulse became a little smaller and softer. These observations show that gelsemium produces little if any effect upon the circulation; a conclusion confirmed by observations on the lower animals.

Dr. Burdon Sanderson concludes, from a kymographic experiment on a rabbit, that gelsemium exerts no influence on the blood-pressure.

Gelsemium acts less powerfully upon the respiratory centre in man than in the lower animals, or, perhaps, to speak more accurately, we should say that in the human subject, other parts of the nervous system are affected before the respiratory tract. Thus, in man, the drug produces giddiness, pain in the head, loss of sight, diplopia, and ptosis, before respiration is in any way affected. The ptosis may be so complete that the eyes cannot be opened, and the sight may be temporarily almost destroyed, yet the breathing will not be altered in character, or, at all events, will become only slightly more superficial. It may be said that the symptoms we have enumerated may have been overlooked in the lower animals. I, of course, cannot answer for the pain in the head and giddiness, but I am enabled to speak positively as to the absence of ptosis. I frequently noticed that when an animal was so fully under the influence of the drug as to be on its side in a condition of absolute helplessness, it was still able to open its eyes widely, apparently without the slightest effort.

In the lower animals, gelsemium, as we have seen, acts first on the respiratory centre, then on the spinal cord. In man, however, the muscles of the upper eyelids, or more probably their motor nerves, are considerably affected before either the cord or respiratory centre. Moreover, if the cases of poisoning are correctly reported, we are justified in concluding that in man the drug acts upon the spinal cord, before it involves the respiratory centre, for in several instances it is recorded that the patient has recovered from a condition of complete paralysis. In my experiments on cats, rabbits, and dogs, we found that the animal died from asphyxia before there was any great impairment of voluntary power.

Gelsemium, as I have already stated, has been highly praised in the treatment of cough. For practical purposes we recognize three different kinds of cough:
1. Where the expectoration is free, but the cough **is not** in excess of the expectoration.

2. Where the power of expectorating is diminished, as in emphysema and fibroid degeneration of the lung. In fibroid degeneration, owing to the great induration and thickening of the pleura, there is little or no expansion, and the air cannot be drawn into the small bronchial tubes behind the mucus, which is consequently not expelled. In these cases, although the expectoration is slight, the cough is often troublesome, and not infrequently very violent.

3. Where there is excessive excitability of the respiratory centre, and a small secretion of mucus consequently suffices to set up violent and frequent cough.

The main object of our treatment is, in every case, to diminish the secretion of the mucus in the bronchial tubes. This method must be chiefly relied on in the first and second varieties. In the third, we must have recourse to the administration of sedatives, and ether, chloroform, opium, and gelsemium will be found beneficial.

I have carefully watched for, but have been unable to detect, any influence on the mental faculties. It has been employed as a mild narcotic. Patients, when under the influence of gelsemium, look dull and heavy from the drooping eyelids, and often feel sleepy, but when asked if they are conscious of any mental depression, they always answer decidedly in the negative. Nor is cutaneous sensibility affected. I have tested sensibility roughly by pricking the skin and pinching, and also in two cases by the use of the compasses, but was unable to detect any loss of sensation, either in the face or forearm, although the patients to whom I have more especially referred had taken for six consecutive hours drachm doses of the tincture, and were fully under the influence of the drug. I was led to pay particular attention to the action of gelsemium on the gums from the success which has attended its administration in neuralgia of these parts. One patient, on both occasions on which I experimented on him, complained spontaneously of a numb pain, and a little tenderness along the teeth and the edges of the gums of the upper jaw. I have never, however, in any case been enabled to detect, either, by pinching or by the use of sharp instruments, any loss of sensation in the parts.

Gelsemium, in the doses in which I have employed it, does not affect the temperature. In the first place, I made two sets of observations, both on the same man. On each occasion he took drachm doses of the tincture hourly for four hours, and his symptoms were marked and characteristic. The temperature was taken
on one occasion every quarter of an hour, and on the other, every half hour or every hour, and the observations lasted respectively five and six hours. In one experiment it rose 0°2 F., and in the other, 0°4 F., during the course of the observation. It is true in the evening the temperature fell, but this occurs naturally, and in these cases was probably due to the ordinary diurnal variation. I also tested the effect on the temperature in a little girl aged nine, who was suffering from chorea. On the first day I gave twenty minim doses of the tincture every hour for three hours, without producing any constitutional effects, and the rectal temperature remained unchanged. On the following day, I gave for five hours an hourly dose of forty, thirty, twenty, and thirty minims respectively, and produced well-marked constitutional effects. The temperature was taken hourly in the rectum, and on two occasions was 0°4 F. lower, but after the fifth dose it was the same as before the medicine was given.

In addition to these observations on patients, I made six temperature experiments on rabbits, but the results obtained were simply nil. I soon found—a fact with which I was previously acquainted—that in these animals fright exerts a marked influence on the temperature. The mere holding the animal's legs, or placing it on its side with a view of introducing the thermometer into the rectum, will rapidly reduce the temperature by two degrees. My conclusions on the point in question have consequently been drawn entirely from observations on patients.

Strange to say, the effect of an internal dose of gelsemium is opposite to that occasioned by its application to the eye itself. When given by the mouth in doses sufficient to produce symptoms, the drug, in every instance but one, caused contraction of the pupil; indeed, in the case in which the drug produced weakness of the legs, with a strong double internal squint, the pupils were contracted to a pin's point. In the exceptional patient just referred to, on whom I made two observations, though on each occasion I produced great giddiness, haziness, susceptibility to light, and diplopia, the pupils did not contract, but manifested a very unsteady condition, varying greatly in size, in rapid alternation without any apparent cause. In another patient, the pupils strongly contracted when exposed to light, but they dilated freely in a darkened room, and when they recontracted on exposure to light, they seemed in an unstable condition, oscillating a good deal. The contraction of the pupil does not cease on the disappearance of diplopia or dimness; indeed, when the dimness passes away, the contraction of the pupil may increase.
In the cases of accidental poisoning, it is recorded that during complete general paralysis the pupils are widely dilated, whence it might be inferred that the condition of the pupil depends on the dose—a moderate dose contracting, a very large one dilating the pupil. This inference is possibly in part true, but the dilatation may be due likewise to the asphyxia, consequent on large doses. Dr. O. Berger finds, and my observations confirm his statements, that dilatation of the pupils in poisoned animals occurs only when asphyxia from paralysis of respiration has set in, and that artificial respiration at once causes the pupils to contract.

On the other hand, the topical application to the eye dilates the pupil. In the first instance I employed a tincture (1 in 10) of the American liquid extract. These preparations dilate the pupil slightly, but they excite great irritation. Subsequently, I employed the alkaloid prepared by Mr. Gerrard—one grain in twenty minims of water, a solution which causes scarcely any smarting. Mr. T. Fox and Mr. Sydney Pearse made for me nineteen observations. A few drops of the solution were put into one eye, and in each case this trial pupil became widely dilated, the dilatation usually beginning in about thirty minutes. Not only does the pupil dilate, but the muscle of accommodation becomes paralyzed and the sight affected; the vision again becomes nearly natural in twenty-four hours, but the pupil remains dilated much longer—sometimes, indeed, for a week, or even a fortnight.

The fact that the internal administration contracts the pupil, led me to examine carefully whether the local application to the eye causes any primary contraction; and in three instances I thought I detected very slight contraction, lasting only a few minutes.

The local application also dilates the pupils of rabbits and cats. The pupil of a cat being extremely sensitive, I thought that if the local application did cause primary contraction, I should detect it best in this animal. In five observations the pupil, in each instance, became decidedly contracted before dilating. In one instance the contraction began in two minutes, in another it was delayed fifteen minutes; the average time being ten minutes. Its average duration was twenty-four minutes, and it was followed by wide dilatation.

I have said that the local application dilates the pupils, but I must add that in rabbits absorption sometimes takes place so readily, and these animals are so easily affected by the poison, that they become asphyxiated, and die before the pupil has time to dilate. The contracted pupils due to the internal administration of the
drug, and the dilated pupils due to its local application, are both associated with dimness of sight.

I have said that the internal administration of gelsemium contracts the pupil in man and the lower animals, and that dilatation occurs only on the supervision of asphyxia, which at once disappears in the employment of artificial respiration; showing that this dilatation is due to the asphyxia and not to the drug. It occurred to me that the internal administration would probably dilate the pupil, but that a dose adequate to produce this effect so quickly paralyzes the respiratory centre, that the animal dies asphyxiated before the drug has time to dilate the pupils. To ascertain the validity of our conjecture, I made a rabbit insensible with seven grains of chloral, then inserted a canula into its trachea, and injected into the subcutaneous tissues of the axilla thirty drops of the liquid extract, and at once commenced artificial respiration, to prevent the advent of any asphyxia. In seventeen minutes I thought the pupils were a little contracted; in twenty-six minutes well-marked signs of paralysis set in, shown at first by a difficulty in keeping up the head; in half an hour the animal could not raise its head off the table, whilst it still retained considerable power over its trunk and extremities. At this point the eyes became prominent and the pupils began to dilate, and in thirty-four minutes the animal tumbled over on its side, and then I noticed that the pupils were decidedly larger and the eyes more prominent; but as at the expiration of an hour the pupil had not become widely dilated, I repeated the thirty minims of liquid extract, injecting it in two places into the subcutaneous tissue. Paralysis rapidly increased till it was complete in the anterior part of the body, though still the rabbit had considerable power over its hind legs; but at last these also became almost completely paralyzed, and the animal lay on its side in a helpless state. As the paralysis advanced the pupil dilated somewhat, till at last it became above double its original size, though it never reached the degree of dilatation observable in man and cats after the local application of the alkaloid. I noticed that the animal retained the power of closing its eyes quickly and strongly, even after almost complete general paralysis, whence I conclude that the seventh or some of its branches is one of the last nerves to undergo paralysis. While performing this experiment I noticed that the anterior part of the body was first and most severely paralyzed, for after the anterior limbs were almost helpless the animal retained a good deal of power over the posterior extremities, which likewise at last became helpless.
GELSEMIUM SEMPERVIRENS.

On another occasion I repeated this experiment, and continued artificial respiration for two hours and ten minutes. During this time I injected under the skin a drachm of the liquid extract three times, completely paralyzing the rabbit. At first the pupils became slightly contracted, but under the full effect of the drug they were slightly dilated. This experiment shows clearly that the internal administration of a large dose will dilate the pupil, though not considerably.

I have said that gelsemium internally administered, at first contracts and then somewhat dilates the pupils, and that it dilates them when locally applied. How does it produce these effects? Through the third nerve, or through its influence on the sympathetic? I am unable to answer these questions, and I shall rather indicate the difficulties to be contended with than hope to explain them.

Assuming that gelsemium first stimulates and then paralyzes the third, it would seem that its action can thus be readily explained; but a little consideration will show that this view is inadequate. Thus we find that the internal administration contracts the pupil—due, we assume, to the stimulation of the third nerve; but this contraction persists even when the muscular branches of the third are paralyzed. It may be said that to paralyze the branch of the third supplying the iris, a larger dose is required than is needed to paralyze the branches supplying the recti and other muscles, and hence, whilst these muscles are paralyzed the pupil continues contracted. But this supposition is inadequate to explain why the topical application should widely dilate the pupil without paralyzing the muscles. We are forced to accept the feasible assumption that, topically applied, gelsemium has a stronger affinity for the termination of the branches of the third, supplying the iris, than for the branches distributed to the orbital muscles.

I have tried gelsemium with decided success in several cases of neuralgia of the dental nerves even when the teeth were carious. Unfortunately, in several cases, the necessary dose to relieve pain produced much giddiness, haziness, and sometimes sleepiness, a considerable drawback to the usefulness of the medicine. In some instances ten minims three times a day produced these toxic symptoms. To a girl of fourteen, suffering with neuralgia of the supraorbital branch of the fifth, I gave ten minims of the tincture three times a day, and each dose produced complete ptosis of the neuralgic eye, lasting an hour or longer.

I have found tincture of gelsemium in ten-minim doses thrice daily useful in some cases of Menière's disease. In five-drop doses
repeated every quarter of an hour, the tincture is said to be useful in gall-stones, and in one case in my experience it has repeatedly averted an attack. In fact the patient gets relief in five minutes after the first dose. The relief is quicker if she walks about.

A tumbler or two of hot water with a teaspoonful of carbonate of soda is said to relieve the pain of gall-stones.

GRINDELIA ROBUSTA.

This composite plant has acquired a considerable reputation in America, where it is used as an antidote in poisoning by the rhus toxicodendron, and as a remedy in asthma, and in allied diseases. Mr. Martindale, of New Cavendish Street, has introduced this remedy into this country. His preparation of the liquid extract has proved, in many cases, so serviceable that, although my own experience with respect to it has been slight, it is so far favourable that, coupled with the strong testimony I hear from medical friends, I am induced to give a brief account of this plant in the present edition.

This is employed in two ways. Some give it in three-grain doses of the extract thrice daily to prevent an asthmatic attack; others give it to cut short the attack in twenty to thirty minim doses of the liquid extract every half hour, or hourly, beginning at the very onset of the paroxysm.

THERAPEUTICS OF BELLADONNA.

Certain animals, like pigeons and rabbits, appear to be almost insusceptible to the influence of belladonna. Dr. Horatio Wood has shown that the local application of belladonna does not dilate the pupils of pigeons, which supplements Wharton Jones's observation that when administered internally, the drug has no effect on the eye. Stramonium and hyoscyamus, as well as belladonna, have very little action on pigeons, and it is indeed almost impossible to kill them with these substances. Two grains of atropia administered hypodermically, are required to kill a pigeon; and Calmus
found that fifteen grains are required to kill a rabbit. It is said that vegetable feeders are but little affected by belladonna, but that it is a powerful poison to flesh-eaters. Thus belladonna, it is asserted, has very little effect on horses and donkeys.

The preparations of belladonna are in frequent use for external applications; no other applications are so effective for the relief of pleurodynia and the hyper-sensitiveness of the skin and irritability of the muscles of the chest in phthisis, as the liniment or plaster of belladonna. The liniment is preferable to the plaster, being stronger and cleaner, and should be rubbed over the tender and painful part several times daily, according to the severity of the pain. Although, as a rule, the liniment is preferable, yet in certain cases of pleurodynia the constant application of the plaster gives more relief. The liniment of belladonna, or the ointment of its alkaloid, is sometimes used in facial neuralgia.

Myalgia, so admirably described by Dr. Inman, often yields to belladonna, although opium preparations, as the linimentum saponis cum opio, sometimes succeed better.

An attack of lumbago that has perhaps affected the whole loins, often leaves behind it one painful spot, which may distress the patient only when the body is moved in one direction. This remnant of lumbago generally resists the usual methods of treatment, and is perhaps driven from one spot only to reappear at another; but a large belladonna plaster will generally relieve or altogether remove such pain.

Belladonna, employed either internally or externally, checks, and even suppresses the secretion of the glands. This is true of the mammary, sudoriparous, and salivary glands, and possibly of other glands. It is well known that belladonna will arrest the secretion of milk, and that it is employed with great advantage when, from any cause, a mother being unable to suckle her child, the breasts become swollen, exquisitely painful, and threaten to inflame and suppurate, unless the tension of the ducts is relieved. If the milk cannot be drawn off artificially, the secretion must be suppressed by means of belladonna, which should be applied early, before inflammation has set in, and then, in a few hours, the swollen, painful breast gradually diminishes, and soon becomes soft, comfortable, and painless. But if inflammation has set in, and the breasts become tense, shiny, hard, knotty, red, and acutely painful, the continuous application of belladonna for twenty-four or forty-eight hours will often remove the inflammation and tension, and arrest impending abscess. The rapid relief it gives in these cases
will greatly astonish any one unaccustomed to its use; in fact, it is impossible to overstate the usefulness of belladonna. It should be employed in all cases, no matter how far the inflammation has advanced, and it will often arrest the progress of an abscess, otherwise almost certain to maturate. Even when it fails to prevent suppuration, yet it will reduce inflammation, subdue much of the pain, and greatly limit the inevitable abscess.

The liniment, the extract mixed with an equal quantity of glycerine, the ointment, or a drachm of the tincture to an ounce of olive oil, or two drachms of the liniment mixed with an ounce of lard, should be rubbed especially over the areola around the nipple. The liniment is speedily effectual.

Frequent fomentation with very hot water, unless cooler water should be found more agreeable and soothing, is an excellent adjunct, but the nurse must be cautioned to wipe the skin perfectly dry, or the friction with the liniment will perhaps produce a sore.

Belladonna will arrest not only the secretion of milk, but the secretion of perspiration. A man forty-five years old had been troubled for many months with profuse sweating of the right side of the face and neck, which used to break out on the slightest exertion, or when near a fire, or if excited, so that the perspiration ran down his face and neck in streams, soaking his collar and the band of his shirt. His face was neither red nor injected, but the sweat produced an abundant crop of miliary vesicles strictly limited to one-half the face. The liniment of belladonna, applied two or three times a day, considerably abated this excessive sweating, and reduced it to little more than the natural amount.

The effect of belladonna in this instance led me to test its influence over other kinds of sweating. If used twice or thrice a day, the liniment will completely check the sweating that soaks the pillows and bedews the heads and faces of young children who have been sleeping. After a few days the application may be discontinued, and there will be no return of the perspiration. Again, many healthy adults are troubled all their lives with profuse sweating of the hands or feet, sometimes so copious as to run off in drops, and especially noticeable at the tips of the fingers, and the ball of the thumb. Belladonna liniment rubbed into the hands three or four times a day, will often gradually diminish and sometimes completely arrest this annoying affection, although, no doubt, there are cases in which the treatment fails. The sweating may, at least, be arrested for a considerable time, and sometimes the good effects are permanent.
Since the first publication of the foregoing remarks, I have made many fresh observations confirming the efficacy of belladonna to check sweating. Thus, a patient, who all her life had suffered from profuse sweating of the left side of the body, completely checked the sweating by rubbing belladonna ointment into the face twice or three times a day. Again, in cases of local sweating of the loins, over a surface a little larger than the hand, the perspiration exciting a copious eruption of eczema, belladonna checked the perspiration, and likewise cured the eczema.

Many experiments of the following kind were instituted. On several occasions a patient, after undergoing a sweating in the hot-air bath, was rubbed on one side of the face for a quarter of an hour three times a day for two or three days with belladonna ointment. The bath of the same temperature and duration was then repeated, when it was observed that the sweating, both during the process and after, was very greatly lessened; also the effect was general, although the ointment was applied only to one side of the face. In some cases the ointment was rubbed into the chest, but the effects were much less marked than when applied to the face, possibly because less ointment was absorbed.

As the local application checked sweating over the whole body, it was supposed that it acted by absorption, and this led to the internal administration of belladonna. The repressive effect, however, was apparently decidedly less than when locally applied, possibly because the amount of the drug swallowed was less than that absorbed by the skin. Still, no doubt the internal administration of belladonna does effectually control sweating, particularly in the case of weakly children perspiring profusely after exertion, and whilst sleeping. In the curious case of a middle-aged man, who, after much mental worry, suffered from excessive sweating of both cheeks while eating—the tendency being promoted by hot meat, or vinegar—the sweating ceasing immediately after the meal, ten drops of tincture of belladonna, thrice daily, checked the sweating completely. This man passed, at times, a profuse quantity of pale urine.

Employed hypodermically, atropia promptly checks sweating. After repeated experiments, I find that in profuse sweating produced by the hot chamber of the Turkish bath, one one-hundredth or one two-hundredths of a grain of atropia will, in a few seconds, completely dry the skin, and maintain it dry, notwithstanding the continuance of the bath. These experiments led me to employ belladonna hypodermically in the sweating of phthisis, and other
exhausting diseases, and I found that one one-hundredth, or even one two-hundredths of a grain would generally arrest the sweating sometimes for more than one night; and that in phthisis it made the patient sleep better, and quieted the cough. Dr. Murrell made, at my request, sixty experiments on phthisical patients, and he finds that the drug, equally successful with men and women in febrile and non-febrile cases, in the prostrate and comparatively strong, fails in about from 8 to 10 per cent. Sometimes its effects are delayed: thus, if administered at bed-time, it may not check the sweating till the following night; or its beneficial influence may extend over several nights, then gradually wear off, so that each night the perspiration returns a little earlier. In a few cases it permanently checks the sweating. This treatment unfortunately produces disagreeable dryness of the throat; but, as many phthisical patients suffer in this way, the slightest increase of the dryness due to the atrophia is scarcely noticeable.

Dr. Fothergill has given atrophia in the sweating of phthisis with marked success. By checking the sweating, the strength of the patient is economized, by preventing, he suggests, the loss of the large quantities of salts which escape with the sweat. He gives one-seventieth to one-fiftieth of a grain of this drug in a pill at bedtime; but, owing to idiosyncrasy, this dose must sometimes be increased even to one-twentieth of a grain. Thus administered, he says, the atrophia does not dry the throat, nor affect the brain, nor produce any undesirable symptoms.

Belladonna checks the secretion of the abundant, foul-smelling sweat from the feet. In making the liniment eau de Cologne may be used instead of simple spirit. We meet with cases where the soles of the feet are very tender, and the skin peels off in large flakes, leaving the dermis very red. This condition is accompanied by much sweating of the feet, and is probably produced by sweating. It is apt to persist for years, but may, in some cases be cured in ten days or a fortnight by the local application of belladonna night and morning.

In checking sweating about the head and face, too much should not be applied at one time, or becoming absorbed dilate the pupil and obscure the sight.

In the cases just described, it was experimentally proved effects are due to the belladonna and not the spirit.

Belladonna checks salivary secretion, and induces dry mouth and throat.

The salivary glands are supplied by nerves derived from the seven
proceeding to the submaxillary gland, runs incorporate with the chorda tympani nerve.—Through this nerve, the submaxillary gland is stimulated to secretion. Thus, if an acid is placed on the tongue, the secretion from this gland becomes abundant; but if the chorda tympani nerve is divided, acids applied to the tongue or mucous membrane of the mouth, fail to produce this secretion. If the distal end is electrically stimulated, we produce the same effects as the application of an acid to the mouth; thus, the arteries leading to the submaxillary gland enlarge, and the blood passes so quickly through the gland that its veins pulsate and become filled with arterial blood, whilst an abundant secretion pours forth from the gland. If atropia is given to the animal, neither acids to the mouth, nor stimulation of the chorda tympani, will excite submaxillary secretion. How is this arrest produced? Does the belladonna prevent the flow of a sufficient supply of blood to the gland and so arrest secretion? This view, formerly accepted, is now held to be erroneous, for though atropia will diminish the blood-supply, still, if the chorda tympani nerve is stimulated, the vessels dilate, and abundant blood is sent to the gland without augmenting the secretion; hence the action of atropia is not due to its paralyzing effect on the vaso-dilator fibres of the chorda tympani; and it is inferred that this nerve also contains fibres distributed to the cells of the gland—in fact, secretory fibres, and that belladonna paralyses these fibres of the chorda tympani. I would point out that atropia may possibly act directly on the gland cells, this hypothesis explaining the foregoing facts as satisfactorily as does the assumption of the existence of secretory fibres.

Experiments indicate the existence of sweat centres. Luchsinger believes that these centres are situated in the lumbar and the lower part of the dorsal region of the spinal cord. Nawrocki believes that the medulla contains a sweat centre. It has been demonstrated by Luchsinger and Ostrumoff that the sweat fibres run with the vaso-motor fibres. Luchsinger and Nawrocki show that pilocarpine and atropia affect the sweat by their action on the periphery of the sweat apparatus, and perhaps in the centre as well. Dr. Ott and Mr. W. Field also show that muscarin also excites sweating by its action on the peripheral sweat apparatus. Belladonna, as we have seen, affects the salivary secretion by its action on the peripheral part of the secretory nerves, and now it is proved that belladonna, pilocarpine, and muscarin act on the same part of the sweat nerves.

These secretory nerve-fibres are supposed to prove, or, at all events, to tend to support the notion of the existence of trophic nerves—nerves endowed with the power to increase nutrition. Now I venture to suggest some considerations tending to show that the existence of fibres having the power to excite secretion, does not necessarily imply the existence of nerve induced with the function of promoting nutrition.

Amongst its other inherent properties, protoplasm is endowed with the power of assimilating nutritive matter and converting it into protoplasm. During the evolution of living beings, it has come to pass that in the higher animals, special portions of the protoplasm have been set apart for the manifestation of some only of the fundamental properties of protoplasm, as irritability, secretion, respiration, or reproduction, to the exclusion or, at least, to the complete subordination of other properties (Foster's Physiology). But whilst granting this, yet each differentiated portion of protoplasm retains its property of assimilating nutritive matter
BELLADONNA.

As the differentiated organs lie at a distance from the part where the needful stimulus to exciting their function is situated, the nerves were evolved to convey this stimulus, their function being to arouse the various organs into activity, and to convert the potential force stored up by nutrition into kinetic force; in other words, to develop their differentiated properties.

By way of illustration, an impression on a part of the skin, say the leg of a frog, is conducted to the cord and is reflected thence to the muscles, producing muscular contraction; this contraction being accompanied by the destruction of a certain amount of the tissues of the contracting muscle. So it is with the salivary secretion; a stimulus to the mucous membrane of the mouth conducted to the central nervous system, is reflected to the salivary glands and stimulates secretion, which, like muscular contraction, involves loss of structure in the secreting gland; in each case, therefore, the nerves merely excite functional activity, with destruction of material in the exercised protoplasm. It is assumed that the nervous energy conducted along the chorda tympani nerve, excites the growth of the gland elements. I doubt the validity of this assumption. It seems to me that the nervous energy, as I have said, simply rouses the gland into activity, that it causes the gland elements to retrograde and produce their secretion, this destruction being followed by increased growth. The same order of events occurs in the case of a motor nerve and muscle, the nerve excites the muscle to contract, and this involves destruction of part of its structure, this destruction immediately induces an increase in nutrition whereby the loss is restored; hence I submit it is as valid to assert that the motor nerves are the trophic nerves of the muscles, as that the chorda tympani is the trophic nerve of the submaxillary gland. In both the nerves excite function with loss of structure, to be followed by increased nutrition. Both nerves secondarily do induce increased nutrition, yet cannot be designated trophic nerves.

Dr. Cook has recently reported cases of salivation from mercury and scurvy, cured by the hypodermic injection of atropia.

Recollecting that in acne there is over-abundant secretion from the sebaceous follicle, I was induced to use belladonna with the hope of checking it, and indeed this treatment seemed to be of some slight service.

While speaking of milk abscesses it was stated that, apart from its milk-arresting power, belladonna will in some measure subdue inflammation and its accompanying pain. Belladonna, too, is effectual in other forms of inflammation which threaten to end in abscess. Mr. Christopher Heath has shown that belladonna will prevent the formation of abscesses in the neck and elsewhere, and after the onset of suppuration will check pain and inflammation. The belladonna treatment of boils and carbuncles often succeeds. (See Sulphides and Poultices.)

Belladonna preparations are of further use as local applications. Thus, the extract smeared over the painful cracks in the mucous membrane is employed to relieve the pain of fissure of the anus.

* M. Maisonneuve employs forcible distension of the rectum, in these cases,
The extract in conjunction with tannin, in the proportion of one or two grains of extract to six or eight of tannin, is recommended by Trousseau in leucorrhœa with ulceration of the os uteri, and in neuralgia of the uterus. The belladonna arrests the too abundant secretion from the mucous glands, while its action in this respect is assisted by the tannin. In both affections belladonna is serviceable in relieving pain. The mixture of belladonna and tannin may be wrapped in cotton-wool, or made into a bolus with cocoa-nut fat, and placed in contact with the painful and over-secreting os. Some obstinate forms of leucorrhœa yield completely to this treatment.

When the disease depends on too free a secretion of the mucous glands about the os uteri, and when this condition is associated with much pain, the following injection yields good results:—bicarbonate of soda, a drachm; tr. of belladonna, two ounces; water, a pint. The syringe should be introduced as far as possible, while the patient lies on her back, with her buttocks raised by a pillow, while one or two syringefuls, used cold, should be injected into the vagina, and made to reach the mouth of the uterus. The position should be maintained for a few minutes, so as to allow the wash to remain in contact with the os uteri.

Dr. Anstie has recently recommended atropia in hypodermic injection, to relieve local pain and spasm. He vouches for its great efficacy.—“It should be employed,” he says, “in the form of solution of the sulphate, four minims containing one-sixtieth part of a grain; two minims will be the proper commencing dose in adults, unless the pain to be relieved be very severe. It should be cautiously increased to one-sixtieth or one-fiftieth part of a grain—more can seldom be needed.” He further states, “it is somewhat less frequently tolerated than morphia, but persons quite unable to bear morphia will often bear atropine, and vice versa.” He agrees with Hunter that when this drug does succeed, its effects are more permanent than those produced by the hypodermic injection of morphia. Dr. Anstie has satisfactorily employed atropia hypodermically, in one case of asthma, and in two cases of glaucoma. The same treatment is sometimes useful in neuralgia and sciatica, although the pain of these affections is generally more easily subdued by morphia.

Dropped into the eye, applied to the surrounding skin, or introduced into the stomach, preparations of belladonna very speedily with considerable success; by forcing two or more fingers up the rectum he overcomes the spasm and gives permanent relief.
produce extreme dilation of the pupil. This dilation is one of the most characteristic symptoms of belladonna. In iritis, and some other eye-diseases, solutions of atropia are used to produce dilatation of the pupil, and to prepare the eye for ophthalmoscopic examination. In conjunctivitis, and other inflammations of the eye, belladonna is employed both locally and internally.

The local application of the liniment, or ointment of belladonna will often relieve, and sometimes even cure, neuralgia. Its efficacy is most manifest on the fifth nerve, as in neuralgia of the brow, or under the eye, accompanied by severe pains in the eye-ball, and intolerance of light. Sciatica even will sometimes succumb to it.

A full dose of belladonna produces great dryness of the tongue and roof of the mouth, extending down the pharynx and larynx, inducing, consequently, some difficulty in swallowing; together with hoarseness, and even dry cough; a large dose will sometimes induce dryness of the Schneiderian membrane, and dryness and much injection of the conjunctiva.

"After about two hours," says Dr. J. Harley, "the dryness of the mouth gives way, to be replaced by a viscid, sticky, acid, and foul-smelling secretion, and the mucous membrane becomes clammy, and the tongue is covered with a white fur." Harley produced ophthalmia in a dog by belladonna. Several of these symptoms indicate the influence of belladonna in arresting secretion.

In several instances Harley has known belladonna to cleanse and moisten the tongue of typhus fever patients. Belladonna is employed in several inflammatory diseases of the throat, and its good effects are most apparent when the throat and tonsils are acutely inflamed and swollen. It may be given in combination withaconite, and the influence ofaconite on this form of inflamed throat, provided the pulse is full, and the skin hot and dry, is greater than that of belladonna.

The influence of belladonna on digestion is not known.

In some painful affections of the stomach, the tincture may afford relief—a vague statement, but as exact as our present knowledge of the drug will permit. I have heard it praised in "gout of the stomach." Twenty or thirty minims of the tincture, administered every three or four hours, has arrested obstinate forms of the vomiting of pregnancy.

It is not yet ascertained in what way belladonna affects the intestines; but, bearing in mind its influence on the lining membrane of the mouth, it may be conjectured that belladonna lessens the secretion of the intestinal canal. It has been asserted that bella-
Belladonna increases the peristaltic movement of this canal. It has been experimentally proved that it paralyzes the terminations of the inhibitory fibres of the splanchnics distributed to the intestines. Thus, stimulation of the splanchnics will stop intestinal movement, but small doses of atropia will prevent this arrest.

Trousseau recommended belladonna in obstinate constipation, and no doubt, in many instances, it succeeds admirably. He advised doses of from one-sixth to one-fourth of a grain of the extract to be taken once a day, either night or morning, gradually increasing the dose and diminishing or discontinuing the medicine when the constipation is removed. Dr. Nunneley finds this treatment useful in all forms of constipation, especially when co-existing with dyspepsia, characterized by a thinly furred tongue, with prominent red papillae at the tip, epigastric tenderness, pain after food, and often more or less headache. It ensures a natural evacuation daily. It must be continued a fortnight or three weeks. Mr. Foster of Huntingdon, tells me that a small dose of belladonna prevents the constipating effects of iron. In some of the severest cases of constipation where powerful purgatives had failed, a suppository of one or two grains of the extract has opened the bowels.

Belladonna often relieves colic of the intestines, and is especially serviceable in colic of children.

That the active principle of belladonna is readily absorbed into the blood is proved by the symptoms. After a considerable dose of belladonna, the face becomes much flushed; the eye bright, dry, and injected; the pupil dilated; the sight dim and hazy; while the power of accommodation in the eye, for instance, is lost. The mind and senses are peculiarly affected. The ideas, at first rapid and connected, become incoherent and extravagant, and there is often decided delirium, with pleasing illusions. Sometimes the patient is seized with restlessness, keeps continually moving, and cannot be quieted. A kind of somnambulism is occasionally observed; cases are recorded where, under the influence of belladonna, the patient for a long time performs the movements customary to his occupation, and it is narrated of a tailor, that he sat for hours moving his hands and arms as if sewing, and his lips as if talking.

The delirium may be furious and dangerous, requiring restraint; nay, it is recorded of a man poisoned by this drug, that so violent did he become, that he was ordered to be confined in a mad-house. Sometimes a very small dose will induce mental disturbance, and so great is the susceptibility of some people, that even when
applied to the skin in the form of plaster or ointment, belladonna induces marked cerebral disorder.

Belladonna weakens the muscular power, renders the gait unsteady and staggering, so that a patient, having lost control over his movements, may run against objects he sees, yet desires to avoid.

This loss of power is not due to the action on the muscles, but is commonly attributed to the action of atropia on the motor nerves; for it is said atropia paralyzes both the terminations and the trunks of motor nerves.

I have made some careful observations on this matter with Mr. Murrell, which lead us to conclude that atropia paralyzes much more through its depressing action on the spinal cord, than on the motor nerves. It is well known that considerable difference of opinion prevails on this point, some experimenters attributing the paralysis to the action of the poison on the motor nerves, and others to its action on the cord. Fraser, in his article "on the Connection between Chemical Constitution, and Physiological Action," Part ii., says, atropia produces paralysis chiefly by affecting the motor centres and sensory nerves, and our observations confirm this conclusion in respect of the motor centres (spinal cord).

Thus, in the experiments we have recorded in this paper, after tying the abdominal aorta, or the femoral artery and vein, and then poisoning the animal, we found that paralysis set in as early, progressed as quickly, and became as complete in the ligatured, as in the unligatured, and consequently poisoned, limb.

It occurred to us that, perhaps, our experiments were made at a different time of the year to those performed by other observers, and that this might account for the difference in our results. Our first observations were made in May, June, and July, but with the view of solving the point, we repeated many of them during the month of November. We tied the femoral artery and vein of the right leg of two frogs, and then poisoned them by injecting sulphate of atropia under the skin of the left axilla. To one frog we gave a dose too small to produce complete paralysis; to the other a much larger dose, namely half a grain, which in two minutes caused complete paralysis. In the frog to which the small dose had been administered, both posterior limbs were almost completely paralyzed, but the ligatured limb was a little the stronger after the poisoning. In the frog with the large dose, both hind limbs were absolutely paralyzed in two minutes. We feel bound, therefore, to conclude that sulphate of atropia paralyzes, in great part, by its action on the spinal cord.

Does atropia exert its action directly on the cord, or only indirectly through its influence on the heart and circulation? Is it a spinal depressant, or are the phenomena we have witnessed simply due to its action as a cardiac poison?

Atropia powerfully depresses the heart of frogs, slowing, or even completely arresting, its action. Even in cases in which the number of pulsations is reduced by only one-half, the heart does very little work; for, on examination, it is found that, during diastole, it becomes but slightly distended with blood, so that the circulation must, in reality, be almost at a standstill. That such is the case is also shown by a microscopic examination of the web of the foot, when the blood is seen to be either stationary, or to be moving very slowly in a few only of the larger vessels. It occurred to us that this effect on the heart and circulation might cause the paralysis of the spinal cord.
Vulpian found that ligature of the aorta just above the heart, in a few hours suspended the excitability of the cord, and soon after impaired the conductivity of the motor nerves. Paralysis from atropia poisoning, however, comes on very much more quickly than this, a circumstance which, at first sight, appeared at once to solve the question, and to show that atropia exerts a specific or primary action on the cord. But it occurred to us, however, that it was not improbable that in summer, when nutrient changes in frogs are performed much more rapidly than in winter, the functional activity of the cord might be sooner affected by arrest of the circulation. I, therefore, determined to repeat Vulpian's experiment in a modified form. We tested the condition of reflex action and voluntary movement in eight frogs, in which the circulation had been arrested by mechanical means. In two of these cases the heart was cut or torn out from the chest, and in the remaining six the aortae were securely ligatured just above their origin from the bulb. The latter operation was performed as follows:—The animal was pithed by cutting across the medulla, and pushing a spigot of wood through the foramen magnum into the cranial cavity. When the effects of the shock had completely passed off, we pinned the (brainless) animal down on its back, and opened the thorax by elevating the lower end of the sternum, and cutting through the adjacent soft tissues. The heart was then seen to be beating, and the pericardium having been opened, no difficulty was experienced in slipping a ligature under the aorta close to the bulb, and tying them simultaneously. Finally, the sternum was replaced, and the edges of the incision were brought together with a few sutures. The operation was usually performed in a very few minutes, and in most cases not a single drop of blood was lost. The experiment of arresting the circulation by removing the heart, was even simpler. The brain having been destroyed as before, the thorax was opened by one cut of the scissors, and the heart was seized with the forceps and at once removed. We may mention that the success of the operation was confirmed by a post-mortem examination, although such a step may hardly appear to have been necessary.

As the result of these experiments, I found that, on an average, the impairment of reflex action commenced in 13 minutes, and that the paralysis was complete in 37 minutes. It will be seen that our results differ considerably from those of Vulpian, a discrepancy which we then thought might possibly have been due to the season, and the condition of functional activity of the frogs, although our subsequent experiments have shown that such is not the case. As our experiments on circulation were made at the same time, and under identically the same conditions, as our observations on atropia, they are obviously the best fitted for purposes of comparison.

By reference to the table giving the results of poisoning by atropia in frogs, in which the lower limbs had been protected by ligature of the abdominal aorta, it will be seen that in four of these cases loss of reflex action was complete, on an average, in 38 minutes. These results accord in the most striking manner with those already described as resulting from the mechanical arrest of circulation, and they might be considered to afford a strong proof that the cardiac action of atropia is sufficient to account for the paralysis of the cord produced by this drug. Such, however, is not the case, for, on examining the table, it will be found that our experiments are, in some respects, unsatisfactory. The dose of atropia administered was small, so small, in fact, that in two cases the paralysis was never complete. It was, therefore, obviously necessary to ascertain whether larger doses would not produce complete paralysis in a shorter time. The experiments
necessary for the elucidation of this point were made in November, and the opportunity was taken of instituting a series of comparative observations, with the view of determining the effects of mechanical arrest of circulation in producing complete paralysis in brainless frogs. These results are given in the accompanying table.

Pithed and Pegged Frogs poisoned with Atropa.

<table>
<thead>
<tr>
<th>DATE</th>
<th>WEIGHT OF FROG</th>
<th>AMOUNT IN GRAINS OF SULPHATE OF ATROPIA</th>
<th>PROPORIONATE DOSE</th>
<th>PARALYSIS COMPLETE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov. 29</td>
<td>20 grammes</td>
<td>4</td>
<td>1 T 1</td>
<td>2 minutes</td>
</tr>
<tr>
<td></td>
<td>24 "</td>
<td>3</td>
<td>1 T</td>
<td>4 "</td>
</tr>
<tr>
<td></td>
<td>30 "</td>
<td>59</td>
<td>1 T 1 T 1 1 1</td>
<td>9 "</td>
</tr>
<tr>
<td></td>
<td>20 "</td>
<td>8</td>
<td>1 T 4 3</td>
<td>3 "</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Average 4.5 minutes</td>
</tr>
</tbody>
</table>

Table showing the effect of mechanical arrest of circulation in Pithed and Pegged Frogs.

<table>
<thead>
<tr>
<th>DATE</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nov. 29</td>
<td>24 minutes</td>
<td>55 "</td>
<td>24 "</td>
</tr>
<tr>
<td></td>
<td>Average 34 minutes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In these observations sulphate of atropia caused, on an average, complete paralysis in 4.5 minutes, whilst mechanical arrest of the circulation required, on an average, 34 minutes. In the first of the atropia cases recorded in this table, we tied the femoral vessels before poisoning, and yet the paralysis became complete in both posterior limbs in 2 minutes.

We there conclude that atropia has a direct paralyzing action on the cord, and does not affect it through its depressing action on the circulation.

Atropia affects the cord and excites tetanus; an effect long undetected till it was pointed out by Dr. Fraser.

Dr. Fraser has shown (1) that in frogs, tetanic symptoms follow the subcutaneous injection of a dose of sulphate of atropia equivalent to about 1,000th of the weight of the animal; (2) that this tetanus sometimes sets in on the second day, but more frequently on the third, fourth, or fifth; (3) that it varies in its duration from a few hours to seventeen days; (4) that it is due to the action of the drug on the cord (medulla oblongata and medulla spinalis).

In conjunction with Mr. Murrell I have made some experiments on the subject, which I here introduce. Our observations were made during the months of May, June, and July. The frogs used for the experiments were, with a few exceptions, the ordinary *Rana temporaria*. We employed, except when the contrary is stated, a 1 in 20 solution of sulphate of atropia in water, the requisite dose being injected either under the skin of the back, or into the axilla. The first twelve cases were observed thrice daily, between seven and eight in the morning, one and two in the
afternoon, and five and six in the evening. In the subsequent experiments, observations were made much more frequently, with the view of determining how rapidly paralysis occurred, how soon it reached its height, and how quickly it declined. In some cases the animal was under almost continuous observation for many hours, in others the notes were taken every eight or ten minutes for the first hour, and hourly for every three hours subsequently. We may take this opportunity of explaining that whenever we employ the term "pithed and pegged" we mean division of the cord by cutting, and destruction of the brain by the introduction of a piece of wood into the cranial cavity. Like Dr. Fraser, we often obtained strong tetanus from the subcutaneous injection of atropia, but found that his dose (from \(\frac{3}{50}\) to \(\frac{1}{5}\) of the weight of the frog) usually killed our animals instead of producing the desired result. With a smaller dose, however, namely, from \(\frac{1}{75}\) to \(\frac{1}{100}\), we were more successful. In our experiments the tetanus commenced earlier than in Dr. Fraser's, our average period of onset being 20 hours; in one case it was well marked in 3 hours, whilst in the longest it was delayed 28 hours. With us, too, it lasted for a shorter time, for in one animal it continued only eight hours, and never, in any instance, exceeded five days. We imagine that these differences are due to the time of the year at which the observations were made.

Why is the tetanus so long delayed after atropia poisoning? One writer referring to Dr. Fraser's paper, says that the paralysis of the motor nerves prevents the tetanic condition of the cord from displaying itself on the muscles, but Dr. Fraser himself nowhere makes this assertion, and, indeed, his cases prove the contrary.

This proffered explanation we hold to be erroneous for the following reasons:

I. Bezold and Bloebaum have shown that even with very large doses it is difficult to destroy completely the conducting power of the motor nerves, and it is obvious that as long as their conductivity is, in the smallest degree, retained, the tetanic condition of the cord must produce, more or less, tetanus of the muscles.

II. The onset of tetanus is delayed even in cases in which the dose of atropia is so small as to produce but slight paralysis, and it must be admitted that if the motor nerves are capable of conveying voluntary and normal reflex impressions, they can conduct tetanic reflex stimuli. Thus, in many of Fraser's cases, there was never complete loss of reflex and voluntary power during the period which elapsed between the injection of the drug, and the onset of tetanus. It will be found that, of the cases in which he obtained tetanus, there were twelve in which the paralysis was incomplete; that in seven of the thirteen in which it had been complete, a partial recovery of reflex and voluntary power had taken place for a day or more before the onset of tetanus. In eleven of our own twenty-six cases there was incomplete paralysis of reflex action and voluntary power, and in all these cases the onset of tetanus was delayed. In two cases, indeed, both voluntary and reflex power had been completely regained before tetanus set in. In one case in which there had been complete paralysis, it began to improve five and a half hours before the commencement of tetanus.

III. If the poison be prevented from having access to certain limited regions by ligature of the nutrient vessels, the onset of tetanus is still delayed even in these protected parts. Fraser gives an account of four experiments, in which he adopted this mode of procedure. In three, before poisoning the animal, he tied the femoral vessels, and in one the abdominal aorta, and yet tetanus did not occur in the protected limbs, till twenty-two hours, fifty-one hours, three days, and twenty-two hours respectively.
We have tested the action of atropia on ten pithed and pegged frogs, in which, before poisoning, the abdominal aorta had been tied. The following was our mode of procedure:—We first divided the medulla by cutting through the occipitoatlantal membrane, and then passed a pointed wooden peg upwards through the foramen magnum into the skull, so as to destroy the brain, and then tied the abdominal aorta just above its bifurcation. In three cases in which we obtained tetanus, it was delayed for twenty-five, nine, and four and a half hours respectively.

We conclude then, for these reasons, that the late occurrence of tetanus in atropia poisoning is not due to paralysis of the motor nerves, but that it is owing to the cord being slowly affected. It appears that whilst the poison quickly paralyzes, it takes many hours, or even days, before it tetanizes.

It has been suggested that this delayed tetanus, which often sets in from the third to the fifth day, cannot be directly due to the atropia, but must depend on some products slowly formed in the body by the atropia.

This explanation appears to me to be wrong, for the following reason:—Atropia corresponds to other tetanizers, and conforms to Frazer's law, that when alkaloids producing tetanus are converted into ethyl or methyl compounds, they lose their power of exciting tetanus, and paralyze the ends of the motor nerves. Ethyl-atropium does not tetanize, but is a powerful paralyzer of the motor nerves, far more so than atropia itself.

The afferent nerves are unaffected, or but little affected by atropia.

Most observers state, that atropia produces severe pain in the head, generally over the forehead, and in the eyes, and sometimes the top of the head. Singing in the ears also occurs, with more or less giddiness. In persons poisoned by this plant, spasmodic contraction of the sphincter of the bladder has been not unfrequently observed, and a scarlet rash often breaks out on the skin—a rash said to be like that of scarlet fever, and to be most marked in the neighbourhood of the joints. Mr. J. G. Wilson reports a case in which the local application of belladonna produced a general red rash, with redness of the throat, and dilated pupils.

The first effect of belladonna on the pulse is to increase its quickness, fulness, and force, to the extent even of fifty to sixty beats in the minute, moderate doses at the same time increasing the blood-pressure. This condition of the circulation continues till the tongue and mouth become moist and clammy, when the pulse diminishes in frequency and loses strength (J. Harley). In fatal cases, the pulse grows rapid, intermittent, and weak. Dr. J. Harley considers belladonna a powerful heart tonic, and he
points out how the use of it serves to reduce the frequency and to strengthen the beats of the heart, when weakened by disease.

Atropia paralyzes the terminations of the vagi; for, in animal poisoned by atropia, neither section nor galvanization of the vagi affects the heart. When injected into the carotid, so as to reach the central nervous system before the nerves, atropia first reduces the number of the heart's beats, showing that it stimulates the nucleus, whilst it paralyzes the terminations of the vagi. John Harley, however, denies that belladonna paralyzes the vagi and believes that the quickened heart-beat is due to stimulation of the sympathetic system.

Atropia is considered to paralyze an intracardiac inhibitory apparatus. The after poisoning by curare, stimulation of the vagi has no effect on the heart, in the application of the electrodes to the sinus the heart is at once arrested; curare, it is assumed, paralyzes the terminations of the vagi, but leaves, unaffected, an inhibitory apparatus in the heart itself. After poisoning by atropia, no stimulation of the vagi nor of the sinus affects the heart, whence it concluded that atropia paralyses the intracardiac inhibitory apparatus.

Atropia is considered to stimulate the cardiac accelerator nerves.

Both reasoning and experiments lead Mr. Schäfer, Professor of Physiology at University College, to recommend the use of atropia during the inhalation of chloroform. The chief source of danger during the use of chloroform is its depressing action on the heart, in many fatal cases, suddenly ceasing. This action, Mr. Schäfer believes, is due to the chloroform stimulating the inhibitory cardiac apparatus. No doubt, too, some of the cases of sudden death are due to the effect of the operation on the nervous system. Thus, it is well known, that if the leg of a frog be crushed, the heart stops, but division of the vagi prevents the effect on the heart. Now Schäfer argues that, if a dose of atropia be given, sufficient to quicken the pulse, i.e., to paralyze the inhibitory cardiac apparatus, then chloroform no longer will be able to stop the heart, nor can it be arrested by shock.

Dr. Nunneley asserts that, in the frog, belladonna neither increases the frequency of the heart's beats nor dilates the pupil, and this statement has been abundantly corroborated in respect to its action on the heart, showing that belladonna must affect the frog otherwise than man and some other animals, as the dog, the horse, etc.

It is stated by Wharton Jones, Meuriot, J. Harley, and others (but denied by Nunneley), that belladonna, when applied to the web of the frog's foot, contracts the smaller arteries, producing
first acceleration of the circulation, followed after a time by complete stasis, beginning, according to Meuriot, in the veins and capillaries; the circulation always continuing in the artery for some time after it has completely ceased in the vein. According to Harley, a moderate dose contracts the arteries, whilst a large dose dilates them; the contraction being due to stimulation, and the dilatation to exhaustion of the sympathetic system resulting from its previous over-stimulation.

The action of belladonna on the pupil has been variously explained, some believing that it depends on paralysis of the third nerve supplying the iris; some teaching that it is due to excitation of the sympathetic; and others maintaining that, by preventing turgescence of the vessels of the iris, belladonna produces the dilatation. In his able and valuable work, from a survey of the numerous observations of various experimenters, Dr. H. Wood concludes that atropia, applied locally, causes mydriasis by paralyzing the peripheral ends of the oculo-motor nerve, and probably by stimulating the peripheral ends of the sympathetic. Given internally, atropia almost certainly causes mydriasis—not by influencing the nerve-centres, but by being carried in the blood to the eye itself, and there acting precisely as when applied locally.

It is maintained by Brown-Séquard, that both belladonna and ergot of rye exert a powerful influence on the unstriped muscular fibres of the body, and he instances the power of each drug to dilate the pupil, and to produce contraction of the uterus. He has seen the vessels of the pia mater of dogs contract after large doses of belladonna or ergot, and he further states that both possess the property of lessening congestion of the cord, while full doses of either medicine diminish its reflex excitability. On the other hand, Meuriot maintains that belladonna intensifies the reflex function. Moreover, Brown-Séquard adds, that one drug acts especially on the involuntary muscles of one part, and the other chiefly on those of another part. He thus concludes that belladonna especially affects the pupil, blood-vessels of the breast (and thus arrests the secretion of milk), muscular fibres of the bowels, sphincter of the bladder (and so obviates nocturnal incontinence of urine [?]); while ergot especially acts on the muscular structure of the womb and blood-vessels of the cord.

These speculations have led Brown-Séquard to use belladonna and ergot in those forms of paralysis depending on chronic inflammation of the cord. By giving ergot internally, and by applying belladonna along the spine in the form of plaster or ointment, he
seeks to contract the vessels, and to lessen the supply of blood to
the cord.

To briefly sum up the probable action of atropia, we find:

1. It tetanizes the cord and heightens its reflex function.
2. It stimulates the respiratory centre and the inhibitory centre
 of the heart.
3. It stimulates the cardiac accelerator nerve or its centre.
4. It stimulates the vaso-motor centre and so heightens arterial
 pressure.
5. It paralyzes the motor nerves, first affecting the trunk.
6. It paralyzes the termination of the vagi, both in the heart and
 lungs.
7. It paralyzes the terminations of the secretory nerves of the
 salivary glands, and, perhaps, those of the sweat glands.
8. It paralyzes the terminations of the inhibitory fibres of the
 splanchnics.
9. Large doses slightly depress the functions of the afferent
 nerves.
10. It paralyzes the terminations of the oculo-motor nerves, and
 stimulates the sympathetic, so far as the iris itself is concerned.

It appears then, that, whilst it acts as a "stimulant" to a large
part of the central nervous system, to many of the nerves it operates
as a paralyzer.

It is right to state that Dr. John Harley considers that belladonna
affects the sympathetic apparatus, first stimulating, then paralyzing
it, and he explains its effects mainly by a reference to this twofold
action.

The influence of belladonna on the sympathetic led Dr. R. T.
Smith to employ it in two cases of exophthalmic goitre—a disease
regarded by some as due to paralysis of the sympathetic of the
neck. The effects were striking. Five minims of the tincture
hourly afforded great relief in four or five days, though the disease
had lasted more than a year. In two months the exophthalmos
had much lessened. Homoeopathic doctors have long employed
this treatment.

Belladonna is often used to relieve pain. Dr. Anstie considers
it the best remedy to mitigate every kind of pain in the pelvic
viscera. Some neuralgias, no doubt, yield to this medicine, and it
appears to possess most efficacy over neuralgia referable to the
fifth nerve. Cases are recorded of relief afforded by it in sciatica.

Trousseau recommended the following method of treating neu-
ralgia:—To administer one-fifth part of a grain every hour till
giddiness is produced, and then to lessen the dose; but to continue the medicine for several days.

Trousseau also employed belladonna successfully in epilepsy, according to the following method:—"During the first month of treatment, the patient takes a pill, composed of extract of belladonna and powdered leaves of belladonna, of each one-fifth part of a grain every day, if his attacks occur chiefly in the daytime; or in the evening if they are chiefly nocturnal. One pill is added to the dose every month; and, whatever be the dose, it is always taken at the same period of the day. By this means the patient may reach the dose of from five to twenty pills, and even more." The dose is to be regulated by circumstances. This treatment, it is said, even when it fails to cure, yields much relief.

Belladonna often allays both the cough and oppressed breathing of asthma. To ensure success it must be employed in considerable doses, as Dr. H. Salter has lately pointed out, and I have often verified his observations. Ten minims of the tincture every two or three hours, a quantity generally well borne, is often sufficient; but, if any of the undesired symptoms of belladonna set in, the dose must be reduced. If the patient is not very susceptible to the action of the drug; for larger doses are sometimes required. Thus, occasionally, half a drachm of the tincture hourly is well and advantageously borne. Such a dose need only be taken at the time of the paroxysm; but when this lasts several days, the medicine should be given in the quantity recommended till an impression is made on the disease. The effect is chiefly satisfactory in either averting the attack or rendering it milder.

Belladonna is one of the best remedies for whooping-cough; but, as in asthma, to obtain any good from it, it must be employed in considerable doses. To children two and three years old I often give as much as ten minims of the tincture every hour, and this quantity usually produces no effect, except on the cough, neither dilating the pupil, nor, so far as one can judge in children so young, making the throat dry; and it certainly does not in children a little older, who are able to express their feelings.

Should drowsiness, delirium, or dilatation of the pupil occur, of course the dose must be diminished. The only symptom I have witnessed from these large doses is dilatation of the pupil. Children, it is well known, bear belladonna much better than adults; hence the slight effect of so large a dose, and the small influence which a less quantity exerts on whooping-cough—a disease of childhood. Some writers state that children become rapidly ac-
customed to belladonna. These large doses, however, may be
given at first, and in the course of many cases, I have never had
to give less on account of any toxic effects. These doses often
much reduce the severity and frequency of the cough, even during
the period when it is most violent and convulsive. But, like all
other remedies in this disease, belladonna is of little use if the child
is exposed to cold and cutting winds. If the weather is cold the
child should be confined to the house in a warm room; if the
weather is mild, out-door exercise is, of course, highly beneficial;
but cold must be most carefully avoided.

While there can be no reasonable doubt of the great efficacy of
belladonna in many cases of whooping-cough, it must be admitted
that in many instances, without apparent reason, it fails. Influ-
ences, at present not understood, appear to modify its effect; for,
in some epidemics it is very successful, while in others it appears
to be inoperative. Belladonna exerts but little effect on whooping-
cough, when bronchitis or any irritation exists, as that from teething,
worms, etc. If the gums are red, swollen, and painful, they
must be freely lanced, and other sources of irritation removed.
Belladonna is considered of especial use in the third week of the
attack—at a time, that is, when the febrile stage has passed away,
and the violence of the convulsive attacks is declining.

Belladonna is often useful in other coughs, although with our
limited knowledge on this subject, it is impossible to lay down
precise rules for its employment.

It is often useful in certain forms of headache—for instance, when
the pain is situated over the brows and in the eyeballs, which seem
as if too large for the head, and as if they would be forced out of
the skull. These headaches are not due to stomach or uterine
derangements; indeed, very often their cause cannot be discovered.
They are especially peculiar to young women, and they seem due
to weakness and overwork. Three minims of the tincture should
be given every three hours.

It is said that belladonna controls the delirium of fevers—as of
typhus fever.

Dr. John Harley finds belladonna useful in typhus fever. It
slows and strengthens the pulse, reduces temperature, moistens the
tongue, and he thinks shortens the course of the disease. Its pro-
longed use makes the heart irritable.

Belladonna is both speedier and more certain than any other
remedy in removing that troublesome affection, incontinence of
urine. It must be given in doses of from ten, twenty, to thirty
drops of the tincture three times a day; small doses often fail when large ones at once succeed. It may take a fortnight to succeed. Sometimes the incontinence is not limited to the night, but may trouble children during the day. These severe forms will often yield to belladonna; but, while in some cases it is thus effectual, still it often fails altogether, although no worms infest the intestines, no irritation exists about the rectum, and no reason seems to exist to account for its failure. Strychnia, cantharides, turpentine, santonine, or galvanism, should then be tried. It sometimes checks the incontinence of urine of the old or paralytic.

Belladonna, used internally or externally, is certainly efficacious in erysipelatous inflammation. It may be given in combination with aconite; but when the skin is hot and pungent, and the pulse is firm and resistant, aconite exerts over this inflammation an influence far more potent than that of belladonna.

Belladonna has been recommended as a preventive of scarlet fever, but so much prejudice has been introduced into the discussion of this question, that it is difficult to conclude whether it has any prophylactic virtue.

Belladonna has been found of service in the treatment of seminal emissions; a grain and a half of sulphate of zinc with a quarter of a grain of extract of belladonna, three or four times a day, is often a successful remedy in cases of nocturnal emissions.

| Atropia is antagonistic to opium, calabar bean, muscarin, jaborandi, bromal, aconite, and prussic acid. |

As belladonna and opium are in some respects reciprocally opposed in their action, as on the eye, &c., it has been assumed that they must be opposed in every particular, and that one is as an antidote to the other. Many cases are adduced of opium poisoning, where the symptoms, although very serious, were apparently removed by belladonna, and vice versa. Dr. Erlenmeyer is of opinion, that, in respect to their action on the brain, these agents are antagonistic, and that no coma will result when they are administered conjointly; but they exercise no mutual counteractive influence on the sensory nerves, and hence he recommends them in combination to relieve pain. On the other hand, some authorities, among whom may be named Brown-Séguard and J. Harley, dispute this antagonism, on the ground that the cited cases are insufficient to prove it; and it has not been observed in experiments.

* In nocturnal incontinence the child should drink but little some hours before going to bed, and he should be waked in the middle of the night to pass water.
on the lower animals and on man. It must be remembered, however, that these drugs do not similarly affect animals and man. The reported cases in favour of this antagonism have been severely criticised by Harley, who points out that many were treated by other remedies besides belladonna; in others, a fatal dose is not proved to have been taken; and the patients who recovered did not improve sooner than if no belladonna had been administered. Harley concludes, and in most respects he is directly opposed to Erlenmeyer—"1. That in medicinal doses the essential effect of morphia (hypnosis) is both increased and prolonged by the action of atropia, whether introduced previously or at any time during the operation of the former. 2. That atropia relieves, and, if given simultaneously, or previously, prevents the nausea, vomiting, syncope, and insomnia, which frequently result from the action of opium. 3. That in a sufficient proportion (for most individuals one forty-eighth part of a grain of sulph. atropia to a quarter of a grain of acetate of morphia) atropia neutralizes the contractile effect of opium on the pupils; but in larger doses dilatation takes place as if no morphia had been given. It is also to be observed that if the quantivalent doses are successively introduced, the drug last administered exhibits for a short time a counteracting effect. 4. That all the other effects of atropia are intensified and prolonged by the action of morphia, induced previously or at any time during the operation of the former. If, however, the dose of atropia be small, and the morphia produce considerable deranging effects on the vagus, the rapidity of the pulse is not greater than when the atropia is administered alone." Had Harley given opium in a dose just sufficient to destroy life, and had death ensued after the employment of belladonna, he would have proved that belladonna would not arrest the fatal effects of opium, and vice versa. In no reported instance did he use enough of either substance to destroy life; hence his observations are not so convincing as they might have been; but, as the coma from opium was intensified by belladonna, his observations are valuable.

On the other hand, Dr. Johnson of Shanghai, who, during his residence in China, had striking experience of opium poisoning, having treated in various ways upwards of 300 cases, speaks in the strongest terms of the antagonism between opium and belladonna. It is, he says, in the worst cases of poisoning that atropia displays its wonderful effects; for instance, where the immovable pupils are contracted to a pin's point, the conjunctiva insensitive to touch, the face pale, the lips, eyelids, and nails livid, the pulse
weak and irregular, the breathing slow and stertorous, the extremities cold, if half a grain of atropia be injected, in ten or twenty minutes pupils begin slowly to dilate, and in an hour or so the face becomes flushed, the breathing soft without stertor, and the pulse stronger. If within two hours the dose fails to produce these restoring effects, Dr. Johnson repeats the injection. Where the coma is less profound he first employs a quarter of a grain of atropia.

The recent Edinburgh Committee, presided over by Dr. Hughes Bennett, conclude:—

1. That sulphate of atropia is within a limited range physiologically antagonistic to meconate of morphia.

2. Meconate of morphia does not act antidotaly after a large dose of atropia; thus, whilst atropia is an antidote to morphia, morphia is not an antidote to atropia.

3. Meconate of morphia does not antagonize the effect of atropia on the branches of the vagi applying to the heart.

While there is doubt concerning the antagonism between opium and belladonna, the interesting experiments of Fraser have demonstrated beyond question that atropia is an antidote to physostigma; and, as the action of these substances on man and animals is identical, he concludes that atropia will neutralize the fatal effects of physostigma on human beings. His experiments were conducted in three ways:—(1.) He administered the atropia before the physostigma; (2.) He administered them together; (3.) He administered the physostigma, and, after the animal was completely paralyzed, he injected atropia. In each series of experiments atropia averted the fatal effects of physostigma, although physostigma was employed in fatal quantities, as was afterwards proved by administering to the animal the identical or even a smaller dose by itself, when in every instance the animal speedily died. Fraser concludes that “the lethal effects of doses of physostigma greatly in excess of the minimum fatal, may be prevented by doses of atropia greatly below the minimum fatal.” He recommends, that “in treating cases of poisoning in man, the sulphate of atropia should be given by subcutaneous injection, in doses of from one-fiftieth to one-thirtieth part of a grain. The exhibition of the antidote should be persevered with, in repeated doses, until the pupils are fully dilated and the pulse rate increased, and probably also until the hypersecretion of bronchial mucus, which greatly impedes respiration, is completely checked.”

He thus summarizes the antagonism between these two sub-
stances:—"That physostigma increases the excitability of the vagi nerves, while atropia diminishes and suspends this excitability; that physostigma diminishes the arterial blood-pressure, while atropia increases it; that physostigma greatly augments the secretion of the salivary, bronchial, intestinal, and lachrymal glands, while atropia diminishes, and even completely checks, the secretions; and that physostigma contracts the pupils, while atropia, to a much greater relative extent, dilates them. Besides these effects of the action through the blood, various opposed topical effects have been observed, among which is the contraction of the veins by physostigma—the existence of which rests on the high authority of Mr. Wharton Jones—and the contraction of the arteries by atropia."

Dr. Fraser has recently published some further experiments on the antagonism between physostigma and atropia, being led to this investigation by reflecting that while, no doubt, the more active and poisonous effects of physostigma are antidoted by atropia, still, it seemed possible that physostigma might possess some properties—might affect some part of the body in a manner not opposed by atropia—and that both poisons might possibly possess certain properties in common, so that while some of the poisonous properties of each substance were antagonistic, other poisonous properties might not be so opposed, nay, might be similar in kind and assist each other. His experiments confirm these conjectures. He found that after a minimum fatal dose of physostigma, death could be averted by a dose of atropia, varying greatly in quantity; but as he increased the dose of physostigma, so the range of antidotal doses of atropia became diminished, and so far from requiring a larger maximum antidotal dose, the greater the quantity of physostigma administered, the smaller became the maximum antidotal dose of atropia, till at last a point was reached when atropia ceased to avert death. For instance, with a minimum fatal dose of physostigma, a dose of atropia varying from nine-thousandth to five grains prevented the rabbit's death; but on increasing the dose of physostigma to one and a half times the minimum fatal dose, the antidotal dose of atropia ranged from one-fiftieth of a grain, to four grains; and on augmenting the dose of physostigma to two and a half times the minimum fatal dose, the antidotal dose of atropia ranged from one-fortieth to two grains and a half. With three and a half times the minimum fatal dose of physostigma, the range of atropia sufficient to avert death was reduced from onetenth of a grain, to one-fifth of a grain, and with four times the
minimum fatal dose of physostigma, atropia failed to avert death. Here, while atropia prevented the more powerfully fatal effects of physostigma, yet, on increasing the dose of this drug, a point at last is reached when its properties, not antagonized by atropia, become fatal. But the fatal issue is not solely due to increasing the non-antagonized properties of physostigma, for the range of an antidotal dose of atropia became lessened in proportion as the dose of physostigma was increased, showing that the atropia assisted the physostigma. The fact is also shown by the experiment of injecting simultaneously one-half the minimum fatal dose of each substance with the result of killing the animal.

The foregoing experiments, moreover, make it apparent that atropia is an antidote for only a given quantity of physostigma, and that, if the physostigma is increased, a quantity at last is reached, the more active properties of which, no doubt, are neutralized by atropia, but the other properties in conjunction with similar ones of atropia, are sufficient to cause death.

It is a most singular fact, that while the minimum fatal dose of extract of physostigma is 1:2, and that of atropia 2:2 grains, yet nine-thousandth of a grain of atropia injected five minutes before giving a minimum fatal dose of physostigma prevents its fatal effects; in fact, a quantity of atropia which produces no perceptible effects, will avert many of the serious effects of a fatal dose of physostigma.

Although it is experimentally proved that atropia can avert death from physostigma, the question yet remains unsettled whether physostigma can prevent death from atropia.

Dr. Fraser conceives that "with regard to the counter-acting actions themselves, it is to be observed that various of the facts mentioned in the record of experiments (of his paper) tend to make mutual antagonism, probably not only of one, but of several, of the actions of physostigma and atropia; and it is legitimate to suppose that, with a given dose of physostigma, the counter-action produced by a certain amount of atropia, will be more perfect in the case of one or more of the antagonistic actions, than in that of others; and that with certain doses of the two substances, such incompleteness of counter-action may exist as would, even without the occurrence of non-antagonized action, suffice for the production of death."

The Edinburgh Committee confirm Fraser's statements, but find that the range of antagonism is even more restricted than the limit fixed by this investigator.
Dr. Brunton has drawn attention to the antagonism between atropia and the poisonous principle of fungi—muscarin. Dr. Schmiedeberg had previously pointed out an antagonism in respect to their action on the heart; thus, whilst topically applied, atropia will arrest the heart of a frog, a mere trace of muscarin, applied to this organ, will sometimes restore the pulsations even after the heart has ceased beating for four hours.

The poisons have likewise an antagonistic action on the pulmonary blood-vessels. Muscarin produces intense dyspnœa and emptiness of the arterial system, so that cut arteries scarcely bleed at all—effects which Brunton has proved to depend on spasm of the pulmonary vessels. He narcotized an animal with chloral, and, after the lungs were exposed, kept it alive by means of artificial respiration, in which state a dose of muscarin caused blanching of the lungs, distension of the right side of the heart and vena cava, and shrinking of the left ventricle. A little atropia now injected into the jugular vein, at once removed these phenomena; the lungs became rosy, the distension of the right side of the heart subsided, and the left ventricle regained its natural size. Atropia removed the dyspnœa as well as the other symptoms produced by muscarin.

Muscarin, moreover, stimulates the terminations of the chorda tympani nerve, and increases salivary secretion, exhibiting in this respect also an antagonism to atropia. Muscarin also excites copious perspiration. (See Muscarin).

There is a well-marked and interesting antagonism between atropia and jaborandi. Jaborandi excites profuse perspiration and salivation, and when applied to the eye it contracts the pupil, and, as Mr. John Tweedy has shown, causes tension of the accommodative apparatus; in these respects being obviously the antagonist of atropia. Jaborandi also produces a dull pain over the eyes, sometimes associated with giddiness; likewise over the pubes, with an urgent desire to pass water, in these results as regards symptoms corresponding to the action of atropia; yet, even in this respect, these drugs are unopposed; for the injection of \(\frac{1}{160} \) gr. of atropia not only speedily checks the sweating and salivation produced by jaborandi, but checks also the headache and pain over the pubes, with desire to pass water. Mr. Langley has pointed out that these drugs are antagonistic as regards their action on the heart; thus, jaborandi at first slows, and then arrests the heart in diastole, whilst atropia restores the heart's action, even after its arrest for a considerable time. Atropia, as we have seen, paralyzes the terminations of the pneumogastric nerves, and
Langley shows that jaborandi at first stimulates and then paralyzes these nerves. Its antagonistic effects on the heart are not due to its influence on the pneumogastric, for it slows and stops the heart after the complete paralyzation of the pneumogastrics by curare. The effect of jaborandi on the human heart appears to be different, for in a large number of observations I found that jaborandi always considerably quickened this organ. In two respects these drugs agree; thus, each flushes the face, and both affect children much less than adults. (See Jaborandi).

Muscarin and pilocarpin, it is taught, stimulate the vagi, and so inhibit the heart and arrest it in diastole. Atropia paralyzes the vagi, and so prevents the action of muscarin and pilocarpin. This view is no longer tenable. Muscarin and jaborandi paralyze the excito-motory apparatus and the muscular substance of the heart, and atropia must antagonize these substances in these structures. Atropia itself weakens the heart, probably by its action on both the excito-motory and muscular substance. So we have an instance of a poison which paralyzes the excito-motory, and muscular substance of the heart antagonizing a poison which also paralyzes the excito-motory and muscular substance. Pilocarpin also antagonizes the action of muscarin on the heart, and in this respect is almost as efficient as atropia. Thus we have another instance of a paralyzer of the motory apparatus and muscular substance of the heart antagonizing a poison which affects the heart in exactly the same way.

Atropia also antagonizes the action of aconitia on the heart.

Atropia, however, does not antagonize the action of digitalis nor of veratria on the frog's heart. Digitaline antagonizes the action of muscarin, pilocarpin, aconitia, and atropia.

I venture to suggest that these antagonisms may be due to chemical displacement. That atropia, having a stronger affinity for the excito-motory and muscular substance of the heart than muscarin, pilocarpin, or aconitia, and consequently replaces these substances, substituting its own action for that of muscarin, pilocarpin, or aconitia, and atropia is a much less powerful paralyzer than muscarin, pilocarpin, or aconitia. Indeed, atropia only slows and weakens but does not arrest the heart, whilst muscarin, pilocarpin, and aconitia speedily arrest the heart in wide diastole. Hence, on the addition of a little atropia, we replace the action of muscarin, or of pilocarpin, or of aconitia, by the weakening and slowing action of atropia.

Digitaline and veratria have a stronger affinity for the cardiac structures than even atropia, and hence they antagonize the action of atropia and of all the substances that atropia antagonizes. As, however, digitaline completely arrests the heart, on its addition to a heart arrested by muscarin or aconitia, we do not restore the lost pulsations, but change the character of the heart, converting the widely-dilated, flabby, distended red heart of aconitia into the small, hard, pale, rigid heart of digitalis.

Atropia is antagonistic to bromal. Bromal ordinarily destroys life by increasing the bronchial and salivary secretion, to so great an extent that the animal is choked by it. Now atropia checks
these secretions, and thus prevents the lethal effect of bromel. But, on the other hand, it need hardly be said that bromel will not prevent the fatal effect of atropia, for this drug does not destroy life by its influence on the bronchial mucous membrane or salivary glands.

Dr. John Harley points out an interesting antagonism between aconitia and belladonna. He poisoned a dog with aconitia and reduced the pulse to 65 and 75 per minute, and then gave gr. ¼ of atropia with the speedy effect of both quickening and strengthening the heart, and in three-quarters of an hour the heart beat 300 per minute, being 230 beats faster than before the administration of atropia. Harley adduces this experiment to show that atropia affects the heart by its stimulating action on the sympathetic, and thus atropia both strengthened and quickened the heart’s beats; but whilst atropia by paralyzing the vagi might quicken the heart it could not increase its strength, this being probably due to the action of the atropia on the excito-motory cardiac apparatus.

Preyer maintains that atropia, by paralyzing the peripheral branches of the vagus nerve, will prevent the arrest of the heart’s contractions, by hydrocyanic acid, and is thus an antidote to it.

That atropia is separated from the body in part by the urine may be proved by putting into the eye some of this secretion voided by one to whom belladonna has been given. J. Harley states that atropia is eliminated from the body within two hours, none after that time being found in the urine.

Dr. Garrod has shown that caustic fixed alkalies destroy the active principle of belladonna, hyoscyamus, and stramonium, but that carbonates and bicarbonates of potash and soda do not destroy it. Lime-water, too, is equally destructive; hence it has been recommended as an antidote in poisoning by belladonna. (J. Harley).

ETHYL-ATROPIUM. METHYL-ATROPIUM.

The action of these substances, in which an atom of ethyl or methyl is substituted for a molecule of H, in atropia has been studied by Fraser with his accustomed thoroughness and ability. In conjunction with Mr. Murrell I have studied the action of ethyl-atropium. Fraser experimented with iodide of methyl-atropium, sulphate of methyl-atropium, and iodide of ethyl-atropium. We experimented
ETHYL-ATROPIUM.

with uncombined crystalline ethyl-atropium, prepared for us by Mr. Wright, under the direction of Dr. Graham, Assistant Professor of Chemistry at University College.

From experiments on frogs, Fraser concludes that these substances paralyze the terminations of the motor nerves, leaving unaffected the sensory nerves and spinal cord. Our experiments led us to conclude that ethyl-atropium paralyzes the motor-nerves and the spinal cord, but leaves the sensory nerves unaffected.

Both Fraser and we find that these compounds do not tetanize.

Fraser ascertained that whilst atropia produces in dogs both paralysis and convulsions, ethyl-atropium induces only paralysis.

His experiments on rabbits show that these substances powerfully paralyze the cardiac inhibitory fibres of the vagi.

In fatal doses, Fraser finds that ethyl-atropium slightly dilates the pupil. We have given it to men in doses sufficient to produce decided symptoms, but without causing any dilatation of the pupil. We all find that its topical application to the eye widely dilates the pupil; but our experiments on man show that in twelve, or twenty-four hours, the dilatation nearly or quite passes off.

In our experiments on man this drug, given in doses sufficient to produce marked symptoms, neither strengthened nor quickened the heart; hence we may infer that in the doses we gave it does not in man paralyze the vagi.

In man, a dose of one grain, given hypodermically, produces decided but transient paralysis, the patient being unable to stand or walk, and the head dropping rather towards the shoulder or chest, and the upper eyelids drooping. Fraser finds that in fatal doses it produces complete paralysis in dogs and rabbits.

In man, ethyl-atropium excites pain over the eyes, but, unlike atropia, it does not excite delirium nor produce coma, nor does it check the salivary or the cutaneous secretion.

Fraser finds that these compounds act more powerfully on frogs, and rabbits, and dogs than atropia. Our observations confirm his statement as regards frogs, but we find that the action of ethyl-atropium on man is far feebler than that of atropia. Thus a grain given hypodermically excites merely slight but distinct symptoms, whilst a grain of atropia produces great weakness and sleep, lasting some hours, with delirium.

It seems, therefore, that atropia conforms to Fraser's law, namely, that a tetanizing alkaloid, when converted into an ethyl or methyl compound, loses its tetanizing action, and produces paralysis of the motor nerves. But in the conversion of atropia into ethyl-atropium and methyl-atropium, many of the other effects of atropia are lost; thus, like atropia, these compounds dilate the pupil, paralyze the terminations of the cardiac inhibitory vagus fibres, and paralyze, in a far greater degree, the motor nerves, whilst it loses the atropia properties of tetanizing, or diminishing the salivary and cutaneous secretion, of affecting the brain, and, according to Fraser, of paralyzing the cord.

In respect to the effect of these compounds on the cord, we suggest that there may have been some slight difference in the preparation used by Fraser, and that prepared for us. Our observations were very carefully performed, and we believe they may be relied upon, and we feel equally sure that Fraser's are likewise trustworthy; and we can only reconcile the discrepancy between us by the foregoing assumption.
and sometimes produces a red rash, which, like that of may be patchy. It increases the quantity of urine. In vations made by Mr. Pearse and myself, it failed to creased action of the kidneys (Lawson); poisonous do a drunken gait, from loss of voluntary power, the drug acting on the nervous system like belladonna. Mr. G tells me that hyoscyamia given in large doses will and vomiting, and that patients in describing their sea-sickness," or "dead ness." In some valuable papers, Dr. Robert Lawson rec eived hyoscyamia in various forms of mania, with producing sleep, and substituting a mild for a more stinate delirium. He gives a grain to a grain and a hal fifteen minutes generally induces sleep, lasting ten to two when the patient wakes free from delusions. Smallerduced only delirium due to the drug without sleep. It is especially useful in the more violent forms of intermitt when it is difficult to restrain the patient. It quiets a once through its action on the nervous system. I have drug in a few cases, and my observations, in common wi other observers, entirely corroborate the statements of D I have tried it in four cases of delirium tremens, but w very satisfactory results. Small doses failed to produce simply quieted the violent patient and substituted the delirium of hyoscyamia for the uncontrollable delirium ease. Larger doses produced many hours’ sleep, but, e the delirium and general condition were unamended. I we gave the alkaloid several nights successively, but wi
HYOSCYAMUS.

Like atropia, hyoscyamia, as Dr. Garrod proves, is destroyed by
the fixed caustic alkalis.

The effects of hyoscyamia are so similar to those of atropia and
daturia that I determined to compare the operation of these three
alkaloids in a case of acute mania, and found that they produced
almost identical effects.

The following observations were made by Mr. J. S. Bury and myself:—

E. R., aged twenty-two, a nurse at University College Hospital, seemed, one
night when on duty, to be odd in her manner; next day she was unmistakably
mad. She lay in bed with her eyes closed, disregardful of everything around her.
She talked incoherently, and when asked a question made allusion to a different
subject. Her temperature was 99, pulse 104, her breathing irregular. Her bowels
were constipated. Beyond her madness we could not discover any disease. Her
manner soon changed, for next day she sat up in bed, looking vacantly around her,
and continued in this state day and night, getting no sleep in spite of narcotics.
Her delusion took a religious form, and she showed a suicidal tendency. She
very rapidly lost flesh, her eyes became sunken, notwithstanding she took a fair
amount of milk and beef-tea. Her tongue was always dry, and her temperature
normal. She passed everything involuntarily. Unless we could give her sleep
we felt that she must soon die, and, morphia having failed, we determined to use
hyoscyamia. On the evening of October 25th, we gave her a grain of the crystal-
lized alkaloid with complete success. We then resolved to give atropia, and
ascertain if that would answer as well. Afraid to give a grain of atropia, we, on
the first night, gave only a quarter of a grain, but without producing sleep. We
next gave three-quarters of a grain, and then a grain, and after wards we employed
daturine and ethyl-atropium. The effects of these different remedies are given
subsequently in a table. With sleep, the bodily health of the patient greatly im-
proved, but her mind continued in the same feeble state.

The first dose of hyoscyamia flushed her face and hands a deep red, but this
effect was not afterwards noticed. Before the use of hyoscyamia, her tongue, as
we have said, was always dry, and the day after the first dose it was drier than
usual; but subsequently, to our astonishment, the tongue was almost moist in the
daytime, though it became very dry for some hours after each dose of the alkaloid.
We were astonished also to find that, after the second or third day, the skin was
always moist during the day; during the early part of this treatment her tongue
was very red, though moist and clean, but afterwards it became quite natural.
About a week before she left hospital to go home she was allowed to get up, and
she constantly walked slowly about the ward, kneeling down before the other
patients. We were unable to take the pulse very frequently, or otherwise very
closely study the effects of this large dose of hyoscyamia, as we were afraid lest
we should wake her, and we felt that her life depended on her getting sound re-
freshing sleep. After the first dose of hyoscyamia, the pulse rose from 104 to 144
in half an hour; in an hour it had fallen to 120, and then gradually declined, till
after eight or nine hours it again beat 100. The respirations were not hurried.
After the second dose the pulse rose from 104 to 125. On the following nights the
pulse was very little affected. On the twelfth day of her illness her pulse fell to
80. We may add that throughout her pupils were widely dilated. We now give a
table showing the effect of the various alkaloids in producing sleep:—
HYOSCYAMUS.

<table>
<thead>
<tr>
<th>Date</th>
<th>Medicine</th>
<th>Time Given</th>
<th>Interval before sleep</th>
<th>Duration sleep</th>
</tr>
</thead>
<tbody>
<tr>
<td>" 22</td>
<td>Same</td>
<td>"</td>
<td>—</td>
<td>None.</td>
</tr>
<tr>
<td>" 23</td>
<td>Same</td>
<td>"</td>
<td>—</td>
<td>None.</td>
</tr>
<tr>
<td>" 24</td>
<td>Liq. Morp. m100 (in three doses)</td>
<td>"</td>
<td>—</td>
<td>None.</td>
</tr>
<tr>
<td>" 25</td>
<td>Hyoscyamia, gr. 1 (?)</td>
<td>4 P.M. 1 hr.</td>
<td>1 hr.</td>
<td>1 hr.</td>
</tr>
<tr>
<td>" 26</td>
<td>Hyoscyamia, gr. 1</td>
<td>7</td>
<td>1 hr.</td>
<td>1 hr.</td>
</tr>
<tr>
<td>" 27</td>
<td>Same</td>
<td>7:45</td>
<td>1 hr.</td>
<td>8 hr.</td>
</tr>
<tr>
<td>" 28</td>
<td>Same</td>
<td>8:15</td>
<td>1 hr.</td>
<td>8 hr.</td>
</tr>
<tr>
<td>" 29</td>
<td>Sulphate of atropia, gr. 1/2</td>
<td>5</td>
<td>—</td>
<td>No sleep</td>
</tr>
<tr>
<td>" 30</td>
<td>Hyoscyamia, gr. 1</td>
<td>11:45 A.M. 3 hrs.</td>
<td>3 hrs.</td>
<td>11 hr.</td>
</tr>
<tr>
<td>" 31</td>
<td>Sulphate of atropia, gr. 1/2</td>
<td>9:30 P.M. 1 hr. 8 m.</td>
<td>1 hr.</td>
<td>7 hr.</td>
</tr>
<tr>
<td>Nov. 1</td>
<td>Sulphate of atropia, gr. 1</td>
<td>8</td>
<td>1 hr.</td>
<td>7 hr.</td>
</tr>
<tr>
<td>" 2</td>
<td>Hyoscyamia, gr. 1</td>
<td>8:15</td>
<td>1 hr.</td>
<td>9 hr.</td>
</tr>
<tr>
<td>" 3</td>
<td>Datunine, gr. 1</td>
<td>8:15</td>
<td>1 hr.</td>
<td>8 hr.</td>
</tr>
<tr>
<td>" 4</td>
<td>Ethyl-atropium, gr. 1.</td>
<td>8:30</td>
<td>—</td>
<td>No sleep</td>
</tr>
<tr>
<td>" 5</td>
<td>Hyoscyamia, gr. 1</td>
<td>10:15 A.M. 1 hr. 5 m.</td>
<td>1 hr.</td>
<td>13 hr.</td>
</tr>
<tr>
<td>" 6</td>
<td>Same</td>
<td>8 P.M. 12 hrs.</td>
<td>12 hrs.</td>
<td>9 hr.</td>
</tr>
<tr>
<td>" 7</td>
<td>Datunine, gr. 1</td>
<td>8</td>
<td>2 hrs.</td>
<td>7 hr.</td>
</tr>
<tr>
<td>" 8</td>
<td>Sulphate of atropia, gr. 1</td>
<td>8:15</td>
<td>2 hrs.</td>
<td>7 hr.</td>
</tr>
<tr>
<td>" 9</td>
<td>Hyoscyamia, gr. 1</td>
<td>8:30</td>
<td>2 hrs.</td>
<td>8 hr.</td>
</tr>
<tr>
<td>" 10</td>
<td>Datunine, gr. 1</td>
<td>8:30</td>
<td>2 hrs.</td>
<td>6 hr.</td>
</tr>
<tr>
<td>" 11</td>
<td>Sulphate of atropia, gr. 1</td>
<td>8:30</td>
<td>2 hrs.</td>
<td>6 hr.</td>
</tr>
<tr>
<td>" 12</td>
<td>Hyoscyamia, gr. 1</td>
<td>8</td>
<td>1 hr.</td>
<td>7 hr.</td>
</tr>
<tr>
<td>" 13</td>
<td>Datunine, gr. 1</td>
<td>8:30</td>
<td>1 hr.</td>
<td>7 hr.</td>
</tr>
<tr>
<td>" 14</td>
<td>Sulphate of atropia, gr. 1</td>
<td>8:30</td>
<td>—</td>
<td>No sleep</td>
</tr>
<tr>
<td>" 15</td>
<td>Ethyl-atropium, gr. 1</td>
<td>8:30 P.M. 2 hrs.</td>
<td>2 hrs.</td>
<td>8 hr.</td>
</tr>
</tbody>
</table>

Hence, excluding the first two nights with hyoscyamia, during which time the patient appeared to grow somewhat accustomed to the drug, and thus it seems to lose some of its effect, we find that hyoscyamia, on an average, produced an I a quarter, sulphate of atropia seven and a quarter, and datunine seven and three quarters hours' sleep.

It thus appears that in cases of madness or delirium, sulphate of atropia and datunine are as efficacious, or nearly so, as the far more expensive alkaloid hyoscyamia. Perhaps it may be objected that the sleep she latterly obtained was natural sleep, not at all due to the alkaloids; but the preceding table shows that on the night, she took a too small dose of sulphate of atropia, and on the night she took ethyl-atropium, she had not even five minutes' sleep; the nights we absolutely sleepless. The sleep was very heavy, but the patient could be waked but immediately relapsed into sleep. Sometimes the breathing was a little torpid. She slept with her mouth wide open. We deferred publishing the case for some weeks, that we might ascertain how the patient progressed after leaving the hospital, as we felt that possibly the alkaloids might have caused some delirium, though this was improbable, for the delirium of belladonna usually subsides in less than twenty-four hours, and yet in this case, when she took ethyl-atropium (a drug which does not affect the brain) and got no sleep, the delirium was always worse the day following the sleepless night.

About a week after reaching home she began to improve, and the report in a letter, dated December 7, says, "For the last ten or eleven days she has be..."
STRAMONIUM.

STRAMONIUM produces symptoms very similar to those induced by belladonna. A stramonium ointment, used at the Middlesex Hospital, is made by mixing half a pound of fresh stramonium leaves with two pounds of lard, and gently heating till the leaves become friable, then straining through lint. This ointment, spread on lint and applied thrice daily relieves pain. Stramonium, smoked with or without tobacco, is mainly used to reduce spasm in asthma. It is especially valuable in pure asthma, that is, when the lungs are structurally free from disease, and is useless when the dyspnœa is due to heart disease. Twenty grains of the dried leaves, or ten of the powdered dry root, may be smoked, inhaling meanwhile into the lungs; or an inverted tumbler, into which fumes have been puffed until it is filled, may be placed over the mouth, and the contents inhaled by a deep inspiration. It excites a good deal of cough. The inhalation may be repeated again and again. It is better to smoke the plant unmixed, as few can draw the fumes of tobacco into the lungs without great discomfort. There is no doubt that, in many cases of asthma, stramonium is very successful; but in others, without apparent reason, it fails, and, even when it succeeds, its influence gradually diminishes by use. Sometimes datura tatula succeeds, when datura stramonium has failed. Dr. Salter believed that stramonium often failed, owing to the badness of the preparation, and he advised asthmatics to grow and prepare their own stramonium. Its effect is more manifest when employed at the very commencement of an attack, affording but little relief when the paroxysm is fully developed. Cold stramonium smoke can sometimes be inhaled when the hot is intolerable. It has been used in neuralgia.

Like belladonna and hyoscyamus, its active principle, as Dr. Garrod has shown, is destroyed by caustic potash and caustic soda.
DUBOISIA MYOPOROIDES.

This solanaceous plant, for some time used in Australia, has been introduced into this country by Mr. John Tweedy. It yields an alkaloid which possesses the same properties as atropia, but is far more powerful in its action on man. It dilates the pupil, paralyzes the muscles of accommodation. It checks perspiration, and dries the mouth. It produces delirium, headache, great weakness, and sometimes a rash similar to that of belladonna. It accelerates the pulse and antagonizes the action of muscaria on the frog’s heart, and tetanizes and paralyzes. The alkaloid is so powerful that a 1 in 120 solution, specially applied to the eyes, often excites great giddiness, weakness, and a “drunken feel.” Though duboisin is much stronger than atropia on man, atropia is more powerful than duboisin on frogs.

HYDROCYANIC ACID. CYANIDE OF POTASSIUM.

These poisonous substances are destructive alike of animal and vegetable life.

When applied to the skin for a long time, solutions of these substances, particularly the cyanide, excites some inflammation on account of their alkalinity.

Kept in contact with the skin for awhile, they diminish sensibility. Formerly they were employed externally in painful diseases, such as neuralgia and rheumatism; now, however, they are quite superseded by more successful remedies. But in allaying the tormenting itching of urticaria, lichen, eczema, and prurigo, they are undoubtedly very serviceable. The itching skin should be bathed with a lotion made of a drachm of the cyanide of potassium to a pint of water, or thirty drops of hydrocyanic acid to the ounce of water or glycerine. In respect to the cyanide, the action of the prussic acid is assisted by the potash combination with it. It need hardly be observed that such a lotion must not be applied to broken skin for fear of poisoning by absorption.

Dr. Gee employs sulpho-cyanide of potassium in tinea tonsurans. He recommends the hair to be kept close cut, and that the scalp should be washed twice a day with warm water and soap, and after drying the head, the patches should be well rubbed with a
lotion composed of half an ounce of sulpho-cyanide of potassium, 1 ounce of glycerine, and 7 ounces of water. The scalp should be covered night and day with lint soaked in this lotion, super-imposing a piece of oiled silk; a stronger solution is apt to excite eczema.

The acid possesses a bitter characteristic taste, and excites a sensation of itching in the mouth. It stimulates the flow of saliva, possibly by its action on the mucous membrane of the mouth.

Taken in moderate doses, in a healthy stomach the acid appears neither to produce nor to undergo change; it is, nevertheless, much used, frequently with benefit, in painful diseases of this organ, as in chronic ulcer, cancer, chronic gastritis, gastralgia, etc. Not only does it occasionally mitigate the pain of these affections, but it may also check vomiting.

Hydrocyanic acid passes very speedily into the blood, and is as speedily eliminated, probably with the breath; hence, if life can be supported for half an hour after a poisonous dose, the patient is generally safe.

How it destroys life is still a disputed question. Being fatal equally to plants and animals, it is not necessary that it should act on the nervous centres, as, from the rapidity of its action, has been supposed. From his experiments on frogs, Kölliker concludes that it paralyzes first the brain, next the cord, and then the motor nerves, the paralysis extending from the trunk to the periphery. It paralyzes the heart, its action ceasing in the diastole. The voluntary muscles soon lose their irritability, and become stiff.

Preyer maintains that large doses of hydrocyanic acid paralyze the heart at once; that moderately fatal doses deprive the blood of oxygen; and that as belladonna paralyzes the peripheral branches of the vagus, and at the same time stimulates the nervous centres of respiration, atropia in these cases, hypodermically injected, will prevent death.

OPiUM AND ITS PREPARATIONS.

Small doses of opium excite tetanus in frogs; but birds, such as ducks, chickens, and pigeons, cannot be poisoned by crude opium, by aqueous extract, nor by black drop (acetum opii), given internally; and morphia salts must be given in enormous doses. Morphia employed hypodermically in very large doses never causes
sleep nor stupor, but convulsions. Thebaia is a tetanizing agent inferior only to strychnia and brucia. Narcoptina, almost without effect on man, destroys birds in doses of two to seven grains when used hypodermically. Codia is a fatal convulsive agent to pigeons. Meconia given internally causes emesis, but is harmless when injected under the skin. Narceia has no perceptible influence except to disturb the respiration slightly. Cryptopia in doses of one-fifth to one-half a grain has no effect. None of these agents cause sleep in pigeons, ducks, or chickens. (Dr. Weir Mitchell).

Dogs, cats, and rabbits require larger doses of opium to produce stupor or sleep, which is generally accompanied by convulsions. In the lower animals, like frogs, opium only excites tetanus; but as we ascend in the animal kingdom the soporific effects become apparent, and are most marked in man. Race modifies the effects of opium, for it drives the Javanese and Malays into a temporary madness; and even among Europeans its effects vary considerably in different individuals. In some persons, especially women, it produces much excitement but no sleep, the excitement being sometimes pleasant, at other times extremely disagreeable. In some instances if it fails to induce sleep it soothes, and pleasant ideas occupy the mind; with other persons it induces restlessness, excitement, and even delirium.

Preparations of opium, applied by means of poultices or friction, are absorbed by the unbroken skin.

Poultices containing laudanum are used to allay the pain of superficial and even of deep-seated inflammations, and enough may be absorbed in this way to produce deep sleep. Friction considerably increases the absorption; thus liniment of opium, well rubbed in, relieves neuralgias, pleurodynia, and myalgia. The abraded skin absorbs still more freely, and preparations of opium or morphia are applied to irritable, cancerous, and simple sores. Morphia, dissolved in glycerine and spread on lint, is a useful application to a painful cancerous sore.

The hypodermic injection of morphia, originated by Dr. Alexander Wood, is now extensively employed to relieve pain, produce sleep, prevent spasm, and for other purposes, and is preferable to the administration of the drug by the mouth. Its action is more rapid, its effects more permanent, and it neither destroys the appetite nor constipates the bowels. At first not more than a sixth part of a grain should be injected; a larger quantity sometimes produces serious symptoms.

An injection not unfrequently causes a good deal of excitement,
giddiness, even intoxication, great nausea, and repeated vomiting, followed by considerable depression. Often, indeed, the patient is unfitted for work during the rest of the day. These inconveniences, however, can mostly be avoided by keeping the patient recumbent for some hours after the injection. Belladonna seems to obviate these unpleasant symptoms, if combined with morphia in the relative proportion of twenty parts of morphia to one part of atropia.

An injection occasionally produces redness of the face, contraction of the jaw, dyspnoea, clonic spasms of the limbs, hammering frequent pulse, symptoms which last about five minutes, followed on their decline by violent sweating. These symptoms are said to occur when the injection directly enters a vein (Nussbaum, Muhe, and Hausman). By long persistence in hypodermic injections, the system becomes habituated to opium, so that not only must the quantity be increased, but when discontinued a patient suffers the depressing effects of an opium-eater deprived of his opium. Sometimes so severe are these sufferings, that patients declare that the distress occasioned by the intermission of the injection is worse than the pain itself. The injection may be made in any part of the body; but, for the sake of convenience, it is better to choose a place where the skin is loose. A fold of skin should be pinched up firmly, and then the needle is thrust quickly through it into the subcutaneous tissue. If patients dread the slight pain of the puncture, the sensibility of the skin may be first deadened by the ether spray. If a patient administers a hypodermic injection to himself he can conveniently nip up the skin with a wooden clip, this contrivance enabling him to inject the solution in his arm when of course he can only use one hand. It is hardly necessary to say that it is rarely advisable to allow a patient to administer the injection himself. Immediately after the injection, a sharp smarting pain is felt, and in many cases, a large flat weal, like that of urticaria, soon arises. If care is taken to make the solution as nearly neutral as possible, the pain is much reduced. It should be remembered that these injections sometimes leave a hard horny cicatrix; hence, it is important to inject some part of the skin covered by the clothes.

Eulenberg states that the sensibility round the punctured spot is lessened if the injection is made over a superficial sensory nerve; and that the sensibility of the whole skin territory of this nerve is somewhat blunted.

A single injection sometimes cures recent and even long-standing sciatica, facial and other neuralgias, but it usually gives only tem-
porary relief, and the injection must be repeated from time to time.

Injections continued for days, weeks, or perhaps months, sometimes cure obstinate cases of neuralgia and its allies. Sometimes every second day, or twice a week, is sufficient to mitigate the pain and after a time to cure. A single injection frequently cures lumbago at once; but, as the mere insertion of a needle is often equally efficacious, some of the speedy cures attributed to the injection must be due to the effect of unintended acupuncture. Hypodermic injection relieves the pain of severe pleurodynia, but most cases of pleurodynia yield to milder treatment. It is particularly efficacious in the pain of renal, biliary, and intestinal colic. Although not often required, a mild morphia injection will allay severe toothache. Morphia injections are sometimes needed to relieve the pain of acute inflammations, like pleurisy and pneumonia, but are rarely required unless the suffering is severe or persistent.

Morphia injections are used to produce sleep. Morphia, subcutaneously injected, acts more speedily and in smaller quantities than when swallowed.

Morphia is injected to produce sleep in acute mania, delirium tremens, chorea, &c. In delirium tremens, even when bromide of potassium and chloral have failed, an injection often speedily produces sleep. A morphia injection is useful in chorea, when the movements prevent sleep, and when wakefulness, by weakening the patient, increases the movements. Dr. Clifford Allbutt employs morphia injections in dyspepsia of an irritable kind, when the patient is spare, fretful, keen, hasty, or absent in manner, with a tongue too clean, red at tip and edges, small pulse, and broken sleep.

Dr. Allbutt strongly recommends a morphia injection in the dyspnœa of heart disease, and in disease of the large vessels, in the pain of angina pectoris, and of intra-thoracic tumours. By removing dyspnœa, it permits sleep, and recruits the worn-out patient. It strengthens the heart, and so removes congestion of the lungs and face. Dr. Allbutt considers it less useful in aortic than in mitral disease. I have long employed these injections in heart disease, and can corroborate Dr. Allbutt's statements. It is hardly possible to exaggerate the relief this treatment confers on a patient suffering from cardiac dyspnœa. Almost directly on falling asleep, a severe sensation of dyspnœa compels the patient to awake and sit upright in bed; a patient often says that the distress from want of sleep is harder than other serious sufferings. The
OPiUM.

appetite, already bad, becomes worse, lack of sleep and weakness rapidly sets in. In such a case, the comfort afforded by a hypodermic injection is almost incredible. It ensures several hours' refreshing sleep, from which the patient awakes wonderfully revived, the dyspnœæal attacks for the next twenty-four hours are thus warded off. The heart, thus strengthened, and in the case of mitral disease the pulse made less regular and slower, the patient's condition is not only notably relieved, but his life prolonged. It must be borne in mind that, in heart disease, this cardiac dyspnœæa is often associated with another form of dyspnœæa arising from dropsy of the pleura, and of the lung. The dyspnœæa due to these two causes is permanent; whilst the dyspnœæa due to the heart is paroxysmal, and generally occurs only on falling asleep. The hypodermic injection of morphia will not relieve permanent dyspnœæa or orthopnœæa—conditions best treated by incisions into the dropsical legs, to drain away the dropsical fluid. In cardiac dyspnœæa, a sixth of a grain twice or three times a week often suffices, but the dose and frequency in severe cases must be gradually increased to a quarter of a grain each night. Doctors are often afraid to administer morphia in the case of a patient propped up in bed, with livid ears, nose, and nails, with distended jugulars and dropsical extremities, with weak, frequent, and irregular pulse. They dread lest the morphia should weaken the heart, make the patient worse, if not kill him outright. This fear is quite groundless, and this treatment may be employed without any apprehension of injury to the patient, even if in a rare instance it should fail to benefit.

Dr. Spender employs morphia injections to arrest the severe vomiting of pregnancy and other obstinate and dangerous forms of vomiting. An injection often arrests persistent hiccup, and sometimes puerperal convulsions; it has likewise been successfully employed in tedious labour, produced by a rigid os utero.

Dr. T. J. Gallaher, of Pittsburg, and more recently Dr. John Patterson, of Constantinople, have witnessed great benefit from the hypodermic injection of morphia in cholera, even in the stage of collapse. The cramps and vomiting cease, the patient falls asleep, the skin gradually becomes warm, and the pulse returns. They employ one-fourth to one-eighth of a grain of morphia, and usually one or two injections suffice. In the early stages the patient falls asleep and wakes almost well. Dr. Patterson has employed this treatment for children.
Dr. Braithwaite has successfully given small doses of morphia hypodermically in haemoptysis.

A hypodermic injection of morphia is sometimes, as Mr. Hunter has pointed out, very useful in melancholia. I have seen a patient who became dreadfully depressed, whose expression became completely altered, and who at these times was weak and tottery, and without appetite. Five minutes after the injection, the man was wholly changed and had become himself again. His depression and weakness left him, his natural expression returned, and he could at once take a walk of several miles, and return home and eat a good meal. It is a most difficult question for the doctor to decide whether in such a case he should permit the injection, lest the patient become the victim of the opium habit. But I must confess that, seeing the wonderful transformation it has caused, how the patient has passed from utter wretchedness to happiness and serenity of mind, that I have not been able to prohibit its use.

Dr. Buxton Shillitoe strongly recommends for carbuncles and boils the local application of an extract of opium the consistence of treacle. The extract must be thickly smeared three or four times a day over and around the swelling. Applied early, it often causes the boil to abort; or it limits its progress and eases pain. After the extract, Mr. Shillitoe applies a plaster, composed of equal parts of soap, opium, and mercury, spread on thick leather. Should suppuration set in, he lets out the matter, and applies a poultice over a small hole cut in the plaster.

Dropped into the eye, laudanum and solutions of morphia cause smarting, redness, and slight inflammation of the conjunctiva. They contract the pupil, but less so than if administered in other ways. Opium, however, is never used specifically to contract the pupil; calabar bean effecting this more safely, easily, and thoroughly. Opium wine, dropped into the eye, is used to relieve the pain of conjunctivitis, and by slight stimulation to improve the condition of the membrane. The wine of the present Pharmacopoeia, containing spices, must not be so employed, as it would aggravate the mischief; but the wine of the Pharmacopoeia of 1864 must be used. Mixed with either tannin or creosote, opium is often introduced into the hollow of a painful tooth, and if the pain is produced by inflammation of the exposed pulp, this application often gives relief.

A somewhat full dose of opium produces much disagreeable dryness of the mouth and throat. The same annoying symptom follows likewise on the hypodermic injection of morphia.
OPSIUM.

The preparations of opium are rarely used for their topical effect on the throat, but I think that their good effects are often due to the local action. For instance, many coughs, as in some cases of phthisis, are really produced by the condition of the throat, where it is red, inflamed, and even ulcerated—a condition which excites much irritation, and a frequent hacking cough, especially troublesome at night. This cough is much relieved by the topical application of morphia dissolved in glycerine, honey, or treacle, or some other viscid substance, which causes the mixture to linger some time over the irritable membrane. It is well known that the cough of chronic phthisis is often best treated by directing the patient to retain for some time in the pharynx a weak solution of morphia in glycerine, honey, or mucilage, so as to blunt the irritability of these parts, and allay cough. Hence, too, the excellent effects of morphia lozenges allowed to dissolve slowly in the mouth. Even in coughs entirely dependent on lung disease, opium or morphia administered so that the medicine clings for some time in contact with the structures just outside the larynx, appear to have a greater influence than when the medicine is conveyed quickly into the stomach. This result is probably due to the fact, heretofore insisted on, that drugs appear to possess remedial virtues over the organs of the body, even when applied only to the orifice of the passages leading to them.

The following is a good formula to allay coughs: Morphia, one-fortieth part of a grain; spirits of chloroform, three minims in a drachm of glycerine, syrup of lemons, diluted honey or treacle, repeated frequently at times when the cough is troublesome, till the paroxysm is subdued.

It is often taught that morphia should not be given in catarrh or bronchitis. When the expectoration is abundant, and there is duskiness of the skin, showing deficient oxidation, opiates or other narcotics that produce profound sleep must of course be given very guardedly, otherwise the expectoration, during sleep, may accumulate in the lungs, and give rise to serious results. On the other hand, we meet with cases of free expectoration, with very little rhonchus, and no signs of obstructed oxidation, and very violent and frequent cough. In such cases, opiates relieve cough, and lessen expectoration; for the secretion of mucus in the bronchial tubes is certainly stimulated by violent coughing, and when this is allayed, the expectoration becomes much less abundant. That coughing may excite secretion in the bronchial tubes, is shown by the common fact, that if a patient can restrain his cough, the
expectoration becomes less, without any signs of accumulation in the lungs.

Taken into the stomach, opium lessens both its secretion and its movements, and consequently checks digestion. Its retarding effect on digestion is exemplified by the well-known fact, that when an opiate is given too near a meal, the food vomited hours afterwards is only very partially digested. Nay, according to Bernard, a hypodermic injection may have this effect, for he found the crops of pigeons full after a hypodermic dose of morphia. Here we have a sufficient reason why opiates should not be given shortly before or after a meal, unless, indeed, it is intended to diminish appetite, or to hinder the natural movements of the stomach.

Opiates not uncommonly excite nausea and vomiting, symptoms very apt to occur in the morning after a night dose.

Opium, or its alkaloid, morphia, is given to quell the pain of many stomach affections, and to check the vomiting which may accompany them. Thus it is useful in cancer and chronic ulcer of the stomach, and in chronic gastritis from excessive indulgence in alcoholic drinks. Morphia, in small doses, combined with tonics, taken a short time before meals, is very efficacious in removing the pain, the nausea, and want of appetite, so often connected with alcoholism. In the treatment of gastrodynia with heartburn, Graves employed morphia in small doses combined with bismuth.

The effects of opium on the intestines are identical with those on the stomach; that is to say, it checks both secretion and movement, thus constipating the bowels in health, and restraining diarrhoea in disease. Constipation, one of the disagreeable consequences following an opiate, is much less marked when morphia is employed hypodermically.

Some persons can never take even a small dose of laudanum or morphia, without their motions becoming for a day or two of a clayey colour, and their urine high-coloured.

Opium, or its alkaloid, morphia, is very frequently and very beneficially given in both acute and chronic diarrhoea. It is useful in the acute forms, after the expulsion of the disturbing irritant. It is, moreover, of great use in the chronic diarrhoeas of tuberculosis, dysentery, and other organic diseases.

In typhoid fever, opium, in small doses, given at night, may serve a double purpose. In wakefulness, with delirium, whether of the boisterous or muttering kind, opium will often produce
sleep, and thus check the delirium, while at the same time it will control or even subdue the diarrhoea.

There is a form of dyspepsia and diarrhoea which yields to small doses of opium. There is probably increased peristaltic action of the stomach and intestines, so that the food, soon after it is swallowed, is forced in a half-digested state through the pylorus into the intestines, where, owing to its crude condition, it acts as an irritant, exciting the vermicular action, already acting unduly, so that a diarrhoea of partially digested food occurs soon after a meal. The patient suffers from a sensation of emptiness and hunger, which is relieved for a short time by food; but the meal being imperfectly digested, and expelled through the anus long before it can be absorbed, the system is imperfectly nourished, and these uncomfortable symptoms soon recur. The characteristic symptoms are—sinking at the stomach, relieved for a short time by taking food, and the occurrence of an evacuation of partially digested food immediately after a meal, nay, sometimes even before it is finished, and generally at no other time. This complaint, a common form of chronic dyspepsia in children from six to twelve years of age, is quickly arrested by administering from two to five drops of tincture of opium a few minutes before each meal, a dose which seems to check the excessive muscular action, and so enables the food to tarry a sufficient time to undergo digestion. Still more effective in such cases is arsenic.

Colic of the intestines is well combated by small doses of opium or morphia frequently repeated. As this painful affection is generally accompanied by, and is dependent on, constipation, a purgative should likewise be given. The opium assists the purgative by relaxing that contraction of the intestines, which hinders the passage of the intestinal contents.

Opium quiets the intestinal movements in inflammation of the peritoneum and of the intestines, or in wounds of the abdomen.

Opiates are administered by the rectum for a variety of purposes. Laudanum is usually injected mixed with an ounce of decoction of starch, at a temperature of 100° or thereabouts, and is very effectual in checking acute and chronic diarrhoeas; and in those severe forms of diarrhoea which sometimes carry off young children in a few hours, a laudanum injection is often the speediest way of controlling the dangerous flux. When other methods fail, the same injection often checks the purging of typhoid fever, or of tubercular ulceration of the intestines, or of dysentery. It is highly useful in pain of the bowels and of the organs in the neighbour-
hood of the rectum. Thus, an opiate injection will generally subdue the pain and frequent micturition of cystitis, and the pain arising from various uterine diseases. A suppository of opium or morphia is sometimes introduced into the rectum as far as the finger can conveniently carry it, but the injection of the laudanum and starch is more effectual.

Opium mixed with gall ointment is an excellent application for painful bleeding piles, and to fissures of the anus which cause excruciating pain with each evacuation. Mild purgatives should be simultaneously employed.

Opium injected into the rectum is absorbed, and affects the distant organs of the body. A rectal injection will sometimes induce sleep, when the ordinary method of administering it by the mouth completely fails. In obstinate forms of dyspeptic sleeplessness, or the wakefulness of convalescents from acute disease, the injection of laudanum by the rectum will often prove successful. Both Dupuytren and Graves state that in delirium tremens and traumatic delirium, this mode of giving opium is preferable to its administration by the mouth. The dose of laudanum injected into the rectum must depend on the nature of the case. If employed to relieve local pain, a small quantity will generally suffice; but to produce sleep, a dose must be given about threefold or fourfold that administered by the stomach—at least, so it is generally taught; but an ordinary medicinal dose, even when given by the rectum—well cleared out previously by a simple enema or a purgative—is often amply sufficient to ensure sleep.

The active principles of opium readily pass unaltered into the blood; for whether the opium is swallowed or injected under the skin, the same symptoms are induced.

To one unaccustomed to opium, a small dose produces a soothing and luxuriant calm of mind, followed in the course of forty or fifty minutes by a disposition to sleep; if this does not happen, it gives general repose to both body and mind. The pulse at first quickens slightly, in ten to twenty minutes, by eight or ten beats; but in half or three-quarters of an hour, it again falls; at first, it is made stronger and more resistant. The mouth and pharynx are dry, and perspiration often breaks out. Larger doses, as from two to three grains, generally at first produce much excitement, with noises in the ears, and closely contracted pupils. The ideas are confused and extravagant, and decided delirium may occur; the head feels heavy and full; the senses are blunted, and then follows sleep, which is often heavy, even stertorous, and harassed by dis-
agreeable dreams, while the pulse, at first full and frequent, soon becomes slow.

The susceptibility to the action of opium, and the symptoms it produces, vary greatly in different persons. Some are so easily affected by opium that even a small quantity endangers life; a susceptibility so extreme is, however, not common. In some it produces only disagreeable sensations and ideas, in others just the reverse; in some the stimulant effects predominate, in others the narcotic. Some persons after a moderate dose of opium never become heavy or drowsy, but feel the drug diffuse a glow throughout the body, followed by a luxuriant calm of mind and body. I have heard some people who were not accustomed to opium say they dare not take opium, for the sensations it produces, are so delicious, that they feared the temptation to take opium might become irresistible. There are others, again, who after even a minute dose become excited, restless, sleepless, and even delirious.

After a poisonous dose, the primary stage of excitement is very brief, and narcotism rapidly supervenes. Great giddiness and a sensation of oppression come on, with an irresistible craving for sleep. There may be both nausea and sickness. The sleep soon passes into profound insensibility, the breathing grows slower and slower and more and more shallow, till it ceases. The face is pale, or livid and bloated, and the veins swollen. The pulse, at first full and strong, becomes small, feeble, and thready. The pupils are very greatly contracted. The power of swallowing is gradually lost, the pupils become insensible to light, the muscles relax, and the patient cannot be roused from his state of profound insensibility. Mucus collects in the throat, and at last, the breathing ceasing, death takes place. Patients may die in a state of collapse, and not from asphyxia, though death usually happens from paralysis of respiration.

In opium poisoning a variety of other symptoms occasionally occur as diarrhoea, diuresis, convulsions (most common in children), lock-jaw, even dilated pupils, sometimes one being dilated while the other is contracted, and itching and dryness of the skin.

In some respects opium poisoning simulates apoplexy, drunkenness, and uræmic coma.

Opium poisoning may be generally discriminated from apoplexy by attention to the following points:—history of the attack, odour of breath and vomiting matters, the patient's age, and the state of the pupils, which in apoplexy are very generally dilated, and are very often unequal.
Only cases of profound intoxication put on a superficial semblance of opium poisoning. In each case there is great insensibility. If the drunkard can be roused, he answers questions incoherently; but if poisoned by opium, although he is slow to speak yet his answers are rational and to the point. The breath and vomited matters will very often tell if alcoholic drinks have been taken; but it must be recollected that suicides by laudanum not uncommonly take the drug in beer or other drinks, but even then the odour of the laudanum may generally be detected. In opium poisoning the pupils are much contracted, but in profound drunkenness the pupils are widely dilated. Moreover, the early symptoms of the attack are sufficient to ensure discrimination between opium and alcoholic poisoning.

Uræmic coma may occur very suddenly and without any, or scarcely any, dropsy. To distinguish such a case from opium poisoning, the history of the attack should be ascertained. A patient in uræmic coma can generally be roused partially when some information can be extracted from him. An analysis of the urine, moreover, may throw much light on the case, while the state of the pupils precludes suspicion of poisoning by opium. The presence of a hypertrophied head, high tension pulse, with a small quantity of albumen in the urine would show that the patient suffered from contracted kidneys,—the form of kidney disease usually producing uræmia, but which also favours cerebral hæmorrhage.

Effusion of blood into the pons varolii will produce symptoms almost identical with those of opium poisoning; thus in both cases there is profound insensibility, with closely contracted pupils, and slow stertorous breathing. It may be impossible to discriminate between these two conditions till a post-mortem examination reveals the real cause of death.

In poisoning by opium, use the stomach pump, rouse the patient, and keep him constantly moving, to prevent sleep, give strong coffee, apply cold affusion to the head, and if necessary, adopt artificial respiration.

It is not an uncommon practice to give brandy or wine to a patient recovering from the effects of a poisonous dose of opium, with the view of overcoming drowsiness; but having watched the action of alcohol under these circumstances, I always found that it greatly increased the sleepiness, and in fact did harm.

In this country the habit of opium-eating is not so largely indulged in as among Asiatics, but it is practised here in some localities to startling extent. It is taken for its primary stimulating effect, but after a time increasing doses are needed to produce this result.
Though carried to a very great pitch, opium-eating in some individuals induces neither physical nor mental weakness, while others waste, and grow physically and mentally weak, irritable, fretful, and desponding, especially when the opium is withheld; the memory is much impaired; the skin becomes sallow; but, strange to say, in many cases the bowels are not constipated.

The horrors which opium-eaters suffer when the drug is withheld are well known, and need not be dwelt on here; so great, indeed, is the suffering, that few have sufficient resolution to relinquish the habit. The amount of opium taken is often enormous. De Quincey took 320 grains daily! Moderate indulgence of the habit is perhaps not more prejudicial to health than tobacco-smoking. The Chinese are almost universally addicted to the habit of opium-smoking, and yet they are an intelligent and industrious race.

Barnard's experiments led him to conclude that opium depresses the functional activity of the sympathetic system, and notable that part supplying the submaxillary gland. Gscheidien considers that opium affects the terminations of the motor nerves; small doses at first heightening but afterwards depressing their function, whilst large doses depress it from the first. Opium is said to lessen the conductivity of sensory nerves though this blunted sensibility must be due in some measure to the effect of opium on the grey matter of the brain, depressing the power of perception.

In fevers, whether inflammatory or specific, sleeplessness that quickly wears out the strength, is often one of the most dangerous symptoms. Want of sleep produces either noisy and furious delirium, as is frequently seen in typhus fever, or wandering and muttering, with picking of the bed-clothes, twitching of the muscles, and great prostration. In either case, opium, judiciously given, may save an almost hopeless life. In delirium of the furious kind it is well to combine the opium with tartar-emetie, as this combination calms the excitement and produces sleep more speedily and effectually than opium given alone. Graves gave three or four drops of laudanum, and one-sixth to one-eighth of a grain of tartar-emetie every two hours till tranquillity and sleep were ensured. In very boisterous delirium he increased the dose of tartar-emetie. Now-a-days, however, morphia hypodermically administered is found to act more certainly and speedily, without deranging the stomach or intestines.

Laudanum may be given alone with signal benefit in muttering delirium with muscular tremors, dry skin, and prostration. A grain of morphia or a drachm of laudanum is mixed with four
ounces of water, and a teaspoonful is given every five or ten minutes till three or four doses have been administered. If by that time the patient is not asleep, the medicine should be intermitted for half an hour, then if sleep is still delayed, a few more doses should be given in the same way. This method often ensures calm, refreshing, invigorating sleep, lasting several hours, and the patient wakes free from wandering, refreshed, the tongue moister, the appetite and digestion improved, and the skin comfortably moist. Sometimes, however, it answers better to give a single moderate dose.

Any one who has watched the action of opium in extreme weakness, with sleeplessness, twitching and tremor of the muscles, quivering dry brown tongue, and parched skin, must have been struck by the fact that the administration of laudanum or some other soporific, by producing refreshing sleep, helps a patient over this critical stage with far less consumptom of alcoholic stimulant than would otherwise have been required. It need scarcely be said that in many cases brandy or wine must be freely given with the laudanum.

In delirium tremens, opium does good service by producing sleep, and it answers best when employed hypodermically. If the patient is strong, the delirium boisterous, the pulse full, tartar-ematic or tincture of aconite may be added to the opium. It is convenient to administer the opiate with porter, or spirits, this combination apparently heightening its action, while it is more readily taken by the delirious patient. It has been already mentioned that opium in delirium tremens sometimes acts more efficiently when given by the rectum.

It is still better to employ it hypodermically. In delirium tremens it is well known that the effects of opium vary greatly, a moderate dose even sometimes producing a fatal sleep. This variable effect often depends on the condition of the kidneys. These are often diseased in drunkards and tipplers. In Bright's disease it is necessary to give opium with caution, not that the disease contra-indicates it, on the contrary, it is often useful; but in Bright's disease the opium often acts with unusual power; thus, in this disease, it must at first be given in a small dose, to test its effect on the patient. Hence, in delirium tremens, before giving opium or morphia, the urine should be tested for albumen.

Many cases of acute mania may likewise be treated satisfactorily by opium and tartar-ematic. (See Chloral).

Dr. Anstie strongly insisted that opium acts chiefly in virtue of
its stimulating action, and that, as a stimulant, it relieves neuralgia, and that it is not necessary to give narcotic, but only stimulant doses. This view has lately been urged by Dr. Pope, of New Orleans, who attributes the usefulness of opium in fevers, with great prostration, to the stimulating action of opium, and not to its producing sleep. He recommends the hypodermic use of morphia in the debility consequent on onanism. I have often seen morphia, given hypodermically, useful in cases of the following kind:—An hysterical patient suffers acutely from flitting neuralgia, attacking now one nerve, and speedily seizing on another, and so forth. She is greatly depressed, mentally and physically. The hypodermic injection of morphia sends a glow throughout the body, reaching even the fingers and toes, and the cold extremities at once become warm, the neuralgic pains disappear, and the mind and body become invigorated, effects lasting several hours. Again, I have seen the hypodermic injection of great comfort in a case of this kind:—A man suffers from melancholia, is disinclined to exercise, and has loss of appetite. After an injection, the depression of spirits clears off like a thick cloud, the patient becomes cheerful and chatty, the appetite returns, and he is able to take a long walk without fatigue. In such cases, no doubt, we see the stimulating action of the opium, but this result always appears to me to depend on an idiosyncrasy, and not on the nature of the disease; that these effects occur in those who obtain only the soothing and delicious effects of opium; for in other patients with the same symptoms, the hypodermic injection of morphia fails to relieve anything but the pain, or may even produce great depression, and very uncomfortable symptoms. It appears to me, therefore, that the stimulating action depends chiefly on an idiosyncrasy of the patient, and in cases of prostration in fever, I attribute the good effects of opium far more to the soothing, strengthening effects of the sleep, than to the stimulating action of the opium; a conclusion confirmed by the fact that good results do not generally follow, unless the opium produces sleep.

Dr. Graves has well pointed out that when an opiate is given as an hypnotic, attention should be paid to the time of its administration. It should be given at the usual time for sleep, or when the patient feels inclined to doze, so that the medicine may come in aid of nature; smaller doses are then more effectual than if given at a less seasonable time. For example, in chronic wasting disease, accompanied with hectic, the opiate should be given very late at night; for with hectic there is often no inclination to sleep till the
early morning hours. Opium ordinarily requires about one or two
hours to produce its narcotic effects. Chronic sleeplessness, inde-
pendent of any very notable disease, should not be treated with
opium if it is possible to avoid it. Dyspepsia and uterine de-
rangements are constant causes of sleeplessness, and chloral and
bromide of potassium are much better agents than opium.

Opium will, of course, relieve or abolish pain; yet in the treat-
ment of chronic cases, it is right first to exhaust all other methods,
for the opiate soon loses its influence, and must be given in
increasing quantities, until the patient becomes accustomed to it,
and is unable to discontinue it without great discomfort, even after
permanent removal of the pain.

Opium, especially when employed hypodermically, often relieves
pain, and ensures sleep in acute rheumatism.

Opium is often of signal use as an anti-spasmodic. Its action in
this respect, as well as its narcotic power, is much enhanced if
given with a stimulant, as alcohol, ether, or chloroform.

Laudanum or morphia is of marked service in the convulsive
stage of whooping-cough. A sufficient dose should be given to
a child to produce very slight heaviness, which state should be
maintained by giving one-fiftieth of a grain of morphia every three
or four hours, or a proportionate dose every hour. A quarter of
a drop, or two drops of laudanum, according to the age of the
child, must be given every hour. This treatment often quickly
removes the whoop, and reduces the severity and frequency of the
cough; but in the case of an irritation, as of teething, or of worms,
tuberculosis, or much bronchitis, this remedy, like most others, is
of little or no use. (See Belladonna, Lobelia, Bromide of Potas-
sium.)

Opium and its preparations are beneficial in renal and biliary
colic. Morphia answers best when employed hypodermically. If
administered by the mouth, small doses of the opiate, combined
with spirits of chloroform, should be administered every five or ten
minutes, till the pain gives way.

Opiates are also beneficial in cases of asthma, yet with some
asthmatics morphia will induce a paroxysm of dyspnoea.

Opium is very useful in diabetes to control inordinate appetite;
the diminution of quantity of ingested food reduces the kidney
secretion, and abates the troublesome thirst. It was at one time
thought that this was the only way opium proved useful in diabetes,
but it has been lately shown that large doses, frequently repeated,
will greatly lessen, and, indeed, remove the sugar from the urine,
the diet and the appetite remaining unchanged.
Opiates are also used in spasmodic stricture.
Opium and its preparations are reputed to check the excretion from all the mucous membranes of the body, and on this account are given in bronchitis to check excessive secretion of mucous and pus.

Opiates are employed as diaphoretics.
Ten grains of Dover's powder at bed-time will generally check the night sweats of phthisis, and other exhausting diseases, even when other remedies, like zinc, have failed.

It is well known that opium, in a small dose taken at night, if resorted to at the commencement of the attack, will cut short a cold in the head. Some attribute its efficacy to its influence on the skin; and Dover's powder is very generally employed. Two or three drops of laudanum, taken at bed-time, is often sufficient at once to abolish a threatening attack of cold in the head. A glass of hot grog assists the action of the opium.

Laudanum, especially when mixed with tincture of nux vomica, is very serviceable in some of the distressing symptoms which afflict hysterical women, or nervous, overworked, anxious men. Both men and women, but chiefly women about forty or fifty years of age, are apt to complain of a sensation of great weight and heat on the top of the head, with frequent flushings of the face, suffusion of the eyes, hot and cold perspirations, and sometimes shooting pains passing up the back of the head. The pain occasionally centres in one brow, with much heaviness and torpor after meals, and now and then the sensation as of a tight cap on the vortex, or dull aching pain in the same part, with inability to fix the attention, and much depression of spirits. These symptoms may generally be traced to a variety of causes, as dyspepsia, especially the flatulent form, heartburn, uterine derangements of various kinds, or unhygienic conditions. In any case, however, a drop of laudanum, with two of the tincture of nux vomica, repeated three or four times a day, will generally dissociate the foregoing symptoms from the disease with which they are connected, to the great relief of the patient.

Morphia occasionally produces an eruption, sometimes like that of measles, at other times like that of nettle rash; it may be accompanied by distressing itching, sufficient often to counteract the anodyne properties of the medicine.

Tincture of opium in a large dose (3 j), mixed with brandy, is recommended in profuse flooding after parturition, accompanied with much exhaustion of the uterus.
The influence of opiates on the urine of diabetes has already been pointed out.

The preparations of opium diminish the water and urea of healthy urine, probably by lessening the appetite and hindering digestion. Morphia passes partly away by the urine.

Under the influence of opium, the urine is sometimes retained for several days in the bladder.

It is important to bear in mind that the active principles of opium pass out with the milk, so that a child at the breast may be dangerously affected by opium given to its mother.

Individual peculiarity, disease, age, custom, modify the action of opium.

We have already spoken of individual peculiarity. Mr. J. Brown has shown that there is sometimes hereditary susceptibility to some drugs, as opium and mercury.

As is well known, very large doses are tolerated in some diseases, especially in the cases of severe pain.

Age influences the action of all medicines, but in an especial degree that of opium. That a dose of a medicine should act far more powerfully on the young than the old is only natural, for as it becomes mixed and diluted with the blood, the dilution is, of course, greater in adults than in children. Other things being equal, the dose, as a general rule, must be proportioned to the weight of the individual, provided there is no undue development of fat; opium, however, is a notable exception, the relative susceptibility of young children to its action being far greater than in adults; so great is the power of opium over individuals of tender years that great care must be taken in its administration.

The influence of custom on the action of opium has already been mentioned.

Morphia is said to be less stimulating, less constipating, less diaphoretic, and less liable than opium to produce headache and nausea.

Some writers extol the narcotic virtues of codeia, asserting that, unlike opium, it produces calm sleep without disordering digestion, exciting nausea, constipating, or producing headache; other observers, however, consider it useless as a narcotic.

Narcein has been much recommended as a hypnotic and sedative. It is said to be more efficacious than morphia, and to produce no headache, to induce less perspiration, not to constipate, nay, in large doses to purge, rarely exciting vomiting, but often nausea and loss of appetite. One observer computes that narcein
is four times weaker than morphia. It is stated that narcein is the only alkaloid of opium which does not produce convulsive movements.

Dr. J. Harley considers narcein a pure hypnotic, much feeble than morphia, and of very little use in medicine, its insolubility rendering it unfit for subcutaneous injection. On the other hand, having tested it by mouth and hypodermically, Dr. Frommüller asserts that narcein possesses no narcotic properties, a dose of 20 grains by the stomach producing no sleepiness or any effect on the respiration, pulse, heat of skin, urine, or pupils.

Narcotine, in doses of one to three grains, is asserted to possess antiperiodic properties, some considering it even superior to quinia in ague.

Very conflicting statements are made regarding other properties of narcotine. Eulenberg, Charvet, Frommüller, and others, assert that small doses increase the frequency and the strength of the pulse, making it irregular after a time; and that it increases the frequency of the respirations and exalts the temperature. Small doses they say are not narcotic. Schroff says, doses of 0.06 to 0.12 grms. produce symptoms like the first stage after a usual dose of opium, but without affecting the pupil or producing nausea. Frommüller asserts that 15 to 30 grains produce sleep; but Bailey gave 60 to 120 grains without inducing sleep.

Papaverine is said to possess strong narcotic properties without inducing the previous stages of excitement, and is not followed by headache and giddiness. It contracts the pupil, and, when it causes sleep, reduces considerably the frequency of the pulse to the extent even of from twenty to thirty beats. Frommüller also finds that it is a narcotic, and that it dilates the pupil—the pulse, respiration, and temperature remaining unaltered. Hoffman, in some experiments on himself, could not obtain these results.

The statements concerning the action of the opium alkaloids is most contradictory, due probably in part to the use of impure preparations, or to the employment of a mixture of the alkaloids, or in part to the fact that the action of these substances on animals is different to their effect on man. Thus, as regards man, morphia is the most powerful alkaloid; but, according to Bernard, as regards animals it ranks fourth. Thebaia is to the animals the most poisonous alkaloid, but its effect on man is much less marked; again, it is said that with respect to animals, narcein is the most soporific of the alkaloids, but its action on man is far less than that of morphia.
The investigations of Claude Bernard have led him to arrange the constituents of opium into three classes,—namely, the soporific, the convulsant, and the toxic; and he thus classifies the constituents in the order of their activity:

Soporifics.
- Narcein
- Morphia
- Codeia

Convulsants.
- Thebaia
- Papaverine
- Codeia
- Narcotine
- Morphia
- Narcein

Toxic.
- Thebaia
- Codeia
- Papaverine
- Narcein
- Morphia
- Narcotine

For further remarks on the action of thebaia, codeia, narcotine, and morphia, see Strychnia.

NUX VOMICA. STRYCHNIA. BRUCIA. THEBAIA.

The three alkaloids, strychnia, brucia, and thebaia, appear to exert a similar action on the spinal cord, so that, for convenience sake, they are grouped together; but it should be stated that strychnia is more powerful than brucia, and brucia than thebaia. Our succeeding remarks apply mainly to nux vomica and its alkaloids, as thebaia has not yet been put to any therapeutic application.

Formerly it was sometimes the custom to blister the skin over paralyzed muscles, and to apply strychnia to the raw surface, in the hope of producing a greater effect on the diseased muscles than by swallowing the medicine. This method, superseded by the hypodermic injection, has now fallen into disuse.

The late Dr. Anstie recommended the hypodermic injection of strychnia, in one-hundred-and-twentieth of a grain doses, to relieve the pain of cardialgia and gastrodynia. There is, he says, "no such remedy for gastralgia as this."

Mr. Charles Hunter advises the injection of strychnia hypodermically in cerebral, spinal, and other forms of paralysis. About one-eightieth to one-sixtieth of a grain, administered twice or three times a week will, he says, after three or four injections, almost always show if strychnia manifests any effect on that particular
form of palsy. The injection produces a general warmth or glow of the skin, lasting a few hours, felt most in the paralyzed limbs, and down the spine; it removes the sensation of heaviness, or weight, and the muscular twitchings, spasms, or cramps, and may induce sweating, especially of the palsied parts. Most of these results I have myself witnessed.

Mr. Barwell employs strychnia hypodermically in essential paralysis of children, and "eccentric" paralysis of adults; in loss of motor power from pressure on a nerve, or from debility after exhausting diseases, as diphtheria, scarlatina, or low fevers; and in the latter stages of lead or gout paralysis. In opposition to the experience of Mr. Hunter, he objects to the use of these injections in cerebral and spinal paralysis. Mr. Barwell injects from one-twentieth to one-twelfth of a grain, and employs a two-per-cent. solution, believing that, of this solution, a larger dose may be injected with safety than a corresponding dose of a weaker solution. I have often injected the same relative dose of the Pharmacopia solution without inducing any of the toxic effects of the drug. The injection should be made into the muscles every second day, or even daily.

Dr. Julian Chesolm employs hypodermic injections of strychnia in eye and ear diseases, beginning with one-fortieth of a grain daily, increasing the quantity till, in fifteen to twenty days, one-sixth or one-fifth of a grain is reached, and no benefit may take place till these larger doses are administered. As we meet with idiosyncrasies in respect of strychnia, it is well to begin with a small dose. He employs these injections in muscular asthenopia, amblyopia, tobacco amaurosis, and in progressive nerve atrophy not dependent on intra-cranial disease. Dr. Werner finds strychnia by injection useful in traumatic amaurosis. Perhaps these large doses given by the stomach might prove just as serviceable.

The preparations of nux vomica have an intensely bitter taste, and, like other bitters, augment the flow of saliva.

They produce a sensation of hunger, but there is no evidence that, in a healthy person, either strychnia or any other bitter substance increases the digestive power. Like other bitters, and perhaps, in a greater degree, these preparations, by their slight irritant action, check unhealthy deviations of the gastric mucous membrane, and may in this way promote digestion. The action of bitters, and especially of the tincture of nux vomica, far the best and most agreeable agent for this purpose, is well shown in certain perverted conditions of the digestive canal. For example, in the
course of chronic diseases, such as bronchitis, dilated heart, or cirrhosis of the liver, the tongue not unfrequently becomes thickly coated with a white fur, and the symptoms indicate chronic catarrh of the stomach: one or two drops of the tincture of nux vomica in a teaspoonful of water, every two hours, or oftener, from twenty-four to forty-eight hours, will often clean the tongue, improve the digestion, and, at a critical time, clear the way for the administration of nourishment. Again, during early convalescence, when the tongue still continues coated, and the digestion weak, nux vomica will prepare the way for stronger tonics and more liberal diet.

This treatment greatly mitigates the annoying flatulence and indigestion occurring in cases of mechanical obstruction of the circulation in the digestive organs, as from cirrhosis and dilated heart; indeed, nux vomica is more or less serviceable in flatulency of any kind. Heartburn also frequently yields to small quantities of the tincture, given three or four times a day.

Nux vomica is of great service in a group of symptoms, including weight at the pit of the stomach after food, acidity, and heartburn, flatulence, accompanied by heat and weight at the top of the head, the last symptom occurring usually in women, especially about middle age. This dyspeptic condition is often benefited by five drops of the tincture of nux vomica taken about a quarter of an hour before food, three times a day. The heat and sensation of weight on the top of the head, even when occurring independently of any gastric disturbance, often yields to the same treatment.

In acute gastric catarrh, accompanied by "sick headache," the action of tincture of nux vomica is sometimes very marked. This common and troublesome complaint is sometimes traceable to error in diet, or constipation, but it occurs often without any apparent cause. Headache is often the most prominent symptom, the nausea being very slight, amounting to mere qualmishness. A drop of the tincture in a teaspoonful of water, taken every five or ten minutes, to the extent of eight to ten doses, and then continued at longer intervals, often quickly mitigates, and in a few hours removes, this kind of headache, which otherwise would continue all the day.

The tincture or extract of nux vomica has long been employed to correct constipation, habitual or temporary. The extract, mixed with other remedies, such as rhubarb or colocynth pill, should be taken daily shortly before dinner, to aid digestion, and the proper unloading of the bowels. The same effect may often be obtained
NUX VOMICA.

By giving one or two drops of the tincture twice or three times a day. As our knowledge of the action of nux vomica in its relation to constipation, is at present imperfect, the results appear to be capricious. It is as well, therefore, not to be too sanguine of success; for in some cases it answers beyond all expectation, while in other apparently similar cases it completely fails. If the bowels are habitually sluggish, the patient should take occasionally, early in the morning, half a tumblerful of some natural purgative water to assist the nux vomica. Should the tardy action be due to insufficient supply of bile, the motions being pale in colour, nux vomica will fail, and other medicines are required.

Strychnia, as Mr. Savoy has shown, is much more poisonous when injected into the rectum than when swallowed, a curious difference, not due to the digestion and destruction of the alkaloid by the gastric juice, since Mr. Savoy has proved that this secretion exerts very little, and probably no effect, upon strychnia.

Strychnia and other active principles of nux vomica quickly enter the blood, as is shown by the rapidity with which a poisonous dose is followed by characteristic symptoms. Moreover, the alkaloid can be extracted from the blood and urine, a conclusive proof of its absorption.

A large and poisonous dose produces symptoms very closely resembling those of tetanus. Symptoms usually come on in twenty minutes to half an hour, and are rarely delayed beyond an hour. The first symptoms are general uneasiness, with restlessness and soreness of the limbs. Shooting pains like electric shocks occur in various parts of the body, often first in the back, and down the arms and legs. Tetanic and paroxysmal contraction of the muscles soon set in, and these symptoms grow rapidly worse, and make the body rigid while the paroxysm lasts. The first paroxysm may be very severe. The respiratory movements are completely arrested, so that the face becomes bloated and livid, the jugular veins stand out in the neck, the eyes are staring and prominent, the jaws firmly clenched, and the pupils dilated. Each spasmodic attack lasts from a few seconds to a minute or more, and then generally ceases altogether for a time. Throughout the paroxysms, the mind is quite unaffected, and the patient's sufferings are agonizing. A breath of air, a slight noise, movement of the bed-clothes, the most trivial cause, will excite tetanic spasms. In a fatal case death is rapid; but if the patient should survive two or three hours, sanguine hopes may be entertained of his recovery. A fatal termination may be due either to exhaustion from
the repeated convulsions, or to asphyxia from spasms of the muscles of the chest. The muscles of the jaw are usually the last to be affected.

Brucia, thebaia, and most of the opium alkaloids affect the body in the same way.

The symptoms of strychnia poisoning differ from those of tetanus in the following particulars:—From the first, the poison symptoms are very strongly marked and rapidly reach their worst, perfect intermissions occur, and death soon takes place; or the symptoms rapidly decline, and the patient recovers. Fatal doses of strychnia raise the temperature of dogs from 4° to 6° Fah.

Treatment of poisoning—Stomach pump, if available in time, for after tetanic symptoms have set in the introduction of the tube would excite a paroxysm. Animal charcoal. Tannin solution of iodine. Chloroform inhalation. Injection of curare, or of methyl and ethyl compound of strychnia, of brucia, or of thebaia. Artificial respiration. Fats.

Leube and Rosenthal find that pulmonary insufflation arrests strychnia tetanus by increasing, as they supposed, the absorption of oxygen. Brown-Séquard confirms these statements concerning insufflation, but contends that the arrest of convulsions is due to the mechanical effect produced by the forcible impact of the air upon the ramifications of the vagus, of the bronchi, and of the nerves of the diaphragm exciting a reflex inhibitory action; for section of the cord above or below the origin of the phrenic nerves and section of the vagi prevent the action of insufflation.

Strychnia excites tetanus, not through the brain; for in poisoning by strychnia, the mind, to the last, remains unaffected, and between the paroxysms animals can execute voluntary movements. Nor does it tetanize through the muscles or nerves; for after division of one sciatic nerve, strychnia excites tetanus in every part of the body except in the limb supplied by the divided nerve; yet as the vessels of this limb are undivided, its unconvulsed muscles and nerves are as much poisoned by strychnia as those parts which are convulsed. As strychnia tetanizes neither through the brain, muscles or nerves, it must act through the cord. This conclusion is confirmed by the following experiments: 1. If the cord and all the vessels supplying its posterior part are cut and the animal is then poisoned, convulsions occur in the anterior portion of the body, but simple normal reflex acts follow stimulation of the posterior part of the body, that part indeed under the control of the division of the cord protected from the poison by secretion of its
vessels: 2. If all the blood is allowed to drain from the body of a frog by section of its heart, and a small quantity of strychnia is then placed on the forward part of the cord, the anterior parts of the body become speedily tetanised, and this condition slowly extends to the posterior parts as the strychnia descends and affects the rest of the cord.

After traumatic and strychnia tetanus, the functions of the motor nerves and muscles are depressed, the motor nerves conveying impressions imperfectly, and the muscles by direct galvanic stimulation contracting imperfectly and becoming stiff from rigor mortis. Kölliker has shown that this is in part due to the excessive activity these parts have been made to undergo through the strychnia. But strychnia apparently also directly depresses the motor nerves, for large doses kill without exciting convulsions when the motor nerves are found to have lost their conductivity. Moreover, if before poisoning, the sciatic nerve is divided, thus protecting the limb from convulsions, the divided sciatic loses its irritability, though not so soon as the undivided nerve. Again, if all the tissues of a frog's leg except the nerve are tied, and the parts beneath the ligature thus defended from the poisoned blood, all parts become tetanised; but the convulsions cease sooner in the poisoned than in the protected leg, the motor nerves of the former having been paralysed by the strychnia-containing blood.

Harley's experiments show that the poison acts on all parts of the spinal cord, its effects on this organ appearing to be twofold. It dilates the vessels, thus increasing the supply of blood, and also augments the activity of the functions of the cord.

It is stated that traumatic and strychnia tetanus produce minute ecchymoses in the cord. This is not the case with frogs tetanized by strychnia; for these animals may be tetanized for weeks without the production of ecchymoses—a fact which proves that they are the result and not the cause of tetanic spasms.

It seems worthy of remark, that strychnia does not merely heighten the reflex action of the cord, but so affects it that impressions are not confined within their natural limits, but diffuse themselves throughout the cord; strychnia, in fact, lessens the resistance of the cord and increases the diffusibility of impression. Strychnia is said to heighten arterial pressure by stimulating the vaso-motor centre.

Kölliker asserts that strychnia affects but little the blood of frogs.

Nux vomica or its alkaloid is commonly employed, often with
great benefit in motor paralysis. Sometimes it is administered with the view of exciting slight twitching in the paralyzed muscles, so as to keep up in them a sort of artificial exercise calculated to maintain their nutrition and prevent their wasting; but if strychnia benefited in this way, surely galvanism would effect the object better. Dr. Brown-Séquard recommends nux vomica or strychnia in those forms of paraplegia dependent on softening and wasting of the cord, when, for example, the supply of blood conveyed to it is diminished through degeneration and partial blocking-up of the vessels. Strychnia is supposed to dilate the vessels and to increase the supply of blood in the degenerated tissues and thus to avert their further destruction.

Strychnia affects paralyzed sooner than unparalyzed muscles.

In medicinal doses strychnia is said to strengthen the heart beats. It has been shown that the heart of an animal poisoned by strychnia ceases to contract sooner after death than that of an animal destroyed by mechanical means; and further, that if a frog's heart is placed in a solution of strychnia it ceases to beat sooner than another placed in simple water. It is not said whether this organ ceases to contract in the systole or diastole. Harley states that when a solution of strychnia is dropped on a heart its muscles become tetanic. The same authority says that both strychnia and brucia lessen the absorption of oxygen and the production of carbonic acid; in other words, they lessen the respiratory function of the blood, and if either alkaloid is mixed with blood recently drawn, the amount of oxygen it absorbs, and of carbonic acid it gives off, are less than with simple blood. Is it not probable that any substance capable of altering the physical or chemical condition of the blood will lessen its respiratory function?

Strychnia, given to a rabbit when young, causes abortion; it has therefore been concluded that the drug possesses a direct influence on the uterus, but there is no evidence to confirm this conjecture.

Strychnia is useful in prolapsus ani, and if the prolapsus is associated with constipation, the nux may be added to a purgative, as tincture of rhubarb. If diarrhoea occurs, it should be checked, and the prolapsus will probably cease; if not, strychnia will generally succeed quickly in ridding a child of this troublesome complaint.

These preparations, especially the tincture are often of much use in so-called hysteria of middle-aged people. In many cases it
appears to control the distressing flatulence commonly connected with this state, and to relieve the sensation of heat and weight at the top of the head; and it often removes effectually, although less surely, flushings of the face, and hot and cold perspirations. It is still more effectual when combined with small quantities of laudanum.

Dr. Anstie has noticed that strychnia sometimes produces symptoms closely resembling intoxication, unsteadiness of gait, perversión of the intellect, and a meaningless smile. On one occasion I was able to connect a peculiar wandering delirium at night with the employment of strychnia, though there were no tetanic twitchings.

According to Dr. Anstie, strychnia promotes capillary circulation, and he recommends it in troublesome coldness of the hands and feet.

Strychnia sometimes induces persistent erections, which phenomenon has led some medical men to give it in impotency and spermatorrhœa.

Large doses of strychnia are sometimes useful in spermatorrhœa, especially when associated with impotence.

Strychnia is sometimes employed with much benefit to old people with paralysis of the bladder, when the water constantly dribbles away. It may also be useful in the incontinence of urine of children.

Strychnia is separated in part, at least, by the kidneys. Its influence, if any, on the urine, has not yet been ascertained.

In a remarkably able paper, Drs. Crum Brown and Fraser record some experiments made with methyl and ethyl compounds of strychnia, brucia, and thebaia, and have arrived at some astonishing results. While retaining most of the chemical properties, giving the ordinary reactions of strychnia, brucia, and thebaia, yet the physiological action of these substances on the body is completely altered. These observers experimented with iodide of methyl-strychnium, sulphate of methyl-strychnium, and with the nitrate and hydrochlorate of the same base, and likewise with iodide and sulphate of methyl-brucium, and with iodide and sulphate of methyl-thebaium.

As we have already stated, strychnia, brucia, and thebaia, affect the cord, and produce, according to the dose, more or less severe tetanic convulsion. But these substances, when converted into the ethyl and methyl compounds, cease to act in this manner, and produce general paralysis of the body, an effect shown by these
experiments to depend on paralysis of the ends of the motor nerves. In fact, these new compounds act on the body in the same way as curare.

In their action on the heart and muscles, these new substances were likewise found to differ much from strychnia, brucia, etc.; for after poisoning by the methyl or ethyl compounds, the heart continued to contract naturally for a long time, while the muscles for many hours continued flaccid, contractile, and alkaline.

Drs. Crum Brown and Fraser further experimented on codeia, morphia, and nicotia. At the conclusion of their treatise they say—"The change in the character of the physiological action is remarkably illustrated by strychnia, brucia, and thebaia, whose purely spinal stimulant action is converted into a paralyzing action on the periphery (end organs) or motor nerves; it is apparent in codeia and morphia, whose convulsant action is also converted into a paralyzing action on motor nerve-end organs, and whose hypnotic action is apparently altogether destroyed in the case of codeia, and certainly greatly diminished in that of morphia; and it is obvious, though less so than with the others, in the case of nicotia, whose convulsant action is diminished, if not altogether removed. We may conclude from these facts that when a nitrile base possesses a strychnia-like action, the salts of the corresponding ammonium bases have an action identical with that of curare."

"It is well known that curare and strychnia are derived from plants belonging to the same genus, and it is therefore interesting to observe such a relationship. It may not, however, be altogether superfluous to add, that strychnia, brucia, and the other spinal stimulant alkaloids examined in this paper, have not been converted by chemical addition into curarina—the active principle of curare. The action of the methyl derivatives of these bases is of precisely the same character as that of curare, and they possess the same peculiarity of slow absorption by the mucous membrane of the digestive system, but the degrees of their activity are very different. If we confine our attention to the salts of the methyl derivatives of strychnia, brucia, and thebala, where the action is uncomplicated, we observe they form a series in which the fatal dose varies for each, while this dose, in the case of the most active of the three, is considerably above that of curare, and greatly above that of curarina. Besides, curarina has a characteristic colour reaction that belongs to none of these bodies, and the latter further proves this dissimilarity by each of them possessing special colour reactions, by which they may be distinguished from each other."
LOBELIA INFLATA.

There is a distinct antagonism between strychnia and calabar bean, and between strychnia and chloral. These antagonisms have lately been investigated by a committee presided over by Dr. Hughes Bennett. Previous experimenters have shown that calabar bean modifies strychnia tetanus, but it is of no avail to save life, and Dr. Bennett's committee confirm the conclusions, that whilst the symptoms induced by strychnia, as tetanic convulsions, are modified by calabar bean, so far from saving life it actually aids its destruction, for, when both poisons are administered together, but each in quantity less than the minimum fatal dose, their combined action in this dose will destroy life.

The antagonism between chloral and strychnia is far greater; chloral modifies the strychnia symptoms to a great extent, and, as might be expected, the sooner chloral is given after strychnia, the greater is the antagonistic effect. Very large doses of strychnia require very large and even dangerous doses of chloral, enough to produce dangerous symptoms. Whilst chloral antidotes strychnia, it is doubtful if strychnia will avert death from chloral. Chloral produces profound coma, and destroys life by its action on the cerebral hemispheres. Strychnia does not affect these parts.

LOBELIA INFLATA.

This remedy has been highly extolled, and strongly condemned, answering with some beyond expectation, and yielding to others nothing but failure and disappointment. This discrepancy may easily be reconciled, for it will be found that lobelia has been given in very different doses by two differing sets of authorities. Unless given in large doses—doses thought to be poisonous—this remedy is inoperative. It is erroneously imagined that lobelia is a highly poisonous and dangerous drug, only to be given with much caution and close watching.

Lobelia is of great service in many cases of asthma, whether dependent or not on visible structural changes in the lung. It is useful in the peptic, and especially in the bronchitic form. These two forms are generally more or less mixed, the tightness of breathing in bronchitic asthma being increased by food, and the peptic asthma leading after a time to emphysema and bronchitis.
Lobelia is, I think, less useful when the attacks come on periodically, at intervals varying from about three weeks to a month. It may, indeed, for several days, postpone or partly suppress the paroxysm, but after a time the lobelia is apparently unable to prevent the attack. My experience leads me to esteem lobelia higher the more I try it, and I frequently hear it extolled by patients. It must, however, be confessed that in some cases it fails entirely. In the bronchitic form, patients often say it "helps them to get up the phlegm." It is hardly necessary to observe that lobelia is not useful in all forms of dyspnœa; it is useless when this depends on heart disease, and when the difficulty of breathing comes on only from exertion, or from a bad fit of coughing. Lobelia being only palliative and not curative of the conditions causing the dyspnœa, it should be given only during a paroxysm. On any signs of an oncoming fit, the medicine must be taken immediately, in doses of a drachm of the simple tincture every hour, or even every half hour, or ten drops may be taken every ten minutes or quarter of an hour till the dyspnœa gives way. It is better to adopt the smaller and more frequent dose, as the medicine can be discontinued should sickness or depression occur. The great drawback is its uncertain action, some patients being made sick and faint by doses which others take without any such penalty. The risk of depression is obviated by small frequent doses, and a patient soon learns the suitable dose and periods. It is well to inform patients of the possible occurrence of sickness and faintness, which may make them feel very ill; but these symptoms soon disappear, and never, so far as I have seen, become serious or dangerous. I have repeatedly given two-drachm doses without any dangerous consequences; but this large dose generally excites a sensation of sinking at the stomach, with nausea, and not unfrequently, vomiting. When the patient complains of more or less constant tightness of the chest, with frequent exacerbations during the day, he should take ten minims of the tincture thrice daily, with an additional dose on the occurrence of the exacerbation. In bronchitic asthma, where the breathing is a little tight all day, but much worse at night, the patient should take ten minims, three times a day, with additional doses according to the state of the breathing at night. It should be given cautiously to asthmatics with heart disease, or it may render the pulse irregular and very weak. Lobelia inflata allays dyspnœa which accompanies capillary bronchitis in emphysema.

In certain epidemics of whooping-cough, lobelia is very service-
able, whilst in other epidemics it seems useless. Lobelia is useful in the spasmodic stage, and in two or three days, generally reduces by one half the frequency of the attacks, lessening their severity at the same time, the speedy subsidence and disappearance of the whoop, attest the influence of this drug. Like all other whooping-cough remedies, it acts best in uncomplicated cases, and when the weather is warm and mild. If the weather is cold, and the winds cutting and sharp, the child should be confined to a warm room; but under other circumstances, the child should live as much as possible in the open air. For a patient two years old, I order ten minims of the tincture of lobelia every hour, and an additional dose each time the cough is imminent, provided the paroxysm gives sufficient warning. Children bear large doses of the drug; for, in no instance, have I witnessed nausea, sickness, faintness, or any ill effects follow the doses just recommended. I find, indeed, that adults are much less tolerant of lobelia than children. Sometimes lobelia produces a slight burning sensation in the throat. Whooping-cough is well known to be a very obstinate and dangerous affection in children only a few months old, and in such cases lobelia often appears to do less good than to older children. I give five minims of the tincture every hour, even to very young children.\(^*\)

Lobelia has been praised in bronchitis; and I have tried it in several cases, but while it removed any paroxysmal dyspnoea, it appeared to be powerless over the bronchitis itself. It has been employed in laryngismus stridulus, and in croup.

CANNABIS INDICA.

All persons are not similarly affected by Indian hemp, and race and climate have been supposed to modify its influence. Its effects are most marked on the brain, whose functions it more or less perverts in various ways. It generally produces a pleasurable intoxication, and the dosed person becomes talkative, or sings, or perpetually giggles, and objects often assume to him very

\(^*\) Mr. Foster, of Huntingdon, and Dr. Howard Sargent, of Boston, America, recommend clover in whooping-cough. Dr. Sargent gives a wineglassful occasionally through the day, of an infusion made with two ounces of carefully dried blossoms of red clover, steeped in a pint of boiling water for four hours.
grotesque aspects, exciting him to much merriment. He is possessed with a feeling of happiness and contentment, and ideas of a pleasing kind pass rapidly through the mind, sometimes unconnected and immediately forgotten; but in other instances, remembered on the return to the normal state. After a time sleep sets in, generally accompanied with delightful dreams. There may be pain in the head, "a sensation as of the brain boiling over, and lifting the cranial arch like the lid of a teakettle." Among the early symptoms is a sensation of heaviness of the arms and legs. The head feels hot and heavy. The eyes are bright and shiny, with sometimes giddiness and noises in the ears. General sensibility is also affected, and pricking in the feet, or over the whole body, with numbness, often of a pleasurable kind, is an early symptom. Pressure on the skin may excite a sensation of burning. After a time, complete anesthesia sets in to such an extent, that while standing, there may be no consciousness of touching the ground. The muscular sense is even lost, and pain is lessened or removed. Sometimes it produces complete catalepsy. It often occasions a ravenous sensation, not to be appeased by food. In some instances, the pulse is said to be at first rather increased in frequency and strength, but neither pulse nor breathing is much altered. The pupils contract to light. Sometimes there is strong sexual desire.

Such is the group of symptoms induced by Indian hemp, though they do not all occur in the same person, but are variously combined; and sometimes it produces sensations anything but pleasant, as nausea, vomiting, great thirst, frequent, weak, and intermittent pulse, with disagreeable sensations and ideas.

If indulged in for a long time, as is common in the East, it produces loss of appetite and strength, trembling, and much mental weakness.

It is used to produce sleep, and its effects have been compared to those of opium; but it differs from this drug, it is said, in not producing nausea, constipation, or headache. Frommuller administered it in 1,000 cases, and found that it succeeded in 530; partly succeeded in 215; and produced little or no effect in 255 instances. A large dose is required to induce a hypnotic effect, as eight grains of the spirituous extract, which sometimes, soon after its administration, excites headache, vomiting, and giddiness; and the headache may be severe, dull, and throbbing, and accompanied by a coated tongue. Opium is a most certain hypnotic.

Cannabis indica is one of the most valuable remedies for megrim
or sick headache. It appears to act on the nervous centre whence this headache springs. It is found serviceable both in cases associated with little or no nausea, and in cases accompanied by severe vomiting. It is useful in attacks accompanied with spectra. It is most useful, in my experience, in preventing the attacks, not in arresting them when once they have begun. It is sometimes useful in those severe, continuous forms of headache lasting for weeks (see Croton Chloral); but it is especially effective, when from fatigue, anxiety, or change of life, the attacks become much more frequent; then the drug gradually, and indeed sometimes quickly lengthens the interval, and at last brings back the attacks to their old periodicity, or even extends the intervals between the seizures. It need hardly be said that cannabis will not cure these patients. I have given this drug weeks or months continuously, in doses of one-third to one-half a grain twice or thrice daily. As anaemia or constipation, favouring and even exciting attacks of migraine, often co-exist with it, cannabis indica may be combined in pills with either iron or aloe.

Since writing these remarks on cannabis, subsequent experience has fully confirmed the favourable opinion of it just expressed; no single drug have I found so useful in migraine. I have ventured to suggest that it acts on the portion of the nervous centre, whence these attacks spring, for cannabis appears to be useful in all varieties of migraine. It has been the fashion of late to speak of migraine as an affection simply of the central nervous system, the paroxysms being spontaneous, and wholly independent of peripheral excitation. The sickness, or diarrhea, or pale stools, etc., being due to the central affection. It appears to me far more probable that the central affection remains dormant till roused into action by peripheral excitation, which greatly varies in different cases. See section on counter-irritation. The following cases show that gastric irritation may cause pain in the head:

A young woman, about 20, whose mother is migrainous, has suffered for a month with severe, throbbing, supraorbital headache after every meal. The pain is severe and is increased by exertion, or stooping. The eyeballs ache. The pain is not accompanied nor followed by cutaneous tenderness. The sight is unaffected: with the headache she suffers from nausea, but is free from epigastric pain, acidity, and flatulence. The nausea increases severely, and at last, after half an hour, sometimes two hours, she vomits, and immediately the headache ceases. Her bowels are regular, and her motions of a natural colour. The pain coming on immediately after food, increasing as the nausea increases, and ceasing immediately on vomiting, certainly strongly suggests that the exciting cause is food acting on the stomach nerves.

A young man, aged 20, suffered for two months from occipital headache after almost every meal. It comes on about half an hour after food, and lasts about an hour, though sometimes all day. On the other hand, food sometimes, and whisky and-water always, relieves it for half an hour. The headache is always accompanied by flatulence, and continues till he can pass it either upwards or downwards.
In ten or fifteen minutes, after freely dispersing wind, the headache leaves him. The flatus has little or no odour, and causes him no annoyance beyond the headache. When the pain is severe he can feel with his hand throbbing at the occiput, which also ceases on the escape of wind; worry or anxiety will at once bring on headache. The headache is not accompanied nor followed by tenderness of the scalp.

Bismuth and charcoal cured the flatulence, and the headache left him.

Dr. Clousden recommends cannabis indica combined with bromide of potassium in mania, giving a drachm of bromide of potassium with a drachm of the tincture of cannabis indica.

It has been found useful in neuralgia, whooping-cough and asthma, and it appears to be serviceable in some cases of hysteria. Some accord it a high reputation as a diuretic in acute and chronic Bright’s disease, and consider bloody urine to be a special indication. It is said to relieve dysuria and strangury, and to be useful in retention of urine, dependent on paralysis from spinal disease. It is used occasionally in gonorrhoea. It is very useful, as Dr. Silver has pointed out, in menorrhagia, or dysmenorrhoea. Half a grain to a grain thrice daily, though a grain every two hours, or hourly, is sometimes required in those who can tolerate so large a dose, often relieves the pain of dysmenorrhoea.

ERGOT.

Ergot has a disagreeable, bitter taste, and occasions an abundant secretion of saliva. In large doses it produces nausea, vomiting, colic, diarrhoea, giddiness, dilatation of the pupil, great retardation, and slight weakness of the pulse.

Absorbed into the blood, it causes contraction of the blood-vessels, and especially those of the cord,—a statement made by Brown-Séquard and noticed in the article treating of belladonna.

Whether administered by the stomach, or hypodermically, ergot causes contraction of the arteries and veins, by its influence, it is said, on the sympathetic system. Administered in either way, it is most valuable in haemorrhage; indeed, few, if any, remedies rival its efficacy in this respect. Dr. Currie Ritchie and Dr. Drasche, were the first to use it hypodermically, and, they report, successfully, of cases of haemoptysis, epistaxis, hæmatemesis, and intestinal hæmorrhage in typhoid fever; and many other observers have since confirmed their statements. In severe bleeding, when it is
urgently necessary to check it at once, the hypodermic application
must be used, in from two- to five-grain doses. I have seen this
injection in many instances produce a good deal of swelling and
pain, which, however, always subsided without suppuration, hence
it is well to warn the patient that this temporary, untoward acci-
dent may occur. In less urgent bleeding, administration by the
stomach is very successful. It is very useful in hæmoptysis, in
doses of thirty or forty minims of the liquid extract every three or
four hours, indeed hourly in severe cases.

Hildebrand advises hypodermic injections of ergot for fibrous
tumour of the womb; a curious measure, it would seem, but it is
endorsed by Drs. Keating and Ashurst, distinguished American
physicians, who state that the injections at intervals of five to six
grains of ergotine, will greatly diminish the size of fibrous tumours.
In a case reported by Dr. Keating, the pulse, respirations, and
temperature fell for a time after each injection, the fall increasing
with each injection; thus, after the fifteenth injection, the pulse
fell to fifty-six, the respirations to twelve, and the temperature to
ninety-six. (?) The ergotine excited much nausea and sickness;
due probably to the effect of the ergot on the womb, for the intro-
duction of the finger into the os uteri increased the vomiting. The
occurrence of nausea and sickness, however, is not usual.

Ergot is strongly recommended in purpura.

If taken for a long time, it is said sometimes to produce fatal
consequences, namely, spasmodic contractions of the muscles, and
now and then gangrene of the extremities, in character generally
like senile gangrene. These statements usually made in therapeu-
tic works must be very greatly exaggerated, as we now administer
considerable quantities of ergot for weeks, or even months, without
producing gangrene or spasm.

Its effects are most expressed on the womb, especially when
pregnant, exciting in the gravid uterus powerful and continuous
contractions. It is used in tedious labours, when the uterus is
becoming exhausted, but must not be employed when there is
obstruction to the passage of the child, otherwise it may occasion
serious damage to the delicate structures of the mother. Many
suppose that it endangers the life of the child in two ways, namely,
by subjecting it to powerful and continuous uterine pressure, and
by weakening its heart. This injurious pressure may be avoided,
it is said, by administering the medicine in small doses, so as to
strengthen the natural contractions of the uterus, but not to make
them continuous. It is recommended to watch its action on the
foetal heart, and if the pulsations fall to 110, or the beats become irregular, either the drug should be discontinued, or the delivery effected by instruments.

It is extremely useful in post-partum hæmorrhages, arresting the bleeding by producing firm contraction of the uterus, and by its influence on the blood-vessels. It is also of great use in the various forms of menorrhagia, even when it depends on uterine tumours. It is, perhaps, the most valuable medicine known in uterine hæmorrhage, checking the bleeding when other remedies have failed, and when the patient is reduced almost to a hopeless state. In such critical circumstances, it must be given in full doses. Some doctors give half an ounce of the liquid extract, and repeat it in half an hour, or even in a shorter time, without any tonic effects. It promptly checks, and in a few hours effectually stays, the bleeding. Dry cupping over the sacrum is useful. Perfect rest should be enjoined (see Perchloride of Iron).

It is said that ergot will arrest sweating.

Ergot is said to reduce the temperature of the body, but most observers doubt the truth of this assertion. The hypodermic injection is said to reduce the temperature of cats and dogs.

It is stated to be useful in neuralgia and paraplegia, whooping-cough, incontinence of urine, and even in some cases of leucorrhœa; but the form of leucorrhœa is not mentioned. It is also recommended in amenorrhœa with anaemia, after the use of iron.

TEA. COFFEE. COCOA. GUARANA.

Theine, caffein, cocaïne, guaranine, are chemically and physiologically identical. Large doses of these agents produce in animals paralysis of sensibility, tetanic spasms and convulsions.

The Physiological Committee, presided over by the late Dr. Hughes Bennett, conclude that these substances paralyze the terminations of the sensory nerves, and the posterior columns of the spinal cord, the anterior columns remaining unaffected. The tetanic spasms are probably spinal, though, owing to the paralysis of the sensory nerves, the spasms cannot be excited by peripheral irritation. The motor nerves are unaffected. These substances cause cerebral excitement, affect the respiration, the heart’s action, and the arterioles. Breathing is first excited, then impeded, and at last arrested; the heart’s action is first quickened, strengthened, and then slowed and weakened; the arterioles first contract and then dilate, and induce stasis of the blood. They increase the flow of saliva, and
TEA—COFFEE—COCOA—GUARANA.

excite tenesmus with slimy motions. They usually contract the pupil. They first lower and then raise the bodily temperature. To some extent they are antagonistic to morphia. It is very desirable these experiments should be confirmed.

In poisoning by tartar emetic or the alkaloids, a strong infusion of tea is sometimes used for the sake of its tannin which precipitates these substances.

In flatulent dyspepsia, few substances are more to be avoided than tea. It is harmful in two ways; for tea itself in this complaint is found to promote flatulence; and women, the chief sufferers from this disagreeable form of dyspepsia, are apt to drink large quantities of weak tea, and the excess of fluid keeps up the distension.

Coffee is, to some persons, slightly purgative.

The active principle of tea and coffee is absorbed, and acts as a stimulant to the nervous system. These beverages are especially useful in a fatigued state of the system, and under ordinary circumstances, are preferable in this respect to alcoholic drinks.

"Coffee," says Dr. Parkes, in his work on Hygiene "is a most important article of diet for soldiers, as not only is it invigorating, without producing subsequent collapse, but the hot infusion is almost equally serviceable against both cold and heat; in the one case the warmth of the infusion, in the other the action of the skin, being useful; while in both cases the nervous stimulation is very desirable. Dr. Hooker tells us that in the Antarctic Expedition the men all preferred coffee to spirits, and this was the case in the Schleswig-Holstein war, 1849. The experience of Algeria and India (where coffee is coming more and more into use) proves its use in hot climates." The same authority, speaking of tea, says, "Tea seems to have a very decidedly stimulative and restorative action on the nervous system, which is perhaps aided by the warmth of the infusion. No depression follows this. The pulse is a little quickened. The amount of pulmonary carbonic is, according to E. Smith, increased. The action of the skin is increased; that of the bowels lessened. The kidney excretion is little affected; perhaps the urea is a little lessened, but this is uncertain."

"As an article of diet for soldiers, tea is most useful. The hot infusion, like that of coffee, is potent against both heat and cold, is most useful in great fatigue, especially in hot climates (Ranald Martin), and also has a great purifying effect on water."

Dr. Fothergill finds that caffeine strengthens the contractions of frogs' hearts, and M. Jaccoud believes that it acts on the heart and
blood-vessels like digitalis, strengthening the heart, and increasing arterial pressure.

Tea and coffee are useful in the headache of nervousness and exhaustion, and as an aid in rousing and keeping a patient awake in opium poisoning.

A small cup of very strong coffee is often very useful in the paroxysm of asthma; in fact it gives relief in most cases, but in very unequal degree.

Gubler and Dr. D. J. Leach recommend a rate of caffeine in five-grain doses, as a diuretic in ascites and cardiac dropsy.

Although tea and coffee are very wholesome beverages, yet either one or the other, or both, will, in some persons, occasion palpitation of the heart, sleeplessness, and mental excitement.

Coffee, in certain individuals, increases rather considerably the urinary water, and is said to lessen the formation of urea, and so to check metamorphosis; but Dr. Squarey's careful experiments disprove this conclusion with respect to urea.

Dr. Wilks recommends guarana for sick headaches, being induced to try it by Mr. Helmken, of British Columbia, and Dr. Wood, of Montreal. Dr. Wood recommends it when the pain affects the right side of the head. It shortens the attacks, and increases the interval between them. A powder should be taken every night, and on the occurrence of an attack, every three hours. Guarana consists of the seeds of paullinia sorbilis, growing in Brazil, and contains an alkaloid identical with that in tea and coffee. In some parts of South America, strong coffee and lime juice in equal parts is taken several times a day as a prophylactic against ague.

CINCHONA AND ITS ALKALOIDS.

Salts of quinia are protoplasmic poisons, arresting amœboid and the allied movements of the white corpuscles. Even weak solutions are highly poisonous to protozoa and infusoria (Binz), more so even than salts of strychnia or morphia. Small quantities of quinia salts destroy septic germs and arrest putrefaction more thoroughly than most antiseptics, including even arsenic and creasote. With the exception of strychnia, quinia, moreover, hinders alcoholic and butyric fermentations more than other bitters. Cinchona possesses the same properties, but in a weaker degree than quinia.
Powdered bark contains, besides various alkaloids, a considerable quantity of tannin, a fact to be borne in mind when we administer bark, or any of its preparations.

Finely powdered bark dusted thickly over foul, indolent, sloughing, and even gangrenous ulcers, and left to form a kind of poultice, has apparently promoted the healing process. Hospital gangrene too has been successfully treated in this way.

Bark has been employed as a dusting powder to check profuse formation of pus, mucus, or the secretion of eczema. Its success probably depends on the tannin it contains, and other and cheaper preparations of tannin might prove equally useful.

Cinchona bark and its preparations are bitter to the taste, and, like all bitter substances, stimulate temporarily the salivary glands. The tannin of the bark precipitates the mucus of the mouth, and acts likewise as an astringent to the mucous membrane itself.

Powdered bark is a common constituent of tooth powders.

The alkaloids, when swallowed in an insoluble form, combine with the acids of the gastric juice and become soluble, so that as a mere solvent, it is unnecessary to administer quinia and cinchonia with acids. A large dose merely suspended in fluid is far less bitter than when dissolved.

The taste of quinia can be concealed by adding an equal quantity of powdered ginger to the quinia. When large doses, as forty grains, are administered, it is better to give it in pill, otherwise it may cause sickness.

The alkaloids of bark probably undergo no other change in the stomach than that just mentioned. Their action in the digestive tract is similar to that of bitters generally, being slight irritants to the mucous membrane, and so producing, both in the mouth and stomach, an increase of mucus. It is generally stated that cinchona increases the amount of the gastric juice for a short time, to a small extent, and further experiments show that cinchona and its alkaloids check the action of the gastric juice on the food, and check also fermentations, as that of sugar by yeast. It appears, therefore, that cinchona increases for a short time the production of both saliva and gastric juice, and so in a small measure may aid digestion; that it is an irritant to the mucous membrane, and promotes the secretion of the mucus of the mouth and stomach; and that it checks the digestive action of the gastric juice and fermentation.

Thus our theoretical knowledge would appear to show that
quinia neither increases appetite when the stomach is healthy, nor aids in any marked degree digestion; yet experience fails to support these views; for even when the stomach appears to be healthy, quinine certainly seems to sharpen appetite and assist digestion, particularly in the case of elderly people and the inhabitants of large towns.

These substances are useful to check unhealthy or excessive fermentation in the digestive canal.

These alkaloids if too long employed disorder the stomach, producing heat and weight at the epigastrium, loss of appetite, nausea, sickness, and even diarrhoea. Poisonous doses excite great thirst, burning pain at the epigastrium, and vomiting.

Quinine appears to exert no influence on the secretion of bile.

These alkaloids affect the intestines in the same manner as they affect the stomach.

They are given with benefit in cases of worms; but as decoction of cinchona appears to have no direct influence on ascarides and taenize, the good effects of quinia must be due to its beneficial effect on the mucous membrane, by preventing the production of the abundant mucus, which favors the development and growth of these worms.

When quinia is taken in large quantities, some of it is said to pass off with the faces.

Quinia readily passes into the blood, and as it can be detected unchanged in the urine, sweat and secretions of healthy persons and fever patients, probably very little undergoes decomposition in the body. It is almost exclusively eliminated by the urine, most of it being excreted in six hours.

Large doses affect the sight and hearing, excite subjective noises as of bells ringing in the ears, and occasionally produce deafness. Sometimes, but very rarely, the sense of hearing has been lost for life; but usually, in a short time, possibly in a few days the noises cease, and the hearing again becomes natural. Large doses often dim the sight and sometimes cause total temporary blindness. I have noticed on some occasions that the defect of vision is strangely limited to one eye, or begins first in one eye. The pupil of the affected eye is very generally dilated, and sometimes to an extreme extent. Severe frontal headache, with dull, heavy, tensive, and sometimes agonizing pains are some of the most distressing and frequent symptoms that follow a large dose of quinia. While these symptoms last, and, indeed, generally before they appear, the face is flushed, the eyes suffused, and the expression
is dull and stupid. Even small doses, in persons very susceptible to the action of this medicine, will produce some of the foregoing symptoms, especially the headache and mental disturbance.

A small dose of quinia in one of my patients always brings out a uniform red rash over the whole body, most marked on the back of the neck, accompanied by very severe stinging pain, especially on the nape, and in the clefts between the fingers. Desquamation, as free as after a sharp attack of scarlet fever, always follows the rash.

In some people quinia produces large patches of erythema with great irritation, gastric disturbance, and accelerated pulse. A patient tells me that even small doses always excite violent urticaria, her face swelling till she can scarcely see out of her eyes. She is so intolerant that a quinine hair-wash brought out a crop of urticaria on her head, and a tooth-powder, containing a small quantity of quinine, caused her lips and gums to swell.

Quinia in large doses abolishes reflex action before voluntary movement, by stimulating of Setchenow's reflex inhibitory centre.

It has become somewhat the practice of late to treat pyæmia, acute rheumatism, typhus fever, etc., with oft-repeated large doses of quinia, even to the enormous extent of several drachms in the day, yet without producing any of these toxic symptoms. Workers in barks sometimes suffer from a scaly papular eruption, or from a vesicular weeping eruption, and occasionally from great swelling of the genitals, or of the face and eyelids, with redness of the eyes. They sometimes complain of great itching of the whole body, and it is known that quinia can produce urticaria.

The statements concerning the influence of quinia on the pulse are discrepant. It is often said that large doses reduce, while small doses increase, the number of beats.

Mr. Gill and I investigated the effect of large doses of quinia on the pulse and temperature. Our experiments were conducted on a boy aged ten, convalescent from rheumatic fever, and a healthy girl of thirteen.

Before experimenting on the girl, her pulse beat from 60 to 64, and the following table shows the effects of a daily dose of quinia:—

<table>
<thead>
<tr>
<th>Dose</th>
<th>Rise began</th>
<th>Reached</th>
</tr>
</thead>
<tbody>
<tr>
<td>gr. 8</td>
<td>in 35 minutes</td>
<td>94</td>
</tr>
<tr>
<td>" 10</td>
<td>" 15 "</td>
<td>72</td>
</tr>
<tr>
<td>" 12</td>
<td>" 95 "</td>
<td>72</td>
</tr>
<tr>
<td>" 20</td>
<td>immediately</td>
<td>120</td>
</tr>
<tr>
<td>" 20</td>
<td>in 50 minutes</td>
<td>96</td>
</tr>
</tbody>
</table>

In the last observation the pulse, for about the first thirty minutes, fell in frequency; but this did not occur in the other instances. We shall mention presently the depression in the temperature; here it is necessary only to state that the pulse
was at its fastest when the quinia began to depress the temperature. The increase in the frequency continued after—

<table>
<thead>
<tr>
<th>Dose (gr)</th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>170</td>
</tr>
<tr>
<td></td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

In every instance there was a loss of force with increase in the frequency. Briquet has shown, by the aid of the hæma-dynamometer, that the lateral pressure of the blood on the arteries is lessened in proportion to the dose of quinia.

The effect on the boy's pulse was different, for his pulse beat 122 to 130 in the minute. The rheumatism, from which he had recovered, had left a mitral regurgitant murmur, and had probably damaged the heart's substance. On one day two doses of ten grains each were given him without, on either occasion, altering the frequency of the pulse; in each case, however, its strength was diminished. On another day after taking a single dose of ten grains, the pulse fell during fifty minutes from 108 and 112 to 104 and 96, growing at the same time in strength. After this it attained a frequency of 120 in the minute, and again fell in force. On two occasions the girl's pulse, when at its quickest, became irregular both in force and rhythm.

Mr. Gill and I investigated, at the same time, the influence of quinia on the temperature of fever-free persons. The following table shows the results of our observations:

<table>
<thead>
<tr>
<th>BOY</th>
<th>GIRL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose</td>
<td>Effect on Temperature</td>
</tr>
<tr>
<td>gr. 10</td>
<td>None</td>
</tr>
<tr>
<td>10</td>
<td>Fell 0.2°</td>
</tr>
<tr>
<td>10</td>
<td>None</td>
</tr>
<tr>
<td>20</td>
<td>1°</td>
</tr>
</tbody>
</table>

It appears that quinia will reduce the temperature, but to effect this in any appreciable degree, large doses, to the extent of twenty grains, must be given, and even then depression is but slight, and may not amount to a half a degree Fahrenheit.

It may be said that the fall in the temperature does not represent the total effect of the quinia, as a rise in the temperature would have taken place at the time the depression occurred, so that if we wish to ascertain the integral influence of the quinia, we must add to the amount of depression the rise which should have happened; but to this I am able to answer that on this point I made many careful experiments, and found that the heat of the body remains always very constant between 9 A.M. and 4 P.M., and the foregoing observations were made between these hours.

This table gives the time the depression occurred after the quinia, and the period it lasted. The occasions when the fall reached only 0.2° are not included, since even with the greatest care, so slight a depression may easily be produced by accidental causes.

<table>
<thead>
<tr>
<th>Dose (gr)</th>
<th>Time (minutes)</th>
<th>Depression lasted (hours minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>55</td>
<td>3 hours 15 minutes</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td>45</td>
</tr>
</tbody>
</table>
Several observers have made observations tending to show that quinine has perhaps some influence, though assuredly to no marked extent, in reducing the body temperature in health.

Piory maintains that during a fit of ague quinine at once diminished the size of the spleen, and it is said that the drug exerts a similar effect on this organ during other fevers, and even in health. Jerusalemsky finds that quinia reduces the size of the spleen, even when the nerves going to the spleen are divided before administering the quinia.

The influence of cinchona and its alkaloids on the various forms of intermittent fever is well known, controlling this formerly common complaint more effectively than any known drug. How it acts, is at present quite unknown. It has been supposed to check the fever by its influence on the spleen; but, granting this assumption, it yet remains to show how the influence of the quinia on the spleen prevents the return of the fever paroxysms.

Quinia generally arrests the disease at once. It is well, however, to bear in mind that this remedy may dissociate the other symptoms from the elevation of the temperature; or, in other words, it may remove the shivering, sweating, quick pulse, while the temperature may remain as great, or nearly as great, as on previous days. Mere rest will occasionally effect the same dissociation. Unless the unnatural elevation of temperature has been restrained, the paroxysms will speedily return. This fact it is necessary to recollect, otherwise it may be concluded that with the removal of the more obvious symptoms the disease itself is cured, and thus the patient may be permitted to return to his usual avocations.

A still more curious circumstance remains; that is, quinia may check all the symptoms, even the periodical elevation of the temperature, and yet about the same time of day that the series of symptoms were wont to take place, an increase in the urea and urinary water may occur as during a severe paroxysm; that is, all the symptoms of the paroxysm are absent, except those pertaining to the urine.

I made two experiments which tend to show that quinia, given after the commencement of the fit, is powerless to prevent the elevation of temperature of that attack, although the drug may effectually prevent the rise in succeeding paroxysms. It said that quinia subcutaneously employed after the paroxysm has begun, will arrest the fit. Some hold that quinia is less efficacious than the powdered bark, even when the cinchonia is allowed for; and it is even held that powdered bark is more tonic than quinia. On the
other hand, no doubt powdered bark by reason of its bulk, and of the tannin it contains, frequently upsets the stomach.

There is great variation of practice regarding the administration of quinia, some giving small doses, several times daily; others preferring a single large dose daily; both methods are useful, but under different circumstances. In the mild forms of ague, like those now met with in this country, small doses several times daily are sufficient; but in malignant forms, large doses given even several times a day may be required summarily to arrest the disease. Some say that the drug should be given at the very commencement of the fit; but this practice is held to be bad, by making the immediate attack more severe.

Trousseau advised that fifteen grains should be taken immediately after the fit, and repeated with an interval, first of one, then of two, three, and four days, and so on. Probably this is a good means to extirpate the latent tendency to the disease and to ensure a perfect cure; for it must be recollected that, judging by the temperature, a patient may unconsciously undergo even a severe fit, a fact proving the great importance of employing the thermometer. Moreover, Trousseau’s plan is judicious; for even when the quinine has removed all symptoms the patient is liable to a recurrence of the attack; from various causes, as depression of the health, or a sudden shock, as that from an accident or operation; indeed, in many instances, this tendency to ague lasts for years.

It is important to recollect that the effect of quinia on the fit bears no relation to its physiological operation, either in time or degree, for a small dose may prevent the occurrence of a fit otherwise due twenty-four hours afterwards, the effects of the dose on the system meanwhile never becoming apparent, or having long ere this passed quite away.

Quinia is of especial use in the malignant forms of ague. The dose should be large, and given in a non-febrile period. In these severe forms of the disease, no circumstances are to be considered as contra-indicating its use. If it cannot be borne by the stomach, it may be given by the rectum, or hypodermically. For injection it is recommended to dissolve the quinine in ether, as this solution is less irritating than an acid, alcoholic, or chloroformic solvent. Salts of quinidine, on account of their solubility, have been recommended for hypodermic use. Quinidine of commerce is generally very impure. Dr. Ranking, and others, find the hypodermic method highly successful. Dr. Ranking has treated 200 cases in this way. He uses a warm neutral solution of the sulphate, 1 in
10, injecting five minims. On an average three injections cure, the fever being arrested on an average in 2.5 days.

In remittent fever, large and often-repeated doses should be administered during the remission.

The more recent the attack, the sooner and more certainly will quinia cure.

It is less efficacious in quartan than in other forms of ague, probably because old ague generally assumes the quartan type. In obstinate cases resisting quinia, arsenic often succeeds.

In some cases where this medicine appears powerless, the administration of an emetic each morning sometimes brings the disease at once under the control of quinia.

Quinia is used as a preventive of ague, and in the navy it is a very useful sanitary precaution, where this fever prevailed, to give sailors sent ashore quinia before and after landing. This preventive effect is forcibly illustrated in some observations recorded by Dr. J. B. Hamilton, of the Royal Artillery, who treated his men with quinia, and but few succumbed to ague, and those were attacked mildly; whilst another doctor, disbelieving in the preventive action of quinia, allowed his men to go unprotected by quinia, and a large number were struck down with fever, and several died. Dr. Hamilton believes that cinchona is superior as a prophylactic to quinia, and quinoidia very inferior to quinia.

The other alkaloids of bark, although inferior to quinia, will check ague. Cinchona, it is said, must be given in doses one-third larger than quinia.

The Medical Committee appointed by the Indian Government to estimate the relative value of the alkaloids, cinchona, quinia, quindinia, and cinchonidina, decided in favour of the use of all of them in ague. Naturally, there were individual differences of opinion concerning their exact relative value, but all agreed that they are all efficacious against ague. The general opinion was that sulphate of quinia and sulphate of quinidia possess equal febrifuge power; that sulphate of cinchonidia is only slightly less efficacious; and that sulphate of cinchonia, though considerably inferior to the other constituents, is a valuable agent in fever.

It is a fact well known that in the case of persons who have encountered ague, even many years beforehand, that disease in them is prone to take on an intermittent type, and that in such instances quinia is often of great service.

Again, certain forms of neuralgia not uncommonly depend on malarial poison, and are then apt to assume a type distinctly
periodical. Here quinia in large doses, given shortly before the expected attack, is highly serviceable. Quinia often proves useful, too, in non-malarial forms of neuralgia, presenting this periodical character. Even when the element of periodicity is quite absent, large doses of quinia often succeed in removing the pain of this distressing malady. Quinia is said to control neuralgia and ordinary face-ache more effectively when the powder is taken in minute quantities every few minutes,—for instance, as much as will adhere to the finger’s tip dipped into the powder.

It has long been recognized that quinia has most influence on neuralgia of the supra-orbital branch of the fifth—a branch most often affected with malarial neuralgia, and non-malarial periodic neuralgia; but even non-periodic neuralgia of this branch is probably more amenable to quinia than neuralgia of the other branches of the fifth, or of other nerves.

A short time ago it was the custom to treat pyæmia with large doses of quinia, under the notion that quinia produced great reduction in the temperature; but I am convinced that the falls were often normal, occurring in the course of the disease, independently of the action of quinia. In pyæmia a sudden and extensive rise of the temperature often occurs twice or three times a day, to fall again, however, in a few hours to the natural, or almost natural, standard.

Quinia is recommended in other febrile diseases, as typhoid fever, bronchitis, broncho-pneumonia, pneumonia, and acute phthisis. Numerous observations prove that large doses effect a temporary reduction of temperature, occasionally a considerable fall.

In Germany, quinia treatment, originally introduced by Vogel, is largely adopted in all fevers, especially in typhoid fever. Liebermeister, who follows him, gives large doses of 20 to 45 grains at nightfall, so as to increase the morning fall down to the normal, or nearly normal, temperature. If the dose is inadequate to effect this, he increases it. He strongly insists on the necessity of giving the quinia in one large, rather than in several divided doses, as the piece-meal method has far less effect on the temperature. After very considerable experience, he avers that he has never seen these large doses produce any injurious effects, the decline of the temperature usually beginning a few hours after taking the medicine, and the minimum temperature is reached in from six to twelve hours. The combination of the cold bath with quinia is strongly recommended by some observers, as the quinia reduces the number of baths necessary to keep down the fever.
Quinina is supposed to control inflammation by its destructive influence on movements of the white corpuscles, and Binz maintains that, after irritating and inflaming the mesentery by the administration of quinina, the white corpuscles are killed, and their migration are, by the tissues, prevented. It is supposed to lower temperature by lessening the ozonizing power of the blood, and thus checking oxidation.

Quinina in large doses of ten to thirty grains, repeated several times a day, has been recommended in rheumatism. Some advocate its use at the commencement, others at the termination of the attack—at the commencement, with the view of shortening the course of the attack, and diminishing the chance of relapsing, and at the termination, with the hope of preventing the profound anaemia which so generally accompanies acute rheumatism. Other authorities are altogether averse to the use of this drug, maintaining that it favours relapses, and merely disguises the pain, and in no degree shortens the attack. In this controversy, which side is in the right, if either is, remains to be proved.

Quinina is often given with decided advantage to check the profuse sweating of exhausting chronic diseases, such as chronic phthisis. If a small dose fail to check sweating, a large dose of six or eight grains, administered at once, or in portions, repeated hourly, sometimes succeeds.

In many cases of profuse sweating, a night draught, composed of quinina, sulphate of zinc, and sulphuric acid, is very useful.

Quinina is sometimes useful in the vomiting of pregnancy. Many American writers believe that quinina strengthens the contractions of the womb during delivery, and some use it in preference to ergot. Other writers deny this action to quinina, but on the rather inconsequent ground that, when given during pregnancy, as for ague, quinina does not cause premature labour.

Quinina is often employed with much benefit in diseases of malnutrition, as in impetigo and eczema. It is also of great benefit to the pale and badly-fed inhabitants of large populous towns. It is at present undetermined whether its good effects are dependent on its action on the stomach, or on the tissues after its absorption into the blood. Quinina has been recommended in passive bleeding undue suppuration, profuse menstruation, spermatorrhoea, and in excessive secretion of milk.

Quinina appears to be useful in some cases, but quite useless in others, of intermittent haematuria.

Some doctors highly recommend sulphate of quinine, in five-grain doses, in lumbago.
Quinia is found in the blood, which dissolves more of it than water; in the saliva, bronchial mucus, milk, and in dropsical effusions. It is said to be eliminated slightly with the sweat; although Briquet, after giving large doses, could detect none.

Both quinia and cinchona pass off in part by the urine, but a portion appears to be consumed in the blood, or to be eliminated in some other way. Kerner says that "a respiratory power of 3,000 c.c. can destroy fifteen grains of sulphate of quinia in twenty-four hours; any amount over this will pass into the urine." Quinia appears in the urine of healthy individuals in the course of two to five hours, but more quickly in young than old persons. In some diseases (intermittents, pulmonary emphysema, pneumonia, morbus Brightii) its exit is much delayed, and in three cases in which large doses were given, Dietl detected it in the urine many weeks after the last dose, showing that it is not easily destroyed in the body.

Dr. Ranke has made the important observation, that a scruple of disulphate of quinia lessens by one-half the excretion or the formation of uric acid, the effect continuing about two days after a single large dose, the other constituents of the urine remaining unaffected. It would seem likely that the uric acid is not simply retained in the system; for as in Ranke's cases, no subsequent increased excretion took place after the effect of the quinia had gone off, its formation was absolutely lessened, or it must have been converted into some other substance. (Parkes On Urine).

Certain circumstances modify the operation of the salts of quinia. The physiological symptoms appear early in young people, who can resist the toxical action of the drug; but, on the other hand, the effects of quinia are more marked in old people. Diffusible stimulants, as wine and coffee, are said to counteract the action of quinia.

Dr. Batterbury finds that milk covers the taste of quinine.

SALICINE, SALICYLIC ACID, SALICYLATES.

Salicylic acid is a powerful antiseptic. Wagner maintains that it is a more powerful disinfectant of wounds than carbolic acid. It is said to be three times more effectual in preventing fermentation than carbolic acid. Kolbe asserts that salicylates possess no antiseptic properties, the apparent contradictions to this statement being due to the specimen used containing some free acid.
Salicylic acid is useful as a local application to prevent fetor of gangrenous and offensive-smelling sores.

These substances produce many of the effects of quinia, and like it they have been recommended to reduce the febrile temperature. But whilst in many respects they produce similar effects on the animal body to quinia, they cannot, as we shall subsequently see, be substituted for it.

In conjunction with Mr. Bury, I have made some investigations concerning the action of salicine on the human body, using healthy children for our experiments, to whom we gave doses sufficient to produce toxic symptoms.

We tested the effects of salicine in three sets of experiments, on three healthy lads. To the two first we gave large doses and produced decided symptoms; to the third we gave at first smaller doses, and increased them gradually, till he took three drachms daily, producing, as we shall see, scarcely any symptoms.

In order to produce any symptoms characteristic of the drug, a single large dose of one drachm or more is necessary, or thirty grains repeated hourly, two or three times. Given less frequently, or in smaller doses, it induces no symptoms whatever. Tolerance of the drug is soon established, so that at last large doses fail to produce any characteristic effect; though when given at first, without any gradation, these full doses, even after their discontinuance, produce very decided symptoms, which may persist one or two days, and may even become intensified the day after the withdrawal of the medicine. The repetition of large doses may produce slight fever, shown in delaying and greatly lessening the evening normal diurnal fall—an effect probably due to irritation of the stomach.

The aspect of a patient under full medicinal doses is rather characteristic, being in many respects similar to that of a person suffering from cinchonism. The expression is dull and heavy, the face quickly flushes on slight excitement, and the eyes become suffused. The flush, of rather a dusky hue, suffuses itself uniformly over the whole face. The patient, made more or less deaf, often complains of noises in the ears. He complains, too, of frontal headache, and his hands, when held out, tremble a little. His breathing is rather quickened and deepened. In some cases one symptom may predominate; thus deafness may be almost complete, without headache or muscular trembling; or the breathing may be characteristic, and the limbs may tremble, without headache or deafness; but it rarely, if ever, happens that any symptom
is unaccompanied with the dull, heavy aspect, and the readiness to flush.

Under toxic, but not dangerous doses, the headache is often very severe, so that the patient buries his head in the pillow. There may be very marked muscular weakness and tremor, associated with great muscular irritability, so that a slight tap, say on the shoulder, causes muscular contractions so strong as to jerk the arm backwards. There are often slight spasmodic twitchings when a limb is raised. Tingling of the extremities, or other parts of the body sometimes occurs. The voice may become thick and husky. The respiration is hurried, sometimes deepened, sometimes sighing and shallow, and almost panting, as though it were performed rather laboriously, but the patient does not complain of any difficulty of breathing. When the breathing is deep and hurried, both inspiration and expiration are often accompanied by a nasal sniffing noise. The costal as well as the diaphragmatic movements are involved in the exaggerated breathing. Large doses, often repeated, quicken the pulse to 140 per minute, and it becomes very weak. In these healthy lads the drug did not cause delirium.

Patients taking salicylates often complain, on walking, of great giddiness, and feeling of intoxication.

It is very noteworthy that salicine renders the sweat neutral, or alkaline. We think, too, that the urine becomes neutral, or less acid; but on this point our observations are too few to justify our speaking confidently. The alkaline reaction of the sweat we noticed in many rheumatic patients under the influence of large and frequent doses, and the sweat may be alkaline, whilst the urine is acid.

Subsequent observations incline me to doubt if this alkaline reaction of the sweat be due to the salicine; for in a good many observations on the reaction of the sweat in health and disease, I find that the sweat is often neutral or even alkaline. The sweat is now said to be a neutral secretion.

We find that if moderate doses are first given, the medicine may then be increased, till a lad ten years old, beginning with 80 grains, may be brought to take 180 grains daily, without any symptoms.

Salicylic acid and the salicylates produce the same symptoms In my experience the acid produces these symptoms in much smaller doses than the alkaloid.

Salicine is converted in the body into salicylic acid, and possibly this acid produces the symptoms. The alkaloid will not, of course,
yield its own weight of acid, hence its effect in producing symptoms is less manifest than the acid.

Other symptoms than those just described have been observed when salicylic acid has been given in disease. Thus Dr. Tuckwell, in addition to most of the symptoms just mentioned, observed delirium like delirium tremens, involuntary evacuation of urine and faeces, slow laboured pulse, and olive-green colour of the urine. Delirium is often of the busy kind. Dr. Sharkey finds that in some cases when salicylate of soda has excited delirium, if the drug be discontinued and in a short time repeated, it does not the second time produce delirium. He notes, too, that in acute rheumatism the urine may contain a small quantity of albumen, and that this does not contra-indicate the use of salicylates. When Dr. Tuckwell first published his account, all the symptoms were thought to be due to a trace of carbolic acid contaminating his specimen. Possibly the olive-green colour of the urine was due to the carbolic acid; but as salicine produces most of the symptoms enumerated, and as delirium has been noticed to occur after the use of a pure sample of the acid, these symptoms, excluding the olive-coloured urine, must be due to the drug and not to carbolic acid. Dr. Weber has seen the acid cause acute nephritis with bloody albuminous urine containing casts; this effect following three moderate doses and lasting sixty hours after the last dose. Other observers refer to similar effects with the acid, in some cases the urine being almost suppressed. Dr. Murchison and some other writers are inclined to attribute the delirium, sometimes following the use of the acid, to its effects on the urine; but this view is not tenable, since the drug will produce violent delirium without effecting any change in the quantity or character of the urine. I have never seen salicine, even when given in very large doses, produce delirium and possibly the acid may be more powerful in this respect than the alkaloid. In addition, these substances sometimes produce sickness, and more rarely diarrhoea, so that they cannot be continued; and further, salicylic acid often causes much distressing burning of the throat. When administered in fever, salicylic acid and salicylates not uncommonly excite very abundant perspiration; but this did not occur in our experiments on healthy persons. While administering these remedies in rheumatic fever, some observers have seen them produce an urticarial or vesicular eruption. These symptoms, Stricker asserts, appear sooner in old and feeble than in young and vigorous people.

I shall now speak of the effect of these agents on the animal
temperature, and shall first treat of the effect of salicin on the
temperature in health. This subject, too, I have investigated with
Mr. Bury, and our results are published in Vol. XI. of the Journal
of Anatomy and Physiology.

Our observations show that even very large doses, as large as
can be safely given, depress the temperature very little, and only
after the first few doses, and subsequently, instead of lowering the
temperature, the drug produces slight fever; thus it slightly raised
the temperature, though not above the limits of health, but delayed
the onset of the evening fall, and lessened the amount of diurnal
variation, thus giving evidence of the febrile movement. This
slight fever may we think, be due to catarrh of the stomach caused
by the medicine, which, in so many instances, excites vomiting.

In two sets of experiments the temperature was taken under the tongue: in the
other series, in the rectum. These lads took breakfast between six and seven,
dinner between twelve and half past, and tea between four and five.
We took the temperature hourly, from 9 A.M. till 12 P.M. Observations were
made hourly for six days on the first lad; on the second for eight days; on the
third for thirty days. For a few days we gave no salicin, that we might compute
the temperature of the body on salicine days with non-salicine days.
Our first set of experiments was made on a lad aged ten, weighing 444 lbs. His
temperature was taken under the tongue, and during the investigation he was kept
in bed, but was allowed to sit up in it. He was admitted with belladonna poising,
but our observations were not commenced till some days after his complete
recovery.

For the first three days he took no medicine, on the fourth we gave salicin in
two doses, each of thirty grains, and on the following day a single sixty-grain
dose. Observations were continued throughout the sixth day, although he took
none of the drug.

The results of our investigations are put in the following table:—

<table>
<thead>
<tr>
<th></th>
<th>Maximum Temperature of Day</th>
<th>Rise after Dinner</th>
<th>Rise after Tea</th>
<th>Evening Fall</th>
<th>Diurnal Variation</th>
<th>Average Temperature of Day</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st day</td>
<td>99.1</td>
<td>0.4</td>
<td>0</td>
<td>8</td>
<td>1.6</td>
<td>98.4</td>
<td>No salicin.</td>
</tr>
<tr>
<td>2nd day</td>
<td>99.5</td>
<td>0.6</td>
<td>0.5</td>
<td>7</td>
<td>1.4</td>
<td>98.7</td>
<td>No salicin.</td>
</tr>
<tr>
<td>3rd day</td>
<td>99.5</td>
<td>0.4</td>
<td>0.4</td>
<td>6</td>
<td>1.7</td>
<td>98.7</td>
<td>No salicin.</td>
</tr>
<tr>
<td>4th day</td>
<td>99</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>1.7</td>
<td>98.3</td>
<td>60 grains in two doses.</td>
</tr>
<tr>
<td>5th day</td>
<td>99.3</td>
<td>0</td>
<td>0.2</td>
<td>6</td>
<td>1.7</td>
<td>98.5</td>
<td>60 grains in one dose.</td>
</tr>
<tr>
<td>6th day</td>
<td>99</td>
<td>0</td>
<td>0.2</td>
<td>9</td>
<td>1.9</td>
<td>98.2</td>
<td>No salicin.</td>
</tr>
</tbody>
</table>
SALICINE.

627

In respect to this table, we must first remark that the rise after dinner and tea lasted a very short time, and we think that part of this rise is due to the warm tea; for, after warm drinks, we find that the mouth temperature is often considerably raised, sometimes even to the extent of a degree, remaining so a quarter of an hour or even longer.

A reference to the above table might lead to the conclusion that the effect of salicine was inappreciable or nil, but a glance at the temperature chart showed that the drug produced a manifest effect. On the fourth day, after taking three observations, at intervals of a quarter of an hour, we administered, by the mouth, thirty grains of salicine dissolved in water at 9.45 A.M., and another thirty-grain dose at 10.50 A.M. The medicine produced a decided though slight effect on the temperature. Thus, throughout the day, the temperature remained more stationary than on non-salicine days. After the first dose, there occurred a fall of 0.2° Fah.; during the next hour it rose 0.4° in spite of the second dose, and the maximum temperature of the day was attained at 11.40 A.M. Then, instead of rising after dinner and tea, as on the previous non-salicine days, it slowly and continuously declined, so that at 8 P.M. it had fallen 0.4° Fah., then the diurnal variation commenced, and amounted to 1.7° Fah. Thus, the effect of the salicine on this day was to lower the temperature 0.2° Fah., and to prevent the rise after dinner and tea; effects very slight and unimportant. Next (5th) day, after three observations, we administered, in one dose, sixty grains of salicine, dissolved in two ounces of water, at 9.40 A.M. The temperature from this time gradually fell, reaching its maximum fall of 0.8° at 11 A.M., it then rose and recovered itself at 12, and between 12 and 5 P.M. it rose 0.3°; the evening fall now began, and amounted to 1.7° Fah. There was no rise after dinner, and only 0.2° after tea. Thus, on this day the effect was a fall of 0.8°, lasting about two hours, and no rise after food. The amount of diurnal variation was unaffected on both the salicine days.

Next day he took no salicine, and his temperature remained remarkably uniform throughout the day, till the diurnal variation set in. The evening fall began between eight and nine, and the diurnal variation amounted to 1.9° Fah.

The drug produced no effect on the pulse or respiration.

Although on each of the two days we gave the same dose, the drug produced far more decided effects after the second than after the first dose. On the first day we gave two thirty-grain doses at sixty-five minutes' interval; on the next day, sixty grains were given at once. This difference would indicate that the drug is quickly eliminated.

The symptoms produced were slight nausea, probably due to the bitter taste of the drug; then, in a few minutes after the second dose, severe frontal headache set in, so severe, that the lad shut his eyes and buried his head in his arm. Flushing of the face, especially on any excitement. Slight injection of the conjunctiva, and giddiness. In an hour these symptoms had almost left him, a fact confirming the conclusion that the drug is speedily eliminated.

Sixty grains produced the same symptoms in a more marked degree. Severe headache and flushing came on in twelve minutes. Though a very lively boy, he became very dull and stupid, lying with his eyes closed, and answering questions slowly. He complained of tingling like pins and needles in his right ankle, and suffered from very decided muscular weakness, soon accompanied by muscular twichings and tremblings of the legs and arms. At this time the pulse was much softer.
In the following table, we give the time these symptoms set in, and their duration, calculating from the time of taking the medicine:

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Set in</th>
<th>Ceased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headache</td>
<td>12 min</td>
<td>50 min</td>
</tr>
<tr>
<td>Flushing</td>
<td>12 min</td>
<td>1 h. 20 min</td>
</tr>
<tr>
<td>Muscular weakness</td>
<td>15 min</td>
<td>1 h. 20 min</td>
</tr>
<tr>
<td>Muscular twichings</td>
<td>35 min</td>
<td>1 h. 20 min</td>
</tr>
<tr>
<td>Dulness and heaviness</td>
<td>15 min</td>
<td>1 h. 45 min</td>
</tr>
</tbody>
</table>

The quantity of urine was unaffected, as the following table shows:

<table>
<thead>
<tr>
<th></th>
<th>Daily Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without medicine</td>
<td>22 oz.</td>
</tr>
<tr>
<td>" "</td>
<td>22 oz.</td>
</tr>
<tr>
<td>Salicine day</td>
<td>20 oz.</td>
</tr>
<tr>
<td>" "</td>
<td>20 oz.</td>
</tr>
</tbody>
</table>

The next series of observations were made on a lad, aged nine, convalescent from pneumonia, his temperature having become normal ten days previously. We experimented somewhat differently.

The boy was kept in bed. His temperature was taken hourly in the rectum. For two days he took no medicine; on the two following days he took salicine in thirty-grain doses, at 10 A.M., 11 A.M., 2 P.M., 3 P.M., 5 P.M., and 6 P.M.; then, in the course of the day, he took 51/2. Next day we administered thirty-grain doses eight times (388), at 10 A.M., 11 A.M., 12 P.M., 1 P.M., 2 P.M., 3 P.M., 4 P.M., and 5 P.M.

The results with this salicin are rather singular. On the first day these large doses produced no symptoms; in fact, symptoms did not set in till noon of the second day, but they increased during the night, after the discontinuance of the medicine, and were severe all next day, and for three days afterwards.

The temperature chart shows that on the first day the temperature rose between 9 A.M. and 1 P.M. 90 Fah., and then slowly fell; the diurnal variation apparently beginning about 6 P.M., and amounting to 29° Fah. Next day, also without salicine, the course of temperature was very singular. It remained pretty stationary from 9 A.M. till 1 P.M., and then fell 1°, remaining about this point till 9 A.M. and again fell 1°; the diurnal variation amounting to 23°. Next day, the first on which salicine was given, the temperature fell after the first dose of 30 grains 4° in one and a half hours, and remained depressed for about three hours, and then rose to its original height in spite of the continuance of the medicine. The evening fall began at 7.30 P.M., and diurnal variation amounted to 10° Fah. The only effect, therefore, of the salicine, was a very slight and temporary depression of the temperature, not maintained by the continuance of the medicine, and the diurnal fall was not quite so great as on the two previous days, though within the limits of variation of health.

Next day, when three drachms of salicine in divided doses were given, the temperature was not even temporarily depressed; in fact, it rose 6° between 9 A.M., and 1 P.M., and then slowly fell 3° till 3.30 P.M. The evening fall began between 7 P.M. and 8 P.M., and the diurnal variation amounted to 1.5°.

Next day, with very marked symptoms, though without salicine, the tempera-
SALICINE. 629

ture ran the same course, rising gradually from 9 A.M. till 1 P.M., and after 4 P.M. slowly falling till 12 P.M.: the daily variation amounting to only 0°9. On these two days, the only apparent effect, therefore, of salicine, was to lessen the diurnal range, with a very slight increase in the maximum temperature of the day; and strange to say, these effects were most marked on the day following the large doses of salicine, not on the day large doses of salicine were taken, but on the following day.

Next day, taking the temperature as usual, it remained pretty stationary, varying only 2° from 9 A.M. till 6 P.M., and then fell, the diurnal variation amounting to 1°8°.

On the two days following, the temperature returned to the course observed on the first non-medicine days, slightly rising from 9 A.M. till 1 P.M., the rise amounting to 0°5° Fahn., and then the diurnal fall began respectively at 7 P.M. and 6 P.M., and amounted to 2°3° and 1°7°.

We now summarize our observations in the following table:—

<table>
<thead>
<tr>
<th>Date</th>
<th>Medicine Given</th>
<th>Amount</th>
<th>Maximum Temperature of the Day</th>
<th>Amount of Diurnal Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept. 19</td>
<td>None.</td>
<td></td>
<td>99°1</td>
<td>2°9</td>
</tr>
<tr>
<td>" 20</td>
<td>None.</td>
<td></td>
<td>98°9</td>
<td>2°3</td>
</tr>
<tr>
<td>" 21</td>
<td>Salicine.</td>
<td>3iii.</td>
<td>98°9</td>
<td>1°9</td>
</tr>
<tr>
<td>" 22</td>
<td>Salicine.</td>
<td>3iv.</td>
<td>99°8</td>
<td>1°5</td>
</tr>
<tr>
<td>" 23</td>
<td>None.</td>
<td></td>
<td>99°5</td>
<td>0°9</td>
</tr>
<tr>
<td>" 24</td>
<td>None.</td>
<td></td>
<td>99°4</td>
<td>1°8</td>
</tr>
<tr>
<td>" 25</td>
<td>None.</td>
<td></td>
<td>99°5</td>
<td>2°2</td>
</tr>
<tr>
<td>" 26</td>
<td>None.</td>
<td></td>
<td>99°5</td>
<td>1°7</td>
</tr>
</tbody>
</table>

We may remark that in these observations, taken in the rectum, very little and generally no rise in the temperature occurred after food—a circumstance strongly favouring a previous suggestion, that the rise after food, in cases where the temperature is taken under the tongue, is due to the hot food heating the mouth by direct contact.

In this case the pulse and respirations were greatly affected, both being considerably quickened. As was the case with the temperature, so with the pulse and respiration, the effects of the medicine are most marked the day after the discontinuance of the drug. Thus, the full effects, as regards the pulse and respirations and other symptoms culminated about 1 P.M. on the day following the withdrawal of the drug, the pulse at the time being 140, and the breathing 40. On the following day, that is, two days after the administration had ceased, the pulse and respirations had greatly fallen, but were still quick, and the next day they became normal. The pulse, when frequent, was very compressible, but improved in quality as it diminished in frequency.

The drug's influence on the pulse and respiration is shown in the following table:—
<table>
<thead>
<tr>
<th>Date</th>
<th>Medicine</th>
<th>Maximum and Minimum Pulse of the Day</th>
<th>Maximum and Minimum Respiration of the Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept. 19</td>
<td>None</td>
<td>65 to 84</td>
<td>18 to 25</td>
</tr>
<tr>
<td>" 20</td>
<td>None</td>
<td>68 to 72</td>
<td>20 to 24</td>
</tr>
<tr>
<td>" 21</td>
<td>Salicine</td>
<td>68 to 78</td>
<td>24 to 28</td>
</tr>
<tr>
<td>" 22</td>
<td>Salicine</td>
<td>88 to 116</td>
<td>24 to 30</td>
</tr>
<tr>
<td>" 23</td>
<td>None</td>
<td>112 to 140</td>
<td>23 to 40</td>
</tr>
<tr>
<td>" 24</td>
<td>None</td>
<td>82 to 108</td>
<td>18 to 26</td>
</tr>
<tr>
<td>" 25</td>
<td>None</td>
<td>72 to 100</td>
<td>18 to 26</td>
</tr>
<tr>
<td>" 26</td>
<td>None</td>
<td>76 to 88</td>
<td>16 to 24</td>
</tr>
</tbody>
</table>

We now give a résumé of his symptoms. Nothing was noticed till noon of the second salicine day, until the boy had taken in all 3v of the medicine. Between one and two we noticed that his face looked flushed and he looked dull, and that there was some tremor when his hand was held out. In the evening the tremors were more marked. At 5 A.M. the following day, he twice vomited. On this day, though he had discontinued the medicine since five o'clock the previous evening, his symptoms were very marked, and, for the most part, of the same character as in the other lad, namely, dulness, so that he did not seem very well to understand questions; deafness; tingling in the right ear; slight tremor of the lips on speaking, and thick husky voice; breathing rather laboured; trembling of the hands when held out; slight spasmodic movements of the upper limbs; slight jerks of the lower limbs when they are raised from the bed; grasping power weaker than before; much irritability of the muscles on percussion; but, strange to say, he never complained of headache nor buzzing. These symptoms were at their height at midday, and were so marked, and the pulse and respirations so quick, that we must confess we felt a little relief when the toxic symptoms, which became far more marked than we had expected, abated; not that at any time the boy was dangerously ill, but as the symptoms progressed, after discontinuing the medicine, we did not know how long, and to what degree, they might increase.

Next day, that is, forty-one hours after the last dose of medicine, he was still deaf, though less so, and was dull, and, unless spoken to, lay with his eyes half closed, and very often fell asleep. Muscular irritability had diminished, and the hands and arms trembled when held out. the pulse was still compressible. Even sixty-five hours after the last dose, he was still dull, rather deaf, and there was slight tremor of the hands and irritability of percussed muscles.

Next day, he had quite recovered. We tested the urine frequently for salicine, and found some, even ninety-five hours after the last dose.

In our third series of observations on a lad, aged ten, and weighing 64 pounds, we experimented in a somewhat different way. We took the temperature under the tongue every three
hours. For three days we administered no medicine; on the following twenty-six days we gave salicine in increasing doses, at first in twenty grains (eighty grains daily), and latterly in thirty-grain doses several times daily, till he was taking, in divided doses, 180 grains daily. The boy got up and spent the day about the ward.

We put our observations into the following table:

<table>
<thead>
<tr>
<th>Medicine</th>
<th>Maximum Temperature of Day</th>
<th>Average Temperature of Day till 9 P.M.</th>
<th>Average till 12 P.M.</th>
<th>Diurnal Variation to 9 P.M.</th>
<th>Diurnal Variation 9 to 12 A.M.</th>
<th>Highest Pulse of the Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st day</td>
<td>None.</td>
<td>99.2</td>
<td>98.66</td>
<td>1.1</td>
<td>1.4</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>"</td>
<td>99</td>
<td>98.64</td>
<td>1.2</td>
<td>1.4</td>
<td>94</td>
</tr>
<tr>
<td>3</td>
<td>"</td>
<td>99</td>
<td>98.6</td>
<td>1.3</td>
<td>1.4</td>
<td>92</td>
</tr>
<tr>
<td>7</td>
<td>80 gts.</td>
<td>99.1</td>
<td>98.7</td>
<td>1.4</td>
<td>1.4</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>"</td>
<td>99.3</td>
<td>98.8</td>
<td>1.6</td>
<td>1.7</td>
<td>98</td>
</tr>
<tr>
<td>9</td>
<td>"</td>
<td>99.6</td>
<td>98.7</td>
<td>1.8</td>
<td>1.7</td>
<td>96</td>
</tr>
<tr>
<td>10</td>
<td>"</td>
<td>99.4</td>
<td>98.8</td>
<td>1.9</td>
<td>1.7</td>
<td>99</td>
</tr>
<tr>
<td>11</td>
<td>120 gts.</td>
<td>99.4</td>
<td>98.8</td>
<td>1.3</td>
<td>1.8</td>
<td>100</td>
</tr>
<tr>
<td>12</td>
<td>"</td>
<td>99.3</td>
<td>98.6</td>
<td>1.3</td>
<td>1.4</td>
<td>98</td>
</tr>
<tr>
<td>13</td>
<td>"</td>
<td>99.3</td>
<td>98.6</td>
<td>1.3</td>
<td>1.4</td>
<td>96</td>
</tr>
<tr>
<td>14</td>
<td>100 gts.</td>
<td>99.2</td>
<td>98.6</td>
<td>1.3</td>
<td>1.4</td>
<td>96</td>
</tr>
<tr>
<td>15</td>
<td>"</td>
<td>99.2</td>
<td>98.6</td>
<td>1.3</td>
<td>1.4</td>
<td>96</td>
</tr>
<tr>
<td>16</td>
<td>"</td>
<td>99.3</td>
<td>98.7</td>
<td>1.3</td>
<td>1.4</td>
<td>96</td>
</tr>
<tr>
<td>17</td>
<td>"</td>
<td>99.4</td>
<td>98.8</td>
<td>1.3</td>
<td>1.4</td>
<td>96</td>
</tr>
<tr>
<td>18</td>
<td>"</td>
<td>99.3</td>
<td>98.4</td>
<td>1.4</td>
<td>1.4</td>
<td>96</td>
</tr>
<tr>
<td>19</td>
<td>"</td>
<td>99.3</td>
<td>98.6</td>
<td>1.5</td>
<td>1.4</td>
<td>96</td>
</tr>
<tr>
<td>20</td>
<td>100 gts.</td>
<td>99.2</td>
<td>98.6</td>
<td>1.5</td>
<td>1.4</td>
<td>96</td>
</tr>
<tr>
<td>21</td>
<td>"</td>
<td>99.2</td>
<td>98.6</td>
<td>1.5</td>
<td>1.4</td>
<td>96</td>
</tr>
<tr>
<td>22</td>
<td>"</td>
<td>99.2</td>
<td>98.6</td>
<td>1.5</td>
<td>1.4</td>
<td>96</td>
</tr>
<tr>
<td>23</td>
<td>"</td>
<td>99.2</td>
<td>98.6</td>
<td>1.5</td>
<td>1.4</td>
<td>96</td>
</tr>
<tr>
<td>24</td>
<td>"</td>
<td>99.2</td>
<td>98.6</td>
<td>1.5</td>
<td>1.4</td>
<td>96</td>
</tr>
<tr>
<td>25</td>
<td>"</td>
<td>99.2</td>
<td>98.6</td>
<td>1.5</td>
<td>1.4</td>
<td>96</td>
</tr>
<tr>
<td>26</td>
<td>"</td>
<td>99.2</td>
<td>98.6</td>
<td>1.5</td>
<td>1.4</td>
<td>96</td>
</tr>
<tr>
<td>27</td>
<td>"</td>
<td>99.2</td>
<td>98.6</td>
<td>1.5</td>
<td>1.4</td>
<td>96</td>
</tr>
<tr>
<td>28</td>
<td>"</td>
<td>99.2</td>
<td>98.6</td>
<td>1.5</td>
<td>1.4</td>
<td>96</td>
</tr>
<tr>
<td>29</td>
<td>"</td>
<td>99.2</td>
<td>98.6</td>
<td>1.5</td>
<td>1.4</td>
<td>96</td>
</tr>
<tr>
<td>30</td>
<td>"</td>
<td>99.2</td>
<td>98.6</td>
<td>1.5</td>
<td>1.4</td>
<td>96</td>
</tr>
<tr>
<td>31</td>
<td>30 gts.</td>
<td>99.2</td>
<td>98.6</td>
<td>1.5</td>
<td>1.4</td>
<td>96</td>
</tr>
<tr>
<td>32</td>
<td>None.</td>
<td>99.2</td>
<td>98.6</td>
<td>1.5</td>
<td>1.4</td>
<td>96</td>
</tr>
</tbody>
</table>

The preceding table shows that these large doses of salicine had no appreciable effect on the temperature. It is true that on one day the temperature rose to 100°; but that occurred during the use of the hot-air bath, employed to produce sweating, that we might test the reaction of the sweat; on the other hand, the pulse was a
SALICINE.

little quickened. On the fifth day of taking salicine he complained of slight deafness, and on the tenth it is noted that the deafness had a little increased, but two days afterwards it had disappeared. Beyond the influence on the pulse and hearing, the medicine produced no apparent effects, the boy eating well, sleeping well, and indeed appearing in all respects quite well.

I shall next speak of the effects of salicylic acid on the temperature of the healthy body. Dr. Riess has investigated the action of salicylates on the healthy temperature in twenty-three experiments on seven healthy persons, and obtained in four to six hours a constant reduction of about 1° Fah. He finds that the same dose produces a greater fall in the febrile than the healthy temperature. I have made some investigations with Mr. Morsshead, but the results are not so satisfactory as those with salicine, as we failed to get symptoms with the acid, though we gave large doses, as much as 160 grains in one day. This quantity did not in the slightest degree lower the temperature; indeed, if the medicine produced any effect on the temperature it rather heightened it.

A boy, aged 8, and weighing 44 lbs., the subject of our investigation, was convalescent from an attack of acute rheumatism complicated with pneumonia; his temperature, during the greater part of the attack, reaching 105°, and on one occasion 106°; but, for seven days, his temperature had been normal before we commenced, and the lad appeared quite well. Throughout the experiment we took his temperature in the rectum hourly, from 9 A.M. to 12 P.M., and carefully noted his pulse and respirations each time we made a thermometric observation. We also noted the quantity of his food. For the two first days we gave no salicylic acid. The course of the temperature on these non-medicinal days was peculiar, possibly owing to the previous illness. From 9 A.M. to 1 P.M. the temperature fell, the fall amounting to about 1° Fah.; the temperature then again rose, and remained at a normal height, 92°, till the evening fall began, which happened later than usual in boys of his age, and was rather considerable, amounting to 27° Fah. On the next three days we gave him salicylic acid hourly, in 5 or 10 grain doses the first day, and 10-grain doses the second and third. On the first day he took 110 grains; and the second 155 grains; on the third 160 grains; in all, 425 grains. These doses had scarcely any effect on the temperature. Though on these days the temperature differed slightly from the non-medicinal days, it may be doubted whether the difference was due to the medicine. At all events, the effect was very slight, and not in the direction of depressing the temperature, but rather the other way.

The salicylic acid produced no symptoms, the boy seeming, in all respects, just the same as usual. Perhaps it will be said that larger doses would have had some effect, and we must admit that our observations as to the temperature are not so conclusive as they might have been, had we got marked symptoms. We gave ten-grain doses because, first, it is difficult on account of its insolubility, the potion is so large, to get a patient to take more; and next, during his rheumatic attack, we treated him with salicylic acid, with the same dose at the same inter-
vals of time, with the production of symptoms so marked, that, after he had taken 130 grains, we felt it necessary to discontinue the medicine.

Köhler finds that salicylic acid and its salt produce a considerable fall of blood-pressure, even after the division of the vagi and of the spinal cord.

It thus appears that salicine and salicylic acid depress the non-febrile temperature but slightly, and that the continuance of the medicine fails to maintain the slight depression. Are we thence to conclude that these substances exert no influence on the febrile temperature? By no means. There is no better attested fact than the power of salicylic acid and salicylate of soda, to promptly and considerably reduce an elevated temperature.

The reducing power is established by numerous observations both in Germany and in this country by Reiss, Moeli, Furbringer, Ewald, Russ, Senator, etc. It has been employed in most febrile diseases, in typhoid fever, pneumonia, scarlet fever, diphtheria, etc. Many writers maintain that it is equal to quinia, but must be given in double the dose. As with quinia, two methods are adopted, a massive single dose of 3 j, 3 iss, 3 ij once daily, usually at night, or divided doses more frequently. Most observers recommend the massive daily dose. In a few hours it effects a reduction of 3° to 7° Fah; the temperature can be kept low by a daily repetition of this dose. Jahn maintains that it is superior to the cold bath as an antipyretic.

Salicylic acid and its salts have been especially used in typhoid fever, and though its power to reduce the temperature in this disease is conclusively shown, it has not been proved, I think, that it lessens the mortality, the mortality in Reiss’ cases amounting to twenty-four per cent.

Most writers say that 3 j of the acid is the minimum dose for an adult, but 3 iss and 3 ij sometimes produce serious collapse.

I have myself many times seen salicylic acid effect a very great reduction of the febrile temperature; and, in one instance, when given to a boy, on whom we subsequently tested the effect of the acid when he became non-febrile, ten grains hourly, till 130 grains had been taken, reduced the temperature in about twelve hours from 106° to 97°, and the temperature-reducing effects of the drug continued for a day and a half.

Though I have, on very many occasions, given salicine to fever patients in doses sufficient to produce deafness, headache, and muscular tremor, I have never seen the quick and great reduction of temperature that follows the use of salicylic acid.
It thus appears that, like quinia and the cold bath, salicylic acid produces a greater and more lasting depression of the temperature of fever than of health.

I have made some experiments conjointly with Mr. Morshead, to ascertain the relative power of quinia, salicylic acid, and salicine, on the febrile temperature; and we find that dose for dose quinia is far more potent than salicylic acid, and salicylic acid, than salicine.

We chose patients with persistent fever running a very uniform course. Having ascertained this by many days' observation, taken at 3 A.M., 7 A.M., 11 A.M., 3 P.M., 7 P.M., and 11 P.M.; we then, on separate days, gave quinia, and afterwards salicylic acid, and then salicine in the same, or an increased dose, at the same hour. On three occasions we gave to a lad, aged 9½, three doses of quinia, 20, 20, and 25 respectively, forty-eight hours elapsing between each dose. The temperature on the first day was 103° when the quinia was given, and it reduced the temperature to 100°, and in the evening and all next day it varied between 98° and 99°. The second dose of quinia, whilst decidedly reducing the temperature, had apparently less prolonged effect, the temperature rising the day after to 101°. The third dose, of 25 grains, produced still less effect, for though it reduced the temperature to 98°, and kept it low for many hours, at 11 P.M. on the day after the administration, the temperature rose to 103°. These doses of quinia produced no cinchonism.

We next gave 25 grains of salicylic acid without affecting the temperature in any degree, and without producing any symptoms. Next day, in two doses at two hours' interval, we gave 35 grains with slight effect, the temperature falling that evening to 99°, but next morning the fever returned to the same height as before the administration of the drug. This dose produced slight deafness and drowsiness. Having ascertained that dose for dose salicylic acid produces far less effect on the febrile temperature than quinia, we next varied our test. To the same lad we gave 5 grains of salicylic acid hourly, till he had taken 120 grains, the dosing continued from 3 P.M. of one day till 11 P.M. of the next day. When the first dose was given the temperature was 104.5°, and so remained that evening with little variation, but it fell during the whole of the next day, in the evening standing at 99°. On the day after the discontinuance of the acid, the temperature was also low, rising, however, in the evening to 102°. These doses produced no symptoms except flushing and slight tremor. It thus appears that this 120 grains, given in divided doses, produced only an effect on the temperature; as 20 grains of quinia given in one dose.

We then gave 5 grains of salicine hourly, to the extent of 120 grains, but without producing any effect on the temperature, and scarcely any salicine symptoms. The experiments again showing, how much more powerful, in respect of its influence on the febrile temperature, is quinia than salicylic acid, and salicylic acid than salicine.

To a lad, aged 19, suffering from phthisis, the highest temperature of the day being 102.6°, we began on June 16, with 20 grains of salicylic acid hourly, commencing at 3 P.M., and ending at 7 P.M., June 17. He took, in all, 200 grains, which depressed his temperature to 97° on June 16, and it remained low next day till 3 P.M., and then rose, reaching 101.4° at 7 P.M. The salicylic acid produced very marked symptoms.

On June 18, the highest temperature was 102.4°. We administered salicine, beginning at 3 P.M., and ending at 3 A.M., June 19. He took, in all, 200 grains without any effect on the temperature, and with very few symptoms.
SALICINE.

On June 19, the highest temperature was 102°7. At 3 P.M., we gave him 40 grains of quinia, which produced no effect on that day, but next day it somewhat delayed the rise, and apparently increased the morning fall of June 21; it produced no symptoms. On June 22, the highest temperature was 102°8; we gave him gr. x. of salicylic acid hourly, beginning at 1.30, and ending at midnight: he took, in all, 100 grains. This produced an equal effect on the temperature as 200 grains with marked symptoms.

On June 25, the highest temperature was 101°6. At 1.30 we gave him 40 grains of quinia, without influencing the temperature, but he complained of headache and giddiness.

On June 29, the highest temperature was 103°8. We gave him hourly, 5-grain doses of salicylic acid, beginning at 5 P.M., and ending at 11 P.M. on June 30. He took, in all, 100 grains without affecting the temperature. It is noteworthy, that 100 grains of salicylic acid, in 10-grain hourly doses, produced as much effect on the temperature as 200 grains in 20-grain hourly doses, and that in 5-grain hourly doses, continued to the extent of 200 grains, the temperature was unaffected. Salicine is supposed to act by being changed in the system into salicylic acid; now if this be so, then seeing how much less is the effect of salicine, as compared with the same dose of salicylic acid, we must suppose that much of the salicine escapes unchanged, or that salicine loses considerably in weight through its conversion into salicylic acid.

These remedies are now largely employed in rheumatic fever. Dr. Maclagan, of Dundee, first recommended salicine in this disease. Salicylic acid and the salicylates have since been also employed, and the almost unanimous opinion of the profession has confirmed the strong recommendation of Dr. Maclagan. Unsuccessful cases, it is true, have been reported, and cases of rheumatic hyperpyrexia that have ended fatally in spite of these remedies; but it is not to be expected that salicine or any other remedy will be successful in every case of rheumatic fever; moreover, in many of the reported unsuccessful cases, the dose was far too small; so small and inadequate, indeed, that it could have little or no effect on the disease.

Each substance is useful in rheumatic fever. We shall speak of their effect separately, and first of salicine.

Dr. Maclagan insists on the necessity of giving large doses frequently, or, as he terms it, of quickly "saturating the system," and advises a dose of twenty to thirty grains every two hours. Improvement, he says, becomes apparent in twenty-four to forty-eight hours, and the mitigation of pain is one of the earliest signs of improvement. Subsequent observers have, in the main, confirmed his statements. I have employed salicine in rheumatic fever in several cases with very considerable success. Thus, in eight cases reported by Mr. Bury, the temperature became normal
on an average on the sixth day of treatment, and sixteenth of the disease.

My experience completely confirms Dr. Maclagan's recommendation regarding the dose. Little or no good follows small doses, and thirty grains every two hours are required to make an impression on rheumatic fever, and even this dose sometimes fails, and then thirty grains hourly are called for—a dose that generally produces the salicine symptoms in a mild degree, namely, some deafness, dulness, and the peculiar breathing due to this drug.

We are indebted to C. W. Brown, late House Physician at the Boston City Hospital, for the most valuable and extensive investigation into the action of salicylic acid on rheumatic fever. He records 160 cases, taken indifferently, the patients being of each sex, and of all ages between 13 and 61.

The drug gave considerable relief from pain, on an average, in 146 days, and complete relief in 28 days. The average time of treatment was 6 days, and the average number of days in hospital was 18 days. "Two cases died, one from pericarditis, and one from cerebral complications. Eighteen cases had a relapse, three had two, and one had five while in the hospital. There were very few cases in which there was not occasional pains for a time, after the omission of the acid." Nausea and vomiting occurred in 18½ per cent. Burning in the stomach occurred in one case, headache in six, singing in the ears in nineteen, and deafness in ten; numbness and pricking of the affected parts in three, delirium in three. "Nearly all of the cases in which nervous symptoms were manifested, were those of persons in poor physical condition. The patients were placed under treatment soon after admission into hospital, and, as a rule, took ten grains of the acid hourly for twelve or thirty-six hours, when the symptoms were wholly or partially relieved, and then either the acid was omitted, or given every two or three hours."

Stricker recommends 20 to 30 grains every hour for six hours, or 7 to 15 grains hourly, the acid being continued some time after the fever has subsided.

Owing to the insolubility of salicylic acid, salicylate of soda has lately been largely employed, and with great success. It may be given in the same dose as the acid, or rather larger. Its disagreeable taste can be concealed by the addition of syrup of orange-peel, or syrup of ginger. Dr. Cavafy reports twenty-one cases treated by the salt. He gives 30 grains every two hours, but he says "much larger doses have been given with good results, 40 to
60 grains every hour for six doses being not uncommonly employed without disadvantage." He, like other observers, has noted that the susceptibility of patients to these remedies varies greatly, and hence, during their use, the patient should be well watched. In his cases, "in the majority the pain was abolished, and the fever subsided simultaneously within twenty-four to thirty-six hours."

During the months that have elapsed since the publication of the last edition, salicylate of soda has been most generally employed, and has fully maintained its great reputation in rheumatic fever. I have extensively used it, and find it quite as useful as salicine, and perhaps more useful. Its taste is easily covered by adding to each dose a drachm of syrup of orange-peel. Ten grains hourly is the dose I find generally sufficient to quickly reduce the temperature, without producing disagreeable symptoms; but some patients require more, and if, in twenty-four hours, this dose has not either modified the disease, or produced its characteristic symptoms, it should be increased to fifteen grains, and then to twenty grains, hourly.

It is claimed for these remedies that they lessen heart complications in rheumatic fever. No exact observations have been made on this question; but, as Dr. Maclagan observes, it is obvious that a remedy which greatly shortens the duration of the disease, must lessen the risk of complications. It does not, however, afford perfect protection to the heart, as several cases of pericarditis are recorded where this complication set in after the patient was well under the drug's influence. This, indeed, we should expect, as the pericarditis is similar to the inflammation of the joints, and whilst this lasts, risk of heart complication must be encountered.

I may draw attention to a fallacy to which, I think, most of the reporters regarding these substances have not paid sufficient heed; nearly all state that in twenty-four to forty-eight hours, these agents exert a marked influence on the temperature and pain. In all the recorded cases I have met with, the patients were treated in hospital, and on admission were at once put under salicylic treatment. Now, it is well known that the movement of the joints during the journey to hospital considerably increases both pain and fever, and that during the first two days in hospital the pain greatly diminishes, and the temperature falls one to two degrees. When the patients have been at once put under salicylic acid treatment, this improvement in the pain and fever, due to rest, has been credited to the drug. In my observations I always allowed two days to elapse after admission, before beginning the treatment.
Acute rheumatism, subdued by the salicin treatment is very liable to relapse, and the drug, reduced in quantity, should be continued ten days or a fortnight after the temperature has become normal.

Dr. Sharkey and Dr. Ord, and my experience confirms them, find salicylates of little use in hyperpyrexia, for this may occur whilst the patient is under the influence of the drug. Moreover, even when given in full doses, at the very onset of the pyrexia, it fails to control it.

Salicylic acid, and salicylate of soda have been employed in many other febrile diseases, as pneumonia, scarlet fever, and especially typhoid fever. Salicine and its compounds, as I have shown, do certainly reduce the temperature of febrile diseases. But it has not yet been proved that these remedies can shorten the duration, or lessen the mortality of a febrile disease. Indeed, the mortality in the reported cases of typhoid fever is high, and this is attributed by Rees to the severity of the epidemic. Gotthamer, after testing salicylic acid in fifty-six cases of typhoid, seems to hold this medicine in little estimation.

Several observers have employed salicylic acid inague with contradictory results. Several obtained no benefit, whilst others find that it cured a minority of the cases, being most serviceable in recent cases. It seems useful occasionally as an adjuvant to quinia, Sarzance having obtained good results from a combination of these remedies.

Ebstein and Julius Müller report two cases of diabetes mellitus cured by salicylate of soda. They do not vaunt this remedy as a specific, but the two interesting cases they cite, after a prolonged trial of various drugs, notably of carbolic acid, got well under the salicylate of soda.

Da Costa employs salicylic acid in five-grain doses to correct the foul breath and offensive expectoration sometimes occurring in phthisis. Berthold, of Dresden, narrates a case which yielded promptly to salicylic acid, after the failure of turpentine inhalations, and large doses of quinia.

Berthold has likewise employed salicylic acid topically in “catarrhal stomatitis,” and in thrush. He calls attention to the anaesthetic virtue of the acid in stomatitis, in calming the gnawing, burning pain of the erosions after the rupture of the vesicles. The solution he uses is, one part of acid dissolved in sufficient alcohol to 250 parts of water.

Salicylic acid has been used with good results as an injection (1 to 300) in the dysenteric diarrhoea of children,
CALUMBA—GENTIAN.

Weber has tried this group of remedies in gout without much result; and in several peripheral cases, endo-metritis, and septicaemia, with rapid abatement of the temperature, and relief of the cerebral symptoms.

Mr. Percy Wells, in a private communication has drawn my attention to the use of the following ointment for pruritus ani and vulvae. I have used it on several occasions with considerable success, though in some cases it caused a good deal of smarting. The following is his formula:—Acid salicy., 3 ij; ol. theobrom, 3 v; celac., 3 iij; ol. nucis, 3 iss.

Saline and salicylic acid may be readily detected in the urine, sweat, saliva, and sputa, by the purple colour produced on the addition of a drop of the solution of perchloride of iron. It appears in the urine in four or five hours, and seems to undergo speedy elimination, though a trace may remain four days after the discontinuance of the medicine.

It is stated that these substances appear in the urine in the form of salicyluric acid. Dr. Sharkey detects salicylic acid in the urine, in the sternum from a blister, in the expectoration, but, strange to say, not in the sweat of patients taking salicylates.

CALUMBA.

Calumba is used as a tonic to increase appetite and digestion. Like most bitters, it exerts a slight irritant action on the stomach, and owing to this property, it is said to obviate slight changes in the mucous coat of the stomach, and in this indirect way to assist appetite and digestion. Being easily tolerated, it is employed when the stomach is weak, as in convalescence from an acute disease, when calumba is often borne with benefit, while stronger tonics fail.

GENTIAN.

Gentian is used for the same purpose as calumba. It is reputed to be slightly purgative.

Mixed with infusion of senna, it is useful when a tonic and purgative are required.
QUASSIA.

Quassia is poisonous to some of the lower creatures, as flies and other insects.

Like the preceding substances it is a tonic. It has been used in intermittent fever.

Infusion of quassia is a very useful injection in ascarides. It is also efficacious for the same purpose when administered by the mouth.

CHAMOMILE.

These flowers contain both a volatile oil and a bitter substance, and thus, to some extent, combine the properties of bitters with those of ethereal oils.

In a case of accidental poisoning by chamomile, the symptoms were diarrhoea of white putty-like stools, coated tongue, intense headache, with a sensation of pressure within the cranium.

Chamomile is not often used as a tonic. An infusion is sometimes employed to assist the action of emetics.

In the ordinary summer diarrhoea of children, often occurring during teething, characterized by green, many-coloured, and slimy stools, the infusion in doses of half a drachm or a drachm, often proves very useful, especially when given at the commencement. This medicine is likewise efficient in other kinds of summer diarrhoea. It also subdueds restlessness and peevishness. A mixture is easily prepared by steeping four to six heads of chamomile flowers in a teacupful of boiling water for an hour, and then giving a teaspoonful hourly.

It has been used in intermittent fever, in neuralgia of the fifth nerve, and is a popular remedy for "sick headache."

CHIRETTA.

Chiretta is a tonic. When given to promote appetite, it should be taken a short time before food, as, like other bitters, its effects soon wear off.
CASCARILLA—ORANGE-PEEL—ELATERIUM.

CASCARILLA.

CASCARILLA has a warm, agreeable, bitter taste, and is a stimulant as well as a tonic. It may be used, like chiretta, to promote appetite. It has been employed in intermittent fever, and in dysentery.

ORANGE-PEEL.

ORANGE-PEEL contains both a bitter principle, and much volatile oil, thus combining the properties of bitter substances with those of ethereal oils.

ELATERIUM.

This drug has a very bitter taste, and excites free secretion of saliva.

It is a powerful drastic hydragogue cathartic. Its activity is due to elaterin, a chemically indifferent substance like the resins, and incapable of forming salts with either acids or bases. It often produces colic, and not unfrequently vomiting.

In large doses it may excite inflammation of the stomach and intestines, and even of the peritoneum. It is given as a purgative, especially in dropsies. By carrying off a large quantity of water, the dropsy sometimes reduces; it is thus used both in ascites and in the dropsy from kidney or heart disease. It must be borne in mind that free purging is very exhausting, and that elaterium very often disorders the stomach and spoils the appetite. It is a medicine to be given with caution.

Dr. Hyde Salter strongly recommends purgatives in dropsy depending on aortic, obstructive, or regurgitant disease. He says, that although we cannot alter the heart, we can lessen the quantity of blood it has to propel, and thus diminish the congestion on which the dropsy depends. He employs elaterium, and advises a small dose at first, say one-sixth of a grain, to be given alternate mornings at about 5 A.M., so that the purgation usually ceases by ten or eleven. This treatment, he says, quiet's the heart, relieves the dyspnœa, lessens the pulmonary congestion, and thus diminishes the hydrothorax.
COLOCYNTH.

This drug has an intensely bitter taste, and occasions an abundant secretion of saliva.

It produces diarrhoea, colic, and sometimes vomiting. The diarrhoea is watery, and, after large doses, serous, mucous, and bloody. In large doses it may excite gastro-enteritis and peritonitis.

It is chiefly used as a purgative, but almost always in combination with other substances. In obstinate constipation, it is a good plan to give a few drops of the Prussian tincture several times a day. Röhrig, from his experiments with fasting animals, is led to place colocynth high among cholagogues. It makes the bile more watery, but also increases the solid constituents. It powerfully stimulates the intestinal glands.

It has been used as a drastic cathartic in dropsies, and, like most other powerful purgatives, it has been used for worms, although it has no direct poisonous influence on them, but merely expels them mechanically. Purgatives, therefore, are not good anthelmintics.

ALOES.

Aloes has been used as a slight stimulant to wounds, and when thus employed it often purges. "Dr. Gerhard, of Philadelphia, found it the medicine best adapted for endemic uses, as its application does not irritate a blistered surface very powerfully. Ten grains of aloes thus employed, produced five or six stools, which were generally accompanied by griping. Infants are purged by the milk of nurses who have taken aloes."—Stillé.

Aloes is reputed to be a tonic, and to increase the secretion of bile.

Dr. Rutherford confirms Röhrig's statement, that when introduced into the duodenum of a fasting dog, aloes greatly increases all the biliary constituents, though it purges but slightly.

It is chiefly employed as a purgative. It acts mainly on the large intestine and rectum. Its action is slow, and six, twelve, or even twenty-four hours may elapse before it operates. It produces bulky motions, a little softened, but not watery. It evidently acts
but little on the mucous membrane of the intestines, and it is merely a faecal evacuant. It often occasions slight griping, and sometimes tenesmus. As its action is tardy, it is injudicious to combine it with more speedy purgatives. It is well suited for cases of chronic constipation; for its activity is not lessened by habitual use, and it is even said that the dose may be gradually decreased. Sulphate of iron is said to heighten its action.

When both a tonic and a purgative are required, aloes, like senna, may be usefully mixed with some bitter, as gentian. Purgatives, it is said, act in smaller quantities when combined with tonics.

Aloes, in a variety of combinations, is in common use as a laxative in habitual dyspepsia, with constipation. The compound decoction of aloes, formerly called baume de vie, is a serviceable, after-dinner laxative. The basis of many dinner pills is one grain of watery extract of aloes. A dinner pill containing one grain of watery extract of aloes, combined either with extract of nux vomica, extract of gentian, or extract of cinchona, is very useful.

In habitual constipation, aloes is the best and most commonly employed purgative. Dr. Spender, of Bath, extols the following pill, taken at first three times, then twice, and afterwards once a day; one grain of watery extract of aloes, and two grains of sulphate of iron. This pill takes some days to act. Aloes has been accused of producing piles, and in full or over-doses will, no doubt, aggravate this disease; but most authorities are inclined to attribute piles to the constipation aloes is employed to remove, and not to the aloes itself. Indeed, I am convinced that in many cases moderate doses of aloes, just sufficient to gently relieve the bowels, are highly useful in piles.

By its action on the rectum, aloes affects sympathetically the neighbouring pelvic organs, as the uterus; and given at, and just before, the menstrual period, is useful in many cases of amenorrhœa and deficient menstruation. We cannot here refrain from citing the admirable remarks of Dr. Graves on amenorrhœa and its treatment. "The periodicity of this function," he says "can still be traced, even in cases where suppression has continued for a great length of time, by means of the menstrual molimina (pains in the loins, thighs, and hypogastric region, flushings, colicky pains of the abdomen, general feeling of malaise), which occur at stated intervals; in endeavouring to bring on the discharge, there-

* Guaiacum is useful in obstinate habitual constipation. Guaiacum mixture will often relieve the bowels when powerful purgatives have failed.
fore, we must be guided as to the time the attempt should be made, by an observance of the period at which these molimina occur. For a few days before that time our efforts to produce a determination of blood to the uterus may be judiciously employed; and if they fail, the attempt should be abandoned until a few days before the next menstrual period. Of course, I here speak of the general constitutional treatment, for this must be constantly persevered in; one of the chief means of bringing back this evacuation being the restoration of health to the natural standard. In some, this is to be effected by a tonic, and in others, by an opposite mode of treatment.

"...What I wish to impress on your minds is, that all those remedies, as pediluvia, stupefying the genitals, leeches to the inside of the thighs, near the labia, aloes, and other stimulating purgatives, etc., should be only used at the times already spoken of. To use them at any other period, either after the molimina have disappeared, or during the intervals between them, tends, in most cases, still further to derange nature, by determining to the uterus at an unseasonable time, when there is no natural tendency to that organ. Under such circumstances the very same means will frequently fail, and prove injurious, which, applied so as to coincide with the time of the natural effort, would have been successful. To illustrate these principles by an example:—We are consulted in the case of a young woman affected with various hysterical symptoms for several months, and during that period more than usually subject to headache, languor, loss of spirits, diminution of appetite, and irregularity, and usually constipation of bowels; she is pale, and complains of various pains and uneasy sensations, and has not menstruated since the accession of these symptoms. Here it is evident that the constitutional treatment must be strengthening and tonic. The practitioner will therefore recommend regular hours, much passive exercise in the open air, a nutritious diet, and afterwards cold shower-baths; he will regulate the bowels, and afterwards prescribe a course of tonic medicines, chalybeates, preparations of bark, strychnia, etc.; he will likewise inquire carefully when the last period happened, and when, and how often since that occurrence, menstrual molimina were observed. He thus ascertains when they should again recur, and contents himself with enforcing the constitutional treatment until about six days before the calculated time. Then he lays aside the other medicines and has recourse to those means which determine to the uterus. Two leeches are applied to the inside of the thigh, near the labium,
every second night, until they have been three times applied. The bleeding is encouraged by stupey. On the intermediate days the bowels must be actively moved by aloetic pills; and for three nights before and after the molimina, hot pediluvia, rendered stimulating by mustard seed, may be used. During the same time also friction, with stimulating liniments, should be applied to the feet and legs every morning, and oil of turpentine, or tincture of cantharides may be exhibited internally, while the necessity of more active exercise is inculcated. If these means fail, they must for a moment be laid aside, and the constitutional treatment must be again resumed until the same number of days before the next period, when the list of remedies above spoken of must be again tried, and in few cases indeed shall we find them to fail."—Graves' Clinical Lectures.

SQUILL.

Squill has a bitter taste. It acts powerfully on the stomach and intestines in full doses, exciting great nausea and vomiting, with frequent watery and even bloody diarrhoea. Similar symptoms are likewise produced when the drug is injected into the cellular tissue, or peritoneal cavity.

Squill is never used as an emetic or purgative, but almost exclusively as an expectorant in bronchitis.

Some extol it as a diuretic. It is recommended in all forms of dropsy.

JALAP. SCAMMONY.

Buchheim asserts that these two substances are rendered purgative only by combining with the bile; unmixed with this secretion they are inert. They are easily soluble in the bile, and probably undergo decomposition, but the products are unknown. Taurin and glycoll exert no influence on their efficacy, but it is otherwise with tauro-cholate and glyco-cholate of soda; hence Buchheim concludes that the activity of these drugs is determined by the soda of the bile. They excite diarrhoea of watery motions, with some colic and occasional vomiting, and their use is often followed by much constipation.
These medicines are used as purgatives in obstinate constipation; and jalap, in combination with other substances, is employed in dropsies. Scammony is frequently used with much advantage to destroy the small thread-worms infesting the rectum.

Röhrig and Rutherford conclude from their experiments on fasting dogs, that jalap is a powerful cholagogue. It increases the water and solid constituents of the bile, and powerfully stimulates the intestinal glands.

Dr. Rutherford finds that scammony, given to fasting dogs, is a feeble cholagogue, even when it purges.

Bleeding has recently been employed with great success in engorgement of the right side of the heart from emphysema and bronchitis, mitral obstructive or regurgitant disease. Now, for some years I have employed purgatives in these cases, with considerable benefit, to produce three or four watery motions, and I venture to say that this treatment, first employed by Dr. Graves, saves many lives.

Like bleeding, free purging unloads the distended, and therefore weakened right heart, and it moreover produces a very favourable change in the character of the expectoration, rendering its expulsion easier. The following case, one among many similarly benefited by free purging, will illustrate the advantages of this plan.

A woman, about forty years of age, suffering from emphysema, was seized with severe bronchitis. She had been dangerously ill about a fortnight: her skin was of a deep leaden tint; her eyes were prominent, congested, and suffused; her jugular veins were greatly distended; the surface of her body was covered with a cold clammy perspiration, profuse on her face; her extremities were deadly cold; her temperature varied between 97° and 98° Fah. She suffered from slight delirium both night and day. Her breathing was hurried, and her chest expanded only slightly; expectoration was abundant, viscid, airless, and purulent; pulse large, but very compressible, varied from 96 to 100 beats in the minute. The respiratory sounds were obscured by an abundance of mucous ronchus, and physical examination showed that the right side of her heart was greatly distended. Her urine contained a trace of albumen; her legs were not oedematous. So dangerously ill was she that death appeared imminent. After free purgation with jalap and bitartrate of potash, in a few hours the jugular veins became much less distended, and next day they were of natural size; while the deep leaden tint of her skin had given place to a diffused bright red colour often witnessed in cases
treated in this way; this colour being probably due to the capillaries—previously distended by the obstructed circulation, till, being weakened, they lose their power to contract—becoming filled with arterial instead of venous blood. This bright red colour was most marked over the face and hands; her skin became warm, though she continued to perspire freely, and her hands easily grew cold on exposure. She expressed herself much relieved. In twenty-four hours the expectoration became slightly aerated, this change being much more marked on the following day, when the expectoration was observed to be less purulent, and to contain much mucus. On the third day the expectoration was frothy, and consisted chiefly of mucus; coincidently with this improvement in the sputa, her chest expanded more perfectly, and the rhonchus diminished. From this time she steadily improved, and was discharged cured.

The engorgement of the right heart, with general venous congestion is no doubt apt to return, when it becomes again necessary to purge; indeed, several purgings may be required. It will rarely happen, I believe, that the venous congestion cannot be removed temporarily by this treatment.

The change in the expectoration sometimes takes place more slowly than in the foregoing case, a week elapsing before it becomes frothy, and composed of mucus. Any tendency of the expectoration to assume its old characters may be prevented by a repetition of the aperient.

Sometimes these patients complain of very severe dull headache, or of dull oppressive pain at the epigastrium; bleeding or purging relieve both symptoms, bleeding giving instant ease.

In persistent tricuspid regurgitation from permanent distension of the right side of the heart, induced by repeated attacks of bronchitis, purgatives will probably be of no use except when an attack of bronchitis, adding to the obstruction of the pulmonary circulation, increases the dilatation.

Rhubarb.

Rhubarb is a purgative, and is said to be likewise a tonic. After purging it constipates, on which account it is often used in the early stages of diarrhoea, to get rid of any irritating matters from the intestines, and after their expulsion, to check the diarrhoea. It
is a very useful purgative for children, especially when mixed with two or three times its weight of bicarbonate of soda.

Röhrig finds that rhubarb, given to fasting dogs, greatly increases all the constituents of the bile, though the rhubarb either failed to purge, or purged very slightly; and Rutherford verifies this observation.

Dr. Stille, on the authority of Dr. S. Jackson (U.S.) whose testimony he endorses, speaks of rhubarb as a remedy of surprising efficacy in piles, when laxatives are needed. He directs a piece, weighing about ten grains, to be chewed, or rather slowly dissolved in the mouth nightly, or less frequently according to the degree of constipation, estimating that rhubarb taken in this fashion is five-fold more efficacious than the powder. He also recommends it in the costiveness and hæmorrhoidal swellings incident to pregnancy. (Stille’s Therapeutics).

Rhubarb generally colours the urine reddish yellow, which, on the addition of ammonia and other alkalies, changes into a purple red. It colours also the sweat, the serum of the blood, and the milk; and it makes the milk bitter and purgative.

It may be usefully blended with some tonic.

SENNA.

Senna is an active purgative, promoting both secretion and peristaltic action. It often produces nausea and griping. It may be usefully combined with a bitter tonic, as in the mixtura gentianae compositae of former pharmacopoeias. This mixture is very useful in dyspepsia with constipation, and contains an ounce of compound infusion of gentian to half an ounce of compound infusion of senna.

Senna renders a mother’s milk purgative, and may produce colic in the child.

Röhrig and Rutherford find that in fasting dogs senna slightly increases the secretion of bile.

SENEGA.

Seneqa promotes the secretion of the bronchial mucous membrane, and probably that of the other mucous membranes. It produces a burning, itching sensation in the mouth and throat.
ANTHELMINTICS.

It is used in chronic bronchitis, especially in the case of aged people, in whom this disease is usually complicated with emphysema. Some give it in croup and whooping-cough. It is also reputed to be diuretic, and is used when the deficiency of urine is due to kidney disease. "Infusion of senega (four to six drachms infused in six to twelve ounces of water, and taken during the day) produced no effect on the urine in Böker's experiments, conducted on himself and on a pregnant woman." (Parkes On Urine).

ANTHELMINTICS—

FILIX MAS. ARECA NUT.
KOUSSO. BARK OF THE POME-
KAMELA. GRANATE ROOT.
SANTONIN. POWDERED TIN.
TURPENTINE. MUCUNA, etc.

The intestines are infested by worms of various kinds. The common kinds are the flat worms (Taenia solium and Bothriocephalus latus), round worms (Ascaria lumbricoides), and thread-worms (Ascaria vermicularis).

Worms may be treated in three ways. Drugs, as powdered tin and mucuna, may be employed to kill the worm by their mechanical action; or powerful purgatives may be used simply to expel the worm, as jalap, scammony, etc.; or true vermicides, having very little effect on the tissues of the human body, to poison and kill the worm. With the exception of powdered tin and mucuna, all the medicines comprised in the foregoing group are vermicides. It must, however, be borne in mind that all are not equally efficacious against every kind of worm, for some are poisonous to one kind, and harmless to another; success, in fact, depends not only on giving the fitting drug, but giving it in the right way. These medicines should reach the worms in as concentrated a state as possible; but if the stomach and intestines are filled with food, the poison, being thus diluted, may fail to destroy the worms. It is proper, therefore, to give over-night a purgative, and to direct the patient to take a very light tea and no supper, and on the following morning, after the purgative action, to give the anthelmintic.

FILIX MAS is employed for tape-worm. Kuchenmeister asserts that it is more poisonous to the bothriocephalus than to the taenia. The patient should eat a very light tea, no supper, and just before
bed-time swallow a dose of castor oil, a purgative to be preferred to others on account of its speedy action. On the following morning, about six or seven o'clock, when the oil will generally have acted, give the liquid extract of male fern in a dose varying from ten drops to a drachm, according to age. The patient is then to abstain from food till the bowels have been freely relieved, when in most cases the worm will be expelled. Some recommend a brisk purge to follow the anthelmintic; but this is seldom necessary, as the foregoing simple plan rarely fails to dislodge the worm. Too large a dose of the male fern may cause nausea, sickness, and even colic, effects seldom witnessed with a moderate dose. The liquid extract of male fern is slightly purgative, and for this reason it is not always necessary to administer a purgative after it. The worm should be carefully examined in order to ascertain if the head has been expelled; in that case there is no fear of the re-growth of the worm. It has, however, been ascertained, that if only the head and a small piece of the neck are left, the worm will die, so that if the head cannot be discovered, it must not be concluded that the patient is not permanently freed of the worm. If any piece is found which tapers to a fine point, even if the head is not attached, it may reasonably be hoped that the worm is destroyed. A good plan to obtain for examination all the expelled worm is, to shake up the motions, already watery and loose from the purgative, with some water, and to filter the whole through a piece of coarse muslin, by which means the head, even if separated from the trunk, may be detected and examined.

Male fern is generally considered the fittest treatment for the flat worm.

Kousso is used for tape-worms of all kinds, and appears to be very successful, although not much employed in this country. In Abyssinia, where tape-worm is extremely common, kousso has been in use upwards of two centuries. The dose is half an ounce of the flowers suspended in water, and taken after a short fast, as in the previous case. Kuchenmeister asserts that kousso expels the worm slowly, and in pieces, and that it rarely expels the head. It may cause slight nausea and even vomiting. Its action on the bowels being very slight, it is customary to follow this by a mild purgative.

The bark of the root of punica granatum is the part used. It is employed chiefly in India for tape-worm. Neligan directs the maceration of two ounces of bruised bark, of fresh root if possible, for twenty-four hours in two pints of water, to be then boiled down to
half, strained, and divided into three doses, one to be taken at half-hour intervals. Vomiting often occurs, which, however, should not prevent the giving of the three doses. This treatment should be occasionally repeated daily for four or five days. Most practitioners find the dried root inert.

Santonin, the active principle of worm seed, is very efficacious for round, and thread worms, but it is inoperative against tape-worms. In the treatment both of round and thread worms, two to four grains, according to age, are to be mixed with a drachm or more of castor-oil, and taken early in the morning before breakfast, repeating the dose two or three mornings successively. Such treatment seldom fails to bring away any round or thread worms. Santonin has been used, mixed with castor oil, as an injection into the rectum for thread-worms; and Kuchenmeister found that santonin in castor-oil, mixed with albumen, killed ascarides in ten minutes, while without the oil the santonin had no effect. He, therefore recommends it to be given in two to five grain doses in an ounce of castor-oil. This quantity is of course intended for adults. Santonin may be conveniently given in syrup, lozenge, or ginger-bread. In an obstinate case, some advise the administration of one or two grains twice or three times a day; but repeated so often, this medicine is very apt to occasion sickness and vomiting, with great difficulty in holding the water; so that children, if overdosed with it are apt to wet the bed at night, are constrained to pass water very frequently, and are even unable to hold it night or day. Santonin colours the urine orange, which changes to a brilliant scarlet on the addition of solution of ammonia. It is curious that this remedy will sometimes stay the nocturnal incontinence of children; and when the incontinence is not dependent on the presence of worms, santonin succeeds occasionally where other remedies, including even belladona, fail. It may produce headache, and sometimes affects smell and taste, and sometimes it makes objects appear of a green or yellow colour. Rose finds that santonin always produces hyperaemia of the retina, and he with Dr. Ogston believes the colour is owing to its influence either on the retina or brain, for it does not colour the structures of the eye. Drs. Ogston and Brown assert that santonin produced cataract in the eyes of young kittens, but they were unable to induce this condition in adult cats. These gentlemen recommend santonin in certain eye diseases, as inflammatory and atrophic alterations in the retina and optic nerve producing deficient sight.

Santonin may be conveniently given in form of suppository for thread-worms.
KAMELA is much used in India for tape-worm. It may be given in doses from 60 to 120 grains, in honey, syrup, or glycerine. It purges briskly.

ARECA NUT is much used by veterinarians to expel tape-worms from dogs, and may be employed for the same purpose in the human subject, and it sometimes succeeds when other remedies fail. Half or a whole nut is to be powdered, and mixed with some syrup, and swallowed.

TURPENTINE is praised by Neligan for its poisonous effectiveness over both the tape and round worm, but it is more deadly to the tape-worm. It is also efficacious as an injection against thread-worms. Kuchenmeister showed that it destroys tape-worm in an hour.

Of all medicines to be swallowed, santonin is, as we have said, most effectual against thread-worms, which infest only the rectum. Scammony, too, is effectual against thread-worms. A variety of substances administered by injections will speedily destroy thread-worms. Thus, a teaspoonful of common salt in solution, infusion of quassia, or a drachm of sesquichloride of iron in a pint of water are very efficacious; so is lime-water, solution of alum, and, in fact, any substance which will coagulate the albumen of the worms.

In the treatment of worms it must always be remembered that the mucous membrane is generally in an unhealthy state, secreting much tenacious mucus, which forms a favouring nidus for the development of worms; for worms will rarely develop in a healthy state of the digestive canal. The foregoing modes of treatment are therefore only temporarily remedial, and after the expulsion of the worms, the morbid condition of the intestinal mucous membrane must be treated. This condition of the intestines generally occurs in unhealthy anaemic children. Cod-liver oil and iron preparations soon restore the gastro-intestinal canal to a healthy condition.

Oils, as is well known, are reputed to be vermicides.

If the foregoing remedies fail, other medicines must be employed to remove the catarrhal state of the mucous membrane, as common salt, chloride of ammonium, and salts of antimony. Cold-sponging, out-door exercise, with a judicious diet, aid in improving the general health.
DIETARY FOR INVALIDS.

1. Barley Soup.

One pound of shin of beef, four ounces of pearl barley, one potato, salt and pepper to taste, one quart and a half of water.
Put all the ingredients into a pan, and simmer gently for four hours. Strain return the barley, and heat up as much as required.

2. Bread Soup.

One pound of bread, two ounces of butter, one quart of stock.
Boil the bread with the butter in stock. Beat the whole with a spoon or fork, and keep it boiling till the bread and stock are thoroughly mixed. Strain, season, and serve.

3. Tapioca Soup.

Two ounces and a half of tapioca, one quart of stock.
Put the tapioca into cold stock, and bring it gradually to the boiling point. Simmer gently till tender, and serve.

4. Sardinian Soup.

Two eggs, a quarter of a pint of cream, one ounce of fresh butter, salt and pepper to taste, a little flour to thicken.
Beat the eggs, put them into a stewpan, and add the cream, butter and seasonings, stir in as much flour as will bring it to the consistency of dough, make it into balls the size and shape of a nut, fry in butter, and put them into a basin of any sort of soup or broth, to which they make a very nice addition.

5. Restorative Beef Essence, I.

Take one pound of fresh beef, free from fat, chop it up fine, and pour over it eight ounces of soft water, add five or six drops of hydrochloric acid, and fifty or sixty grains of common salt, stir it well, and leave it for three hours in a cool place. Then pass the fluid through a hair sieve, pressing the meat slightly, and adding gradually towards the end of the straining about two more ounces of water. The liquid thus obtained is of a red colour, possessing the taste of soup. It should be taken cold, a teacupful at a time. If preferred warm, it must not be put on the fire, but heated in a covered vessel placed in hot water.
Should it be undesirable for the patient to take the acid, this soup may be made by merely soaking the minced beef in distilled water.
Dietary for Invalids.

6. Another Beef Essence, 2.

Take one pound of gravy beef, free from fat and skin, chop it up very fine, add a little salt, and put it into an earthen jar with a lid, fasten up the edges with a thick paste, such as is used for roasting venison in, and place the jar in the oven for three or four hours. Strain through a coarse sieve, and give the patient two or three tea-spoonfuls at a time.

Cut up in small pieces one pound of lean beef from the shiota or rump, and place it in a covered saucepan, with half a pint of cold water, by the side of the fire for four or five hours, then allow it to simmer gently for two hours. Skim it well, and serve.

Two pounds of beef without fat or bone, half a breakfast-cup of cold water, place it in a jar in a saucepan of water. Simmer four hours.

Six shanks of mutton, three pints of water, pepper and salt to taste, half a pound of lean beef, a crust of bread toasted brown.

Soak the shanks in water several hours, and scrub them well. Put the shanks, the beef and other ingredients into a saucepan with the water, and let them simmer very gently for five hours. Strain it, and when cold take off the fat. Warm up as much as is wanted at a time.

Mix two table-spoonfuls of oatmeal very smooth with two spoonfuls of cold water, then add a pint of strong boiling beef tea. Boil together for five or six minutes, stirring it well all the time. Strain it through a sieve, and serve.

One pound of lean beef, one ounce of rice, pepper and salt to taste, one pint and a half of water.

Cut up the meat into slices, add the rice and seasoning, place all in a jar with the water, cover it closely, and bake for four hours. Pearl barley may be substituted for rice if preferred.

Two or three pounds of neck of mutton, two pints of water, pepper and salt, half a pound of potatoes, or some pearl barley.

Put the mutton into a stewpan, pour the water over it, pepper and salt. When
DIETARY FOR INVALIDS.

it boils, skim carefully; cover the pan, and let it simmer gently for an hour. Strain it, let it get cold, and then remove all the fat. When required for use, add some pearl barley or potatoes in the following manner:—Boil the potatoes, mash them very smoothly so that no lumps remain. Put the potatoes into a pan, and gradually add the mutton broth, stirring it till it is well mixed and smooth; let it simmer for five minutes, and serve with fried bread.

Take three or four pared potatoes, a thick slice of bread, half a teacupful of pearl barley or rice, a little salt and pepper, two quarts of beef tea or mutton broth. Heat the beef tea or broth in a pan, and when quite boiling add the rest of the ingredients, except the pepper and salt, which should be added when nearly done; cover the pan, and let it boil slowly for an hour. Serve with toasted bread.

Soak a rabbit in warm water, and, when quite clean, cut it in pieces, and put it into a stewpan with a teacupful of veal stock or broth; simmer slowly till done through, then add a quart of water and boil for an hour. Then take out the rabbit, pick the meat from the bones, covering it up to keep it white; put the bones back into the liquor, and simmer for two hours, skim, strain, and let it cool. Pound up the meat in a mortar, with the yolks of two hard-boiled eggs, and the crumb of a French roll, previously soaked in milk; rub it through a tammy, and gradually add the strained liquor, and simmer for fifteen minutes. If liked thick, mix some arrowroot with half a pint of new milk, bring it to the boil, mix with the soup, and serve. If preferred thin, have ready some pearl barley and vermicelli boiled in milk, and add to the soup, instead of the arrowroot. Serve with little squares of toast or fried bread.

15. Calf’s Foot Broth.

One calf’s foot, three pints of water, one small lump of sugar, the yolk of one egg.

Stew the foot in water very gently, till the liquor is reduced to half; remove the scum, set it in a basin till quite cold, then take off every particle of fat. Warm up about half a pint, adding the sugar, taking it off the fire for a minute or two, then add the beaten yolk of the egg; keep stirring it over the fire till the mixture thickens, but do not let it boil or it will be spoiled.

A knuckle of veal, two cow-heels, twelve pepper-corns, a glass of sherry, and three pints of water.

Stew all the ingredients in an earthen jar for six hours. Do not open it till cold. When wanted for use skim off the fat, and strain it. Heat as much as you require for use.
17. Good stock for Soup.
One pound of shin of beef, one pound of knuckle of veal, four white peppercorns, a lump of sugar, one quart of water.
Simmer gently for six hours, skim well, and strain.

Stew two ounces of the best well-washed pearl sago in a pint of water till it is quite tender and very thick, then mix it with half a pint of good boiling cream and the yolks of two fresh eggs. Blend the whole carefully with one quart of essence of beef, made according to number 3. The beef essence must be heated separately, and mixed while both mixtures are hot. A little of this may be warmed up at a time.

An ounce and a half of sago, one pint of stock.
Wash the sago. Put one pint of stock on the fire, and bring it to the boil; add the sago, and simmer till it is entirely dissolved. When cold, it will form a jelly.

Three ounces of Patna rice, the yolks of two eggs, half a pint of cream or new milk, one quart of stock.
Boil the rice in the stock, and rub half of it through a tammy, put the stock in a stewpan, add the rest of the rice whole, and simmer gently for five minutes. Have ready the cream or milk boiled. Beat the yolk of the eggs, and mix them gradually with the cream. Take the soup off the fire, add the cream and eggs, stirring them well together as you mix them. Heat it up gradually, but do not let it boil, or the eggs will curdle, and the soup be spoilt.

Drop an ounce of semolina into one pint of boiling stock, and stir constantly to prevent burning. Simmer gently for half an hour. Season with salt to taste.

22. Raw Meat Diet.
Two ounces of rumpsteak, taking away all fat, cut into small squares, without entirely separating the meat, place in a mortar and pound for five or ten minutes, then add three or four tablespoonfuls of water, and pound again for a short time, afterwards taking away all sinew or fibre of the meat, leaving only the creamy substance, add salt to taste. Before using, place the cup or jar containing the pounded meat in hot water until just warm.

Or, scrape the beefsteak with a sharp knife, and after removing all the fat and tendon, if not already in a complete pulp pound it in a mortar. This may be
taken in the form of sandwich between thin bread and butter, or mixed with water to the consistence of cream.

This diet is excellent for children with diarrhoea, also for adults who suffer from irritable bowels or chronic diarrhoea.

Or, scrape and pound the meat with cold water to consistency of thin cream, and then allow to stand, and pour off the super-natant fluid, leaving the sediment behind.

Raw meat may be made more palatable by pouring over it a little warm gravy—not too warm.

In cases of wasting, anaemia, and prostration, it is said fresh blood of animals—as fowls—mixed with warm wine, or milk punch, warm lemonade, milk of coffee, and taken immediately, or before coagulation, is very useful.

It relieves prostration, as in flooding, restores warmth, and circulation, acts better and more promptly than transfusion from vein to vein. The blood of two or three chickens should be taken in the twenty-four hours.

Take half a pound of lean rump steak, scrape with a knife until all the pulp is removed from it, then add to it as much sugar as will be needed to sweeten it to taste, break the lumps of sugar with the meat in a basin, with a small wooden spoon. Add gradually as much milk as will make it the thickness of arrowroot, flavour with brandy. Strain through a gravy strainer if there is any fibre of the meat in it, as the mixture should be perfectly smooth.

23. **Beef Tea and Cream Enema.**

Mix four or five ounces of strong beef tea, one ounce of cream, and half an ounce of brandy, or one ounce of port wine.

24. **Oysters.**

Take half a dozen native oysters, and put them into a saucepan (after they have been well washed in cold water). Put in a lump of butter the size of a walnut, a little salt and pepper, put the saucepan on the fire for ten minutes, not more, taking it off now and then and stirring it. Then add a few drops of lemon-juice or vinegar.

25. **Lobster.**

Take a small claw of a lobster or crab, and put on it a little salt, a quarter of a tea-spoonful of salad oil, and a drop or two of vinegar.

26. **Stewed Eels.**

One eel, half a pint of strong stock, two table-spoonfuls of cream, half a glass of port wine, thickening of flour, a little cayenne.

Wash and skin the eel, cut it in pieces about two inches long; pepper and salt them, lay them in a stewpan, pour the stock over, and add the wine. Stew gently for twenty-five minutes or half an hour, lift the pieces carefully on to a very hot
dish, and place it by the fire, strain the gravy, stir into the cream sufficient flour to thicken it, mix with the gravy, boil for two minutes, and add a little cayenne. Pour over the eels, and serve. Sometimes the addition of a little lemon-juice is agreeable.

27. Stewed Oysters.

Half a pint of oysters, half an ounce of butter, flour, one-third of a pint of cream, cayenne and salt to taste.

Scald the oysters in their own liquor, take them out, beard them, and strain the liquor. Put the butter into a stewpan, dredge in sufficient flour to dry it up, add the oyster liquor, and stir it over a sharp fire with a wooden spoon. When it boils add the cream, oysters and seasoning, and simmer for one or two minutes, but not longer, or the oysters will harden, serve on a hot dish with croutons or toasted sippets of bread. A quarter of a pint of oysters, the other ingredients being in proportion, make a dish large enough for one person.

28. Macaroni.

Two ounces of macaroni, a quarter of a pint of milk, a quarter of a pint of good beef gravy, the yolk of one egg, two table-spoonfuls of cream, half an ounce of butter. Wash the macaroni, and boil it in the gravy and milk till quite tender. Drain it, put the macaroni into a very hot dish, and place it by the fire. Beat the yolk of the egg with the cream and two table-spoonfuls of the liquor the macaroni was boiled in. Make this sufficiently hot to thicken, but do not allow it to boil, or it will be spoiled; pour it over the macaroni, and stew over the whole a little finely-grated Parmesan cheese; or the macaroni may be served as an accompaniment to minced beef without the cheese; or it may be taken alone, with some good gravy in a tureen served with it.

29. Minced Fowl and Egg.

Cold roast fowl, a hard-boiled egg, salt, pepper or cayenne to taste; three table-spoonfuls of new milk or cream, half an ounce of butter, one table-spoonful of flour, a tea-spoonful of lemon-juice.

Mince the fowl, and remove all skin and bones; put the bones, skin, and trimmings into a stewpan with one small onion if agreeable, and nearly half a pint of water; let this stew for an hour, then strain the liquor, chop the egg small, mix with the fowl, and add salt and pepper, put in the gravy and other ingredients, let the whole just boil, and serve with sippets of toasted bread.

30. Fowl and Rice.

A quarter of a pound of rice, one pint of stock or broth, one ounce and a half of butter, minced fowl, egg, and bread-crumbs.

Put the rice into the cold stock or broth, let it boil very gently for half an hour, then add the butter, and simmer it till quite dry and soft. When cold make it into balls, hollow out the inside and fill them with mince made according to the foregoing receipt, but a little stiffer; cover with rice, dip the balls into egg, sprinkle with bread-crumbs, and fry a nice brown; a little cream stirred into the rice before it cools improves it very much.
31. *Chicken and rice.*

Cut up the meat of boiled chicken. Have ready some rice well cooked and seasoned with salt, put round a small flat dish, or vegetable dish, warm up the chicken in a little good gravy, and serve in the middle of the dish with the rice round it.

32. *Panada.*

Take the crumb of a penny roll, and soak it in milk for half an hour, then squeeze the milk from it; have ready an equal quantity of chicken or veal, *scrapped* very fine with a knife; pound the bread-crumbs and meat together in a mortar. It may be cooked either mixed with veal or chicken broth, or poached like an egg, by taking it up in two spoons in pieces the shape of an egg, after seasoning it, and served on mashed potato.

33. *Macaroni boiled in Milk.*

One ounce of macaroni, three-quarters of a pint of new milk, a little lemon-rind, a little white sugar.

Put the milk into a saucepan with the lemon-rind, bring it to boiling point, and drop in the macaroni. Let it swell gradually over the fire till *quite* tender, but do not allow the pipes to break.

34. *Rice Milk.*

Three table-spoonfuls of rice, one quart of milk.

Wash the rice, put it into a saucepan with the milk, and simmer gently till the rice is tender, stirring it now and then to prevent the milk burning. Sweeten a little, and serve with a cut lemon, black-currant jam, or apples stewed.

35. *Rice Cream, 1.*

To a pint of new milk add a quarter of a pound of ground rice, a lump of butter the size of a walnut, a little lemon-peel, and a table-spoonful of powdered sugar. Boil them together for five minutes, then add half an ounce of isinglass which has been dissolved, and let the mixture cool. When cool, add half a pint of good cream, whisked to a froth, mix all together, and set it for a time in a very cool place, or on ice; when used, turn it out of the basin into a dish, and pour fruit juice round it, or some stewed apple or pear may be served with it.

36. *Rice Cream, 2.*

A quarter of a pound of whole rice, well stewed in milk, and put in a sieve to drain and cool, mix with the rice a gill of good cream whisked to a froth, and add a wine-glass of sherry, a little powdered sugar, and a tea-spoonful of lemon-juice.
37. Light Pudding.

Boil very smoothly in new milk one table-spoonful of ground rice, let it get quite cold, then add two eggs, very well beaten up, a lump of white sugar, and, liked, a dessert-spoonful of brandy. Line a small tart-dish (sufficient for one person) with paste, put in the pudding, and bake quickly. Serve the moment it is ready, for it falls directly.

38. Rice and Apple.

Boil about two table-spoonfuls of rice in a pint and a half of new milk, an simmer, stirring it from time to time, till the rice is quite tender. Have ready some apples, peeled, cored, and stewed to a pulp, and sweetened with a very little loaf sugar. Put the rice round a plate, and the apple in the middle, and serve.

39. Baked Custard Pudding.

Warm half a pint of milk, or a little more; whisk two eggs, yolks and whites; pour the milk to them, stirring all the while. Have ready a small tart dish, line at the edges with paste. Pour the custard into the dish, grate a little nutmeg over the top, and bake it in a very slow oven for half an hour.

40. Boiled Custard Pudding.

Prepare the custard as in the foregoing receipt. Butter a small basin that will exactly hold it, put in the custard, and tie a floured cloth over it; plunge it into boiling water, float it about for a few minutes, boil it slowly for half an hour, turn it out and serve.

41. Baked Bread Pudding.

Half a pint of new milk, a quarter of a pound of bread-crumbs, two eggs, one ounce of butter, sugar to taste.

Boil the milk, and pour it over the bread-crumbs, and let them soak for half an hour. Beat the eggs, mix them with the bread-crumbs, and the sugar and butter, and stir well till thoroughly mixed. Butter a breakfast cup, or small pudding mould, fill it a little more than half full with the mixture, and bake in a moderate oven for about twenty minutes.

42. Semolina Pudding.

One ounce of semolina, half a pint of milk, one ounce of butter, two eggs, sugar to taste.

Heat the milk, and mix with it the semolina, sugar, and butter; stir this over the fire for a few minutes; then take it off, and mix with it the eggs, which should be well beaten. Butter a small tart dish, line it with puff paste, put in the pudding, and bake in a slow oven.
43. Rice Pudding.

One ounce of whole rice, three-quarters of a pint of milk, half an ounce of butter, one egg, sugar to taste.

Let the rice swell in the milk over a slow fire, stir in the butter, and then let the mixture cool. Well beat the egg and mix with the rice. Butter a breakfast cup or small mould, fill it three-parts full, and bake. Turn it out and serve.

44. Tapioca Pudding.

One ounce of tapioca, one pint of milk, one ounce of butter, one egg, sugar to taste.

Wash the tapioca, and let it stew gently in the milk for a quarter of an hour, stirring it now and then. Let it cool. Mix with it the butter, sugar, and eggs, which must be well beaten; put it into a small tart dish. Bake in a moderate oven.

45. Apple and Rice.

Take three small apples, peel and halve them, take out the cores, put them into a stew-pan with about half an ounce of butter, and stew over them a little white sifted sugar. Stew them very gently till tender, taking care not to break them. Boil the rice with milk and a little sugar till quite soft; and when done, dish it with the apples on the top of it, and a little cream served with it separately.

46. Vermicelli Pudding.

Two ounces of vermicelli, three-quarters of a pint of milk, quarter of a pint of cream, one ounce and a half of butter, two eggs, one ounce and a half of sugar.

Boil the vermicelli in the milk till it is tender, then stir in the remaining ingredients. Butter a small tart dish, line with puff paste, put in the pudding, and bake.

47. Milk Blancmange.

A quarter of a pound of loaf sugar, one quart of milk, one ounce of isinglass.

Put all the ingredients into a lined saucepan, and boil gently till the isinglass is dissolved. Keep stirring it over the fire for about ten minutes. Strain it through a fine sieve into a jug, and when nearly cold pour it into an oiled mould. Turn it carefully out when required for use.

To a pint of milk, heated till it is lukewarm, add a tea-spoonful of concentrated essence of rennet, and a small tea-spoonful of pounded white sugar; pour it into a bowl or mould, cover with a napkin, put it aside to cool, when it is ready for use. Concentrated essence of rennet can be bought at all grocers.
49. Rice Blancmange.

A quarter of a pound of ground rice, two ounces of loaf sugar, one ounce of butter, one quart of milk, flavouring of lemon-peel.

Mix the rice to a smooth batter with a little milk, and put the remainder into a saucepan with the butter, sugar, and lemon-peel. Bring the milk to boiling point, stir in the rice. Let it boil for ten minutes, or till it comes away from the saucepan. Grease a mould with salad oil, pour in the rice, let it get perfectly cold, and turn out.

50. Arrowroot Blancmange.

Two tablespoonfuls of arrowroot, three quarters of a pint of milk, lemon and sugar to taste.

Mix the arrowroot with a little milk to a smooth batter; put the rest of the milk on the fire, and let it boil, sweeten and flavour it, stirring all the time, till it thickens sufficiently to come from the saucepan. Put it into a mould till quite cold.

51. Fruit Cream.

Apples, gooseberries, rhubarb, or any fresh fruit.

To every pint of pulp add one pint of milk or cream, sugar to taste. Prepare the fruit as for stewing, put it into a jar with two tablespoonfuls of water, and a little good moist sugar. Set this jar in a saucepan of boiling water, and let it boil till the fruit is soft enough to mash. When cooked enough, beat it to a pulp, work this pulp through a colander, and to every pint stir in a pint of milk or cream. Of course the cream is best, if obtainable. Sweeten and serve.

52. Bread Jelly.

Take the crumb of a loaf, break it up, pour boiling water over it, and leave it to soak for three hours. Then strain off the water and add fresh; place the mixture on the fire, and let it boil till it is perfectly smooth; take it out, and after pressing out the water, flavour with anything agreeable; put it into a mould, and turn it out when required for use.

53. Milk Porridge.

Put a quart of milk into an enamel-lined saucepan. When on the point of boiling scatter in by degrees half a pound of coarse oatmeal. Stir until the mixture thickens; when thickened let it continue to boil about twenty minutes. The porridge can be made thick or thin according to taste. It can be eaten as it is, or with the addition of salt, sugar, treacle, etc.

54. A Gruel.

Beat up an egg to a froth, add a wine-glass of sherry, flavour with a lump of sugar, a strip of lemon-peel, and a little grated nutmeg. Have ready some gruel, very smooth and hot, stir in the wine and egg, and serve with sippets of crisp toast. Arrowroot may be made in the same way.
55. Milk, Egg, and Brandy.

Scald some new milk, but do not let it boil. It ought to be put into a jug, and the jug should stand in boiling water. When the surface looks filmy it is sufficiently done, and should be put away in a cool place in the same vessel. When quite cold, beat up a fresh egg with a fork in a tumbler, with a lump of sugar; beat quite to a froth, add a dessert-spoonful of brandy, and fill up the tumbler with scalded milk.

56. Egg and Wine.

One egg, half a glass of cold water, one glass of sherry, sugar, and a very little grated nutmeg.

Beat the egg to a froth with a table-spoonful of cold water. Make the wine and water hot, but not boiling; pour it on the egg, stirring all the time. Add sufficient sugar to sweeten, and a very little nutmeg. Put all into a lined saucepan on a gentle fire, and stir it one way till it thickens, but do not let it boil. Serve in a glass with crisp biscuits, or sippets of toast.

57. Milk Rum and Isinglass.

Dissolve in a little hot water over the fire a pinch of the best isinglass; let it cool, and mix a dessert-spoonful of rum with it in a tumbler, and fill up the glass with new milk.

58. Sherry or Brandy and Milk.

To one table-spoonful of brandy, or one wine-glassful of sherry, in a bowl or cup, add powdered sugar and a very little nutmeg to taste. Warm a breakfast-cupful of new milk, and pour it into a spouted jug; pour the contents from a height over the wine, sugar, etc. The milk must not boil.

59. Egg and Sherry.

Beat up an egg with a fork till it froths, add a lump of sugar and two table-spoonfuls of water; mix well, pour in a wine-glassful of sherry, and serve before it gets flat. Half the quantity of brandy may be used instead of sherry.

60. Demulcent Drink.

Take a pinch of isinglass, and boil it in half a pint of new milk, with half a dozen bruised sweet almonds and three lumps of sugar.

61. Milk and Isinglass.

Dissolve a little isinglass in water, mix it well with half a pint of milk, then boil the milk, and serve with or without sugar as preferred.

Boil in one pint of new milk sufficient cinnamon to flavour it pleasantly, and
sweeten with white sugar. This may be taken cold with a tea-spoonful of brandy,
and is very good in cases of diarrhoea. Children may take it milk-warm without
the brandy.

63. Nutritious Coffee.

Dissolve a little isinglass in water, then put half an ounce of freshly-ground
coffee into a saucepan with one pint of new milk, which should be nearly boiling
before the coffee is added, boil both together for three minutes; clear it by pouring
some of it into a cup and dashing it back again, add the isinglass, and leave it to
settle on the hob for a few minutes. Beat up an egg in a breakfast-cup, and pour
the coffee upon it; if preferred, drink it without the egg.

64. Arrowroot Drink.

Mix two tea-spoonfuls of arrowroot in about three table-spoonfuls of cold water,
then pour in half a pint of boiling water; when well mixed, add by degrees half
a pint of cold water, stirring all the time, so as to make it perfectly smooth; it
should be about the consistence of cream; if too thick a little more water may be
added. Then pour in two wine-glassfuls of sherry or one of brandy, add sugar to
taste, and give it to the patient in a tumbler. A lump of ice may be added if
allowed.

65. Mulled Wine.

Boil some spice, cloves, nutmeg, cinnamon, or mace, in a little water, just to
flavour the wine; then add a wine-glass of sherry, or any other wine, and some
sugar, bring it to boiling point, and serve with sippets of toast. If claret is used,
it will require more sugar. The vessel for boiling the wine should be scrupulously
clean.

66. To keep Milk from turning Sour.

Fifteen grains of bicarbonate of soda to a quart of milk hinders its turning sour.

To a table-spoonful of pearl barley washed in cold water, add two or three
lumps of sugar, the rind of one lemon, and the juice of half a lemon. On these
pour a quart of boiling water, and let the mixture stand for seven or eight hours.
Strain it. The barley should never be used a second time. Half an ounce of
isinglass may be boiled in the water.

68. Lemonade. I.

Well rub two or three lumps of sugar on the rind of a lemon, squeeze out the
juice, and add to it half a pint or a pint of cold or iced water, or better still a
bottle of soda water.
69. Effervescing Lemonade. 2.

Squeeze two large lemons, and add a pint of spring water to the juice, and three or four lumps of white sugar. When required for use pour half of it into a tumbler, and add half a small tea-spoonful of carbonate of soda; stir, and drink whilst effervescing.

70. Lemonade. 3.

The juice of four lemons, the rinds of two, half a pint of sherry, four eggs, six ounces of loaf sugar, one pint and a half of boiling water.

Pare the lemon rind thinly, put it into a jug with the sugar, and pour the boiling water on it. Let it cool, and then strain it and add the wine, lemon-juice, and eggs, previously well beaten and strained. Mix all well together and it is ready for use.

71. Lemonade. 4.

Pare the rind of three lemons as thin as possible, add one quart of boiling water, and a quarter of an ounce of isinglass. Let them stand till next day covered, then squeeze the juice of eight lemons upon half a pound of lump sugar; when the sugar is dissolved, pour the lemon and water upon it, mix all well together, strain it, and it is ready for use.

72. Arrowroot and Black-Currant Drink.

Take two large spoonfuls of black-currant preserve, boil it in a quart of water, cover it, and stew gently for half an hour, then strain it, and set the liquor again on the fire; then mix a tea-spoonful of arrowroot in cold water, and pour the boiling liquor upon it, stirring meanwhile; then let it get quite cold, and strain.

73. White Wine Whey.

To half a pint of boiling milk add one or two wine glassfuls of sherry; strain through a fine sieve, sweeten with sifted sugar, and serve.

74. Caudle.

Beat up an egg to a froth, add a wine-glassful of sherry, and half a pint of gruel, flavour with lemon-peel and nutmeg, and sweeten to taste.

75. Another Caudle.

Mix well together one pint of cold gruel with a wine-glassful of good cream, add a wine-glassful of sherry, and a table-spoonful of noyaux, and sweeten with sugar-candy.
76. Egg and Brandy.

Beat up three eggs to a froth in four ounces of cold spring water, add two or three lumps of sugar, and pour in four ounces of brandy, stirring all the time. A portion of this may be given at a time.

77. Sour Milk Diet.

The milk for this food must be good. It must be allowed to stand for forty-eight hours in a cool cellar; the vessel in which it is kept being upright, as a gallon measure. The milk becomes solid, and looks like poor blancmange. It carries a cream on the top, which most people remove as it makes it too rich. To about a pint of this sour milk, or rather less, add half a pound of grated rye-bread, a good deal of powdered sugar, and a glass of sweet milk, well stirred together.—'Hints to the Sick.'

78. Oatmeal Porridge.

Oatmeal three or four ounces. Water one pint. Boil the water and add a little salt, about one-sixteenth of an ounce. Sprinkle in the meal very gradually and carefully, till of a sufficient consistency. Stir it well all the time with a porridge stick (which should be an inch broad at the bottom). Boil gently for fifteen or twenty minutes, add a little more boiling water, and boil it five minutes longer, this makes it smooth. Pour it on plates and serve. The usual way is to make a hole in the middle with a spoon, add a piece of butter the size of a nutmeg, and upon it a spoonful of coarse brown sugar, eat it from the circumference, and dip each spoonful into the butter and sugar.

79. Burgout.

A pint of water gradually added to eight ounces of oatmeal. The whole made quite smooth, and then boiled a quarter of an hour. Butter, salt, pepper to taste. Indian meal may be used instead of oatmeal if preferred.

80. Port Wine Jelly.

Put into a jar one pint of port wine, one ounce of gum arabic, one ounce of isinglass, two ounces of powdered white sugar-candy, a small piece of cinnamon. Let this stand closely covered all night. The next day put the jar into boiling water and let it simmer till all is dissolved, then strain it, let it stand till cold, and then cut it up into small pieces for use.

Time, 15 or 20 minutes.—One pint of port wine, one ounce of isinglass, one ounce of sugar, a quarter of a pint of water.

Put the isinglass and sugar into a quarter of a pint of water. Set it over the fire till the isinglass is dissolved, then add the wine. Strain it through a jelly bag or a clean piece of muslin into a jar or mould, and let it set. It is best to cover till cold.
81. **Egg, Rum, and Lemon.**

Six new-laid eggs (with shells), the juice of seven lemons; macerate until the shells are dissolved. Then beat up together with a pint of the oldest Jamaica rum, drain through muslin, and add a quarter of a pound of sugar-candy. The eggs should all be laid the same day.—Give a tea-spoonful at a time.

82. **Linseed Tea.**

Two table-spoonfuls of linseed, one pint of water, half a lemon, sugar to taste, a piece of liquorice the size of a nut. Boil an hour and a half.
INDEX TO THERAPEUTIC AGENTS.

<table>
<thead>
<tr>
<th>Acetate of Alumina</th>
<th>236</th>
<th>Bicarbonate of Soda</th>
<th>190</th>
</tr>
</thead>
<tbody>
<tr>
<td>" Potash</td>
<td>190</td>
<td>Bichloride of Methylene</td>
<td>328</td>
</tr>
<tr>
<td>" Soda</td>
<td>190</td>
<td>Bismuth</td>
<td>248</td>
</tr>
<tr>
<td>Acetic Acid</td>
<td>177</td>
<td>Bitartrate of Potash</td>
<td>224</td>
</tr>
<tr>
<td>Acids</td>
<td>175</td>
<td>Blisters</td>
<td>123</td>
</tr>
<tr>
<td>Acids and Alkalies, their action on secretion</td>
<td>173</td>
<td>Borax</td>
<td>190</td>
</tr>
<tr>
<td>Acid, Carboxylic</td>
<td>320</td>
<td>Bromides</td>
<td>162</td>
</tr>
<tr>
<td>" Chronic</td>
<td>189</td>
<td>Brucia</td>
<td>594</td>
</tr>
<tr>
<td>" Hydrocyanic</td>
<td>574</td>
<td>Buchu</td>
<td>441</td>
</tr>
<tr>
<td>" Sulphurous</td>
<td>187</td>
<td>Cajeput Oil</td>
<td>421</td>
</tr>
<tr>
<td>Aconite</td>
<td>464</td>
<td>Calabar Bean</td>
<td>512</td>
</tr>
<tr>
<td>Actea Racemosa</td>
<td>461</td>
<td>Calumba</td>
<td>655</td>
</tr>
<tr>
<td>Acupuncture</td>
<td>101</td>
<td>Camphor</td>
<td>475</td>
</tr>
<tr>
<td>Affusion</td>
<td>71</td>
<td>Cannabis Bark</td>
<td>421</td>
</tr>
<tr>
<td>Alcohol</td>
<td>358</td>
<td>Cannabis Indica</td>
<td>605</td>
</tr>
<tr>
<td>Alkalies</td>
<td>190</td>
<td>Cannibis Indica</td>
<td>423</td>
</tr>
<tr>
<td>Alkali-Acid theory</td>
<td>173</td>
<td>Caraway Fruit</td>
<td>427</td>
</tr>
<tr>
<td>Almond Oil</td>
<td>399</td>
<td>Carboxic Acid</td>
<td>532</td>
</tr>
<tr>
<td>Aloes</td>
<td>648</td>
<td>Carbon (charcoal)</td>
<td>131</td>
</tr>
<tr>
<td>Alum</td>
<td>236</td>
<td>Carbonate of Ammonia</td>
<td>208</td>
</tr>
<tr>
<td>Ammonia</td>
<td>208</td>
<td>" Bismuth</td>
<td>248</td>
</tr>
<tr>
<td>Ammonium Chloride</td>
<td>228</td>
<td>" Lime</td>
<td>873</td>
</tr>
<tr>
<td>Ammoniacum</td>
<td>426</td>
<td>" Magnesia</td>
<td>218</td>
</tr>
<tr>
<td>Anyl, Nitrite of</td>
<td>403</td>
<td>" Potash</td>
<td>190</td>
</tr>
<tr>
<td>Anesthetics, Comparison of</td>
<td>380-90</td>
<td>" Soda</td>
<td>190</td>
</tr>
<tr>
<td>Anise, Oil of</td>
<td>461</td>
<td>Carbonic Acid</td>
<td>134</td>
</tr>
<tr>
<td>Antimony, Salts of</td>
<td>288</td>
<td>Carlsbad Water</td>
<td>226</td>
</tr>
<tr>
<td>Areca Nut</td>
<td>652</td>
<td>Cascarilla</td>
<td>641</td>
</tr>
<tr>
<td>Arsenic</td>
<td>295</td>
<td>Castoreum</td>
<td>358</td>
</tr>
<tr>
<td>Aseafetida</td>
<td>426</td>
<td>Castor Oil</td>
<td>339</td>
</tr>
<tr>
<td>Atripia</td>
<td>541</td>
<td>Caustic Lime</td>
<td>190</td>
</tr>
<tr>
<td>Balsam of Peru</td>
<td>421</td>
<td>" Potash</td>
<td>190</td>
</tr>
<tr>
<td>" Tolu</td>
<td>421</td>
<td>Chamomile</td>
<td>620</td>
</tr>
<tr>
<td>Bath, Steam</td>
<td>80</td>
<td>Charcoal</td>
<td>272</td>
</tr>
<tr>
<td>Baths, Cold</td>
<td>47</td>
<td>Chireta</td>
<td>640</td>
</tr>
<tr>
<td>" Cold, in Fevers</td>
<td>38</td>
<td>Chloral, Croton</td>
<td>368</td>
</tr>
<tr>
<td>" Douche</td>
<td>68</td>
<td>" Hydrate of</td>
<td>391</td>
</tr>
<tr>
<td>" Lamp</td>
<td>80</td>
<td>Chlorate of Potash</td>
<td>234</td>
</tr>
<tr>
<td>" Sea</td>
<td>50-1</td>
<td>" Soda</td>
<td>235</td>
</tr>
<tr>
<td>" Shower</td>
<td>68</td>
<td>Chloride of Ammonium</td>
<td>222</td>
</tr>
<tr>
<td>" Sponge</td>
<td>68</td>
<td>" Methyl</td>
<td>358</td>
</tr>
<tr>
<td>" Turkish</td>
<td>76</td>
<td>" Potassium</td>
<td>222</td>
</tr>
<tr>
<td>" Vapour</td>
<td>80</td>
<td>" Sodium</td>
<td>222</td>
</tr>
<tr>
<td>" Warm and Hot</td>
<td>65</td>
<td>Chlorinated Lime</td>
<td>147</td>
</tr>
<tr>
<td>Belladonna</td>
<td>541</td>
<td>" Soda</td>
<td>147</td>
</tr>
<tr>
<td>Benzoic</td>
<td>421</td>
<td>Chlorine Gas</td>
<td>147</td>
</tr>
<tr>
<td>Bicarbonate of Potash</td>
<td>190</td>
<td>" Water</td>
<td>147</td>
</tr>
<tr>
<td>INDEX TO THERAPEUTIC AGENTS.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloroform......</td>
<td>......</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>Chronic Acid......</td>
<td>......</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>Cinchona......</td>
<td>......</td>
<td>575</td>
<td></td>
</tr>
<tr>
<td>Cinchonisia......</td>
<td>......</td>
<td>618</td>
<td></td>
</tr>
<tr>
<td>Cinchonidiales......</td>
<td>......</td>
<td>582</td>
<td></td>
</tr>
<tr>
<td>Cinnamon......</td>
<td>......</td>
<td>421</td>
<td></td>
</tr>
<tr>
<td>Citrate of Potash......</td>
<td>......</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>" Soda......</td>
<td>......</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>Clover......</td>
<td>......</td>
<td>605</td>
<td></td>
</tr>
<tr>
<td>Cloves......</td>
<td>......</td>
<td>482</td>
<td></td>
</tr>
<tr>
<td>Coccus......</td>
<td>......</td>
<td>510</td>
<td></td>
</tr>
<tr>
<td>Cod-Liver Oil......</td>
<td>......</td>
<td>399</td>
<td></td>
</tr>
<tr>
<td>Codex......</td>
<td>......</td>
<td>537</td>
<td></td>
</tr>
<tr>
<td>Coffee......</td>
<td>......</td>
<td>610</td>
<td></td>
</tr>
<tr>
<td>Colchicum......</td>
<td>......</td>
<td>438</td>
<td></td>
</tr>
<tr>
<td>Cold......</td>
<td>......</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Cold Bath......</td>
<td>......</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Cold Baths in Fever......</td>
<td>......</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Collignon......</td>
<td>......</td>
<td>357</td>
<td></td>
</tr>
<tr>
<td>Colocynth......</td>
<td>......</td>
<td>459</td>
<td></td>
</tr>
<tr>
<td>Conium......</td>
<td>......</td>
<td>306</td>
<td></td>
</tr>
<tr>
<td>Copaiba......</td>
<td>......</td>
<td>421</td>
<td></td>
</tr>
<tr>
<td>Copper......</td>
<td>......</td>
<td>582</td>
<td></td>
</tr>
<tr>
<td>Carisander Fruit......</td>
<td>......</td>
<td>482</td>
<td></td>
</tr>
<tr>
<td>Counter-Irritation......</td>
<td>......</td>
<td>306</td>
<td></td>
</tr>
<tr>
<td>Croton......</td>
<td>......</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>Croton Choral, Hydrate of......</td>
<td>......</td>
<td>398</td>
<td></td>
</tr>
<tr>
<td>" Oil......</td>
<td>......</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>Cusuba......</td>
<td>......</td>
<td>421</td>
<td></td>
</tr>
<tr>
<td>Carara......</td>
<td>......</td>
<td>608</td>
<td></td>
</tr>
<tr>
<td>Cyanide of Potassium......</td>
<td>......</td>
<td>374</td>
<td></td>
</tr>
<tr>
<td>Digitalis......</td>
<td>......</td>
<td>476</td>
<td></td>
</tr>
<tr>
<td>Dill......</td>
<td>......</td>
<td>421</td>
<td></td>
</tr>
<tr>
<td>Drinks......</td>
<td>......</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>Dubossea Myoporoides......</td>
<td>......</td>
<td>574</td>
<td></td>
</tr>
<tr>
<td>Elaterium......</td>
<td>......</td>
<td>641</td>
<td></td>
</tr>
<tr>
<td>Elder......</td>
<td>......</td>
<td>421</td>
<td></td>
</tr>
<tr>
<td>Enemata......</td>
<td>......</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Epsom Salts......</td>
<td>......</td>
<td>234</td>
<td></td>
</tr>
<tr>
<td>Ergot......</td>
<td>......</td>
<td>608</td>
<td></td>
</tr>
<tr>
<td>Ether......</td>
<td>......</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>Ethyl-Atripin......</td>
<td>......</td>
<td>358</td>
<td></td>
</tr>
<tr>
<td>" Strychnia, etc......</td>
<td>......</td>
<td>601</td>
<td></td>
</tr>
<tr>
<td>Faradization......</td>
<td>......</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Fats......</td>
<td>......</td>
<td>329</td>
<td></td>
</tr>
<tr>
<td>Fennel......</td>
<td>......</td>
<td>421</td>
<td></td>
</tr>
<tr>
<td>Fevers, Influence of Cold Baths on......</td>
<td>......</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Felix Mas......</td>
<td>......</td>
<td>649</td>
<td></td>
</tr>
<tr>
<td>Fomentations......</td>
<td>......</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Friedrichshall Water......</td>
<td>......</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>Freezing by Ether......</td>
<td>......</td>
<td>102, 381</td>
<td></td>
</tr>
<tr>
<td>" Mixture......</td>
<td>......</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Galbanum......</td>
<td>......</td>
<td>426</td>
<td></td>
</tr>
<tr>
<td>Gallic Acid......</td>
<td>......</td>
<td>344</td>
<td></td>
</tr>
<tr>
<td>Gelsemium......</td>
<td>......</td>
<td>530</td>
<td></td>
</tr>
<tr>
<td>Gentian......</td>
<td>......</td>
<td>629</td>
<td></td>
</tr>
<tr>
<td>Glucose (nitr-glycerine)......</td>
<td>......</td>
<td>423</td>
<td></td>
</tr>
<tr>
<td>Glycerine......</td>
<td>......</td>
<td>348</td>
<td></td>
</tr>
<tr>
<td>Grindelia Robusta......</td>
<td>......</td>
<td>547</td>
<td></td>
</tr>
<tr>
<td>Guarana......</td>
<td>......</td>
<td>617</td>
<td></td>
</tr>
<tr>
<td>Hamamelis......</td>
<td>......</td>
<td>349</td>
<td></td>
</tr>
<tr>
<td>Horse Radish......</td>
<td>......</td>
<td>423</td>
<td></td>
</tr>
<tr>
<td>Hot-Air Bath......</td>
<td>......</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>Hot Bath......</td>
<td>......</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Hot Flat-Iron, Application of......</td>
<td>......</td>
<td>378</td>
<td></td>
</tr>
<tr>
<td>Hot-Water Spinal Bag......</td>
<td>......</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>Hydrochloric Acid......</td>
<td>......</td>
<td>377</td>
<td></td>
</tr>
<tr>
<td>Hydrocyanic Acid......</td>
<td>......</td>
<td>374</td>
<td></td>
</tr>
<tr>
<td>Hydrogen Peroxide of......</td>
<td>......</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>Hyoscymus......</td>
<td>......</td>
<td>579</td>
<td></td>
</tr>
<tr>
<td>Hypophosphite of Lime......</td>
<td>......</td>
<td>282</td>
<td></td>
</tr>
<tr>
<td>" Soda......</td>
<td>......</td>
<td>222</td>
<td></td>
</tr>
<tr>
<td>Hyposulphites......</td>
<td>......</td>
<td>387</td>
<td></td>
</tr>
<tr>
<td>Ice......</td>
<td>......</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Ice-Bag, Spinal......</td>
<td>......</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Incisions (for dropsy)......</td>
<td>......</td>
<td>102</td>
<td></td>
</tr>
<tr>
<td>Injections......</td>
<td>......</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>Iodide of Potassium......</td>
<td>......</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>Iodine......</td>
<td>......</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>Iodoform......</td>
<td>......</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>Ipacasa... ...</td>
<td>......</td>
<td>434</td>
<td></td>
</tr>
<tr>
<td>Iron, Preparations of......</td>
<td>......</td>
<td>340</td>
<td></td>
</tr>
<tr>
<td>Jaborandi......</td>
<td>......</td>
<td>546</td>
<td></td>
</tr>
<tr>
<td>Jalap......</td>
<td>......</td>
<td>645</td>
<td></td>
</tr>
<tr>
<td>Juniper......</td>
<td>......</td>
<td>421</td>
<td></td>
</tr>
<tr>
<td>Kameia......</td>
<td>......</td>
<td>652</td>
<td></td>
</tr>
<tr>
<td>Kouso......</td>
<td>......</td>
<td>550</td>
<td></td>
</tr>
<tr>
<td>Lard......</td>
<td>......</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td>Lavender......</td>
<td>......</td>
<td>421</td>
<td></td>
</tr>
<tr>
<td>Lead Salts......</td>
<td>......</td>
<td>249</td>
<td></td>
</tr>
<tr>
<td>Lemons, Oil of......</td>
<td>......</td>
<td>421</td>
<td></td>
</tr>
<tr>
<td>Lime......</td>
<td>......</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>" Hypophosphite of......</td>
<td>......</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>" Phosphate of......</td>
<td>......</td>
<td>318</td>
<td></td>
</tr>
<tr>
<td>" Water......</td>
<td>......</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>Liniment of Lime......</td>
<td>......</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>Lobelia Indica......</td>
<td>......</td>
<td>673</td>
<td></td>
</tr>
<tr>
<td>Magnesia......</td>
<td>......</td>
<td>212</td>
<td></td>
</tr>
<tr>
<td>Magnesia Sulphate......</td>
<td>......</td>
<td>224</td>
<td></td>
</tr>
<tr>
<td>Mercury Salts......</td>
<td>......</td>
<td>262</td>
<td></td>
</tr>
<tr>
<td>Methyl-Atripin......</td>
<td>......</td>
<td>368</td>
<td></td>
</tr>
<tr>
<td>" Chloride......</td>
<td>......</td>
<td>382</td>
<td></td>
</tr>
<tr>
<td>" Strychnia, etc......</td>
<td>......</td>
<td>599</td>
<td></td>
</tr>
<tr>
<td>Methylone Bichloride......</td>
<td>......</td>
<td>382</td>
<td></td>
</tr>
<tr>
<td>Mescaline......</td>
<td>......</td>
<td>421</td>
<td></td>
</tr>
<tr>
<td>Morphine......</td>
<td>......</td>
<td>321</td>
<td></td>
</tr>
<tr>
<td>Mucuna......</td>
<td>......</td>
<td>649</td>
<td></td>
</tr>
<tr>
<td>INDEX TO THERAPEUTIC AGENTS.</td>
<td>671</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscarin</td>
<td>581</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Musk</td>
<td>358</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mustard</td>
<td>449</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Narcein</td>
<td>593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Narcotine</td>
<td>593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicotia</td>
<td>506</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate of Bismuth</td>
<td>248</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Potash</td>
<td>231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Silver</td>
<td>237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Soda</td>
<td>231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitric Acid</td>
<td>277</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrite of Amyl</td>
<td>403</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrous Oxide Gas</td>
<td>383</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitro-glycerine</td>
<td>418</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutmeg</td>
<td>421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nutritive Enemata</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nux Vomica</td>
<td>594</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oils, Castor, Croton</td>
<td>339</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oils, Palm, Dugong, Cocoa-nut, Cod-liver, Almond, Poppy, Hempseed, Linseed</td>
<td>299</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oils Volatile</td>
<td>431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil of Tar</td>
<td>350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oleate of Mercury, etc.</td>
<td>566</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opium</td>
<td>575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orange-peel</td>
<td>641</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxide of Silver</td>
<td>287</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td>129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packing, Cold Wet-Sheet</td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Papaverine</td>
<td>593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peppermint</td>
<td>421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paper, Nitre</td>
<td>231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peroxide of Hydrogen</td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peru, Balsam of</td>
<td>421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Petroleum</td>
<td>350</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphates</td>
<td>218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphide of Zinc</td>
<td>387</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphoric Acid</td>
<td>277</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phosphorus</td>
<td>322</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physostigma</td>
<td>516</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picrotoxine</td>
<td>590</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilocarpine (Jaborandi)</td>
<td>546</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasters</td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Podophyllum</td>
<td>455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pomegranate</td>
<td>619</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potash</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Acetate of</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Bicarbonate of</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Carbonate of</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Chlorate of</td>
<td>234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Citrate of</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Nitrate of</td>
<td>231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Sulphate of</td>
<td>224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Tartrate of</td>
<td>224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potassium Chloride</td>
<td>232</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Cyanide</td>
<td>574</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poultries</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulina Water</td>
<td>225</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Punica Granatum</td>
<td>650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purgative Salts and Waters</td>
<td>224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quassia</td>
<td>640</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quina</td>
<td>614</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinindina</td>
<td>619</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raspall’s Lotion</td>
<td>209</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhubarb</td>
<td>647</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rosesmary</td>
<td>431</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rue</td>
<td>421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sacharated Solution of Lime</td>
<td>213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sabadilla (Veratrum)</td>
<td>447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salicin</td>
<td>622</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salicylates</td>
<td>622</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salicylic Acid</td>
<td>622</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sandal Wood Oil</td>
<td>491</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santonin</td>
<td>650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sassafras</td>
<td>421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Savine</td>
<td>425</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scammony</td>
<td>645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea-bath</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senega</td>
<td>648</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Senna</td>
<td>648</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shower-bath</td>
<td>68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silver Salts</td>
<td>237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soap</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soda, Acetate of</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Carbonate of</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Caustic</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Citrate of</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Hydropo phosphate of</td>
<td>221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Nitrate of</td>
<td>231</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Phosphate of</td>
<td>234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Solution of</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Sulphate of</td>
<td>234</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium Chloride</td>
<td>222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spearmint</td>
<td>421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinal Hot-water Bag</td>
<td>94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spinal Ice-Bag</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squill</td>
<td>645</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Staphisagria</td>
<td>461</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam-bath</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Storax</td>
<td>421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stramonium</td>
<td>573</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strychnia</td>
<td>594</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suet</td>
<td>359</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulphate of Magnesia</td>
<td>224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Potash</td>
<td>224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Soda</td>
<td>224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Sulphides</td>
<td>139</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Sulphites</td>
<td>187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Sulphur</td>
<td>134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Sulphuric Acid</td>
<td>177</td>
<td></td>
<td></td>
</tr>
<tr>
<td>" Sulphurous Acid</td>
<td>187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tannin</td>
<td>344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ta</td>
<td>359</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agent</td>
<td>Page</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tartar Emetic</td>
<td>288</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tartrate of Potash</td>
<td>224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and Soda</td>
<td>994</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tea</td>
<td>610</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thebaia</td>
<td>593</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermic Hammer</td>
<td>102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tin, Powdered</td>
<td>649</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tobacco</td>
<td>504</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolu</td>
<td>421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkish Bath</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turpentine</td>
<td>477,649</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valerian</td>
<td>424</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valerianates</td>
<td>474</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vapour Bath</td>
<td>81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veratrya</td>
<td>467</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Veratrum</td>
<td>467</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile Oils</td>
<td>437</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warm Baths</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wax</td>
<td>329</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet-sheet Packing</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zinc, Phosphide of</td>
<td>347</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salts</td>
<td>254</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valerianate</td>
<td>434</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INDEX TO DISEASES.

ACNE—continued.

HOT Fomentations, 82.
HOT SPONGING, 87. For acne indurata.
IODIDE OF SULPHUR, 146. An ointment in a.
indurata and rosaces, also in bromatic acne, P. 174.
MERCURY, 65. In early stages a lotion of
corrosive sublimate, one part; alcohol, enough
to dissolve it; water, 100 parts. A teaspoonful
of this to be added to a quarter of a pint
of water and the face sponged with it night
and morning.
SOAP, 193. With hot water several times a
day. If this irritates, rub in glycerine of
starch after each washing.
SULPHUR, 136. As lotion for young women
with disordered menstruation. In severe
forms an ointment of hypochlorite or iodide
of sulphur.

AGUE.

ARSENIC, 321. The best remedy exce
quine. Especially useful in long-standing agues of quartan type.
CASCARILLA, 641. Has been used.
CHAMOMILE, 640. Has been used.
EMETICS, 291. Many cases may be cured by
emetics, and one each morning will assist the
action of quinine. Ipecac. and other emetics should be preferred to antimony.
HYPOSULPHITE OF SODA, 189. Fifteen to
twenty drops every two hours.
NARCOTINE, 593. Said by some to be superior
to quinine.
QUINIA, 617, 619. By far the best remedy we
possess for intermittent fevers.
In mild forms small doses several times a
day.
In malignant forms large doses given in a
non-febrile period.
The drug should not be discontinued for
some time after all symptoms have dis-
appeared.
It is of service as a prophylactic against
ague.
It may be administered hypodermically or
by the rectum—either is the best solvent for
injection.
Cinchonia, quinidina and cinchonidina
are all useful in ague, but less so than quinia.
QUASSIA, 640. Has been used.
SALICYLIC ACID, 638. As an adjunct to quinia.

ALCOHOLISM. (See Dipsomania.)

ARSENIC, 6. Indicated by red, clean, smooth,
"irritable" tongue.

X X
INDEX TO DISEASES.

ALCOHOLISM—continued.
Morphia, 582. With tonics before meals for pain, nausea, and want of appetite.
Phosphorus, 377. In chronic alcoholism.

AMAUROSIS. (See Eye Diseases.)

AMENORRHEA.
Aderter, 496. When menses suddenly checked.
Aetia racemosa, 463. Generally, and when menses checked.
Aloes, 641. At the periods, together with hot pediluvia, friction, stimulating liniments, &c. For general directions see ref.
Chloride of ammonium, 272. For headache.
COLD SPONGING, 71.
Epsom, 610. Where anemia after the use of iron.
Hot sitz-bath, 67. For six days before and during the time the missing discharge is due. A course of these baths assists the restoration of the uterine functions.
Sawin, 495. When due to want of tone in uterus.
Siphon ice-bag, 93. Applied to lower dorsal and lumbar vertebrae.

ANEMIA.
Acids, 185. Added to purgative salts as tonic to mucous meml.
COLD SPONGING, 71.
HYPOCHLORITE, 522. Of lime or soda.
Iron, 241. Some stomachs with irritable mucous meml require bland preparations. A flabby tongue indicates large doses of astrigent preparations, as perchloride or sulphate. See also p. 5. Weak anemic girls with pain and vomiting after food require larger doses of the tinct. perchlor. ; for other formula, see p. 242. It is sometimes well to humour the stomach by changing the preparation. Some persons are quite unable to take iron in any form, 244. Iron may be given in anemia with disturbance of uterine functions, and should be conjoined with nourishing food, pure air, light, and, if necessary, purgatives. If the anemia is due to organic disease, iron at best only palliative.
Oxygen, 130.
Phosphate of lime, 219. In anemia of growing persons, and of women weakened by rapid child-bearing or excessive menstruation.
Quina, 631. For badly fed, pale, town-livers.

ANEURISM.
Chloroform, 382. Inhalation, if great dyspncea.
Iodide of potassium, 161. Combined with recurrent position and restricted diet.

ANGINA PECTORIS.
Arsenic, 352. Lessens severity of attacks.
Ether, 382. Or spirits of chloroform in full doses very useful.

ANGINA PECTORIS—continued.
Morphia, 578. Hypodermically.
Nitrite of amyl, 406. An inhalation most valuable.
Phosphorus, 356. Often serviceable.
Nitroglycerine, 414. One min. doses of one per cent. solution in spirit.

ANTHELMINTICS. (See Worms.)

ANUS, PAIN AFTER OPERATIONS AT.
Ice, 89. Applied in bladder.

AORTIC DISEASE. (See Heart Diseases.)

APHTHA.
Alum, 237. Applied dry a few times a day to aphthous ulcers which will not heal—generally, however, chlorate of potash and a purgative sufficient.
Borax, 257. With honey or as glycerine of borax.
Chlorate of potash, 235.
Glycerine of borax, 343.
Nitric acid, 180. In small doses.

APOPLEXY.
Croton oil, 341. As purgative one-fourth or one-third minm every hour.

APPETITE, LOSS OF. (See Dyspepsia.)

ASCITES.
Copains, 423. In all forms of ascites.
Ellatherium, 641. Must be given with caution.

ASTHMA AND QUASI-ASTHMA.
Aconitis, 471, 472. Given at commencement of the fever often averts the attack. Useful also in the asthma following coryza and sneezing in children.
Alum, 237. Ten grs. powdered and placed on the tongue said to arrest a paroxysm.
Antimony, 292, 293. In an affection of children like asthma (see ref.); dissolve a grain of tartar-emetic in half a pint of water, and give a teaspoonful of this every quarter of an hour for the first hour, then hourly. If vomiting induced, lessen the dose.
Arsenic, 297. As cigarettes, caution required (see ref.), also one drop of liq. amn. three times a day in attacks of sneezing with coryza, frontal headache and itching of nostrils. These attacks may be brought on by cold, by meals, by local irritation, or in children are consequent on bronchitis. These cases are allied to dyspeptic and bronchitic asthma, and to hay fever (see ref.).
Asparagis, 425.
Atropia, 543. Hypodermically.
Belli-donna, 540. Large doses required, but very satisfactory (see ref.).
Blister, 136. For oppression of breathing, especially in bronchitic asthma.
Brumone of potash, 172.
Cannabis indica, 603. Has been found useful.
INDEX TO DISEASES.

ASTHMA AND QUASI-ASTHMA—continued.

Carbonic acid gas, 134. As inhalation.
Chamois leather waistcoat, 77.
Chloral, 306. Often useful in a full dose during a paroxysm.
Chlorate of potash, 213. With nitre to saturate blotting paper, or a paste may be made of chlorate and nitrate of potash with lycopodium.
Chloroform, 371. Often combined with opium.

Inhalations—88. As inhalation if great dyspnoea. A few whiffs will sometimes avert a paroxysm. As liniment rubbed on chest for an hour daily in bronchitic asthma.
Coffee, 612. A small cup of very strong coffee often useful in a paroxysm.
Colchicum, 455. In gouty subjects.
Counter-irritation, 119. See ref. for discussion on.
Grindelia robusta, 541. Three gns. of extract thrice daily to prevent attacks, or m. x to m. xxx of liquid extract every half-hour or hourly from onset of paroxysm.
Iodide of potassium, 160. In peptic and bronchial asthma.
Ipecacuanha, 443, 444. The wine as spray to the fauces sometimes useful in severe bronchial asthma, but not of much service in genuine asthma—for Dr. Hyde Salter’s observations on the general management of asthma, see p. 443.
Lorelia, 604. Ten drops of the simple tincture every ten minutes or quarter of an hour as soon as signs of a paroxysm appear, till the dyspnoea goes away.

In bronchitic asthma where breathing a little tight all day but much worse at night, ten min. three times a day with additional doses at night.
This drug must be given cautiously when there is heart disease.

Nitrate of potash, 213. The inhalation of fumes of burnt nitre paper will sometimes avert a paroxysm. Different methods of preparation useful for different cases (see ref.).
Nitrile of amyl, 407. As inhalation.
Opium, 590. In some cases. In others morphia will induce a paroxysm.
Oxygen, 130. When no heart disease.
Silver nitrate of, 260. Sometimes injected into trachea (see ref.).
Stramonium, 573. Twenty gns. of the dried leaves or ten of the powdered root may be smoked. Davallia tautula sometimes better. Stramonium preparations often bad. Asthmatics advised to grow the drug themselves.
Sulphurous acid, 120. Inhalation, spray or fumigation.
Tobacco, 506. Smoking sometimes gives relief.
Turkish baths, 77. In bronchial asthma.

BARRENNESS.

Iodide of potassium, 160. When due to syphilis.

BED-SORES.

Alcohol, 359. As brandy or eau de Cologne to harden skin of parts exposed to pressure.
Catechu, 346. The tincture with liq. plumbi locally to prevent sores.
Charcoal, 86. Sprinkled over the black slough, which is then covered with a poultice.

BED-SORES—continued.

Glycerine, 343. Or glycerine cream rubbed over part exposed to pressure after washing morning and evening, is one of the best preventives of bed-sores.
Iodoform, 390. Dusted over sores.
Silver nitrate of, 258. A solution twenty grs. to the oz. to be painted on threatened but unbroken skin as soon as it becomes red to prevent formation of bed-sores.
If nitrous ether solution used, five grs. to the oz. enough.

BILE, DEFICIENCY OF.

Mercury, 574. Frequent small doses of grey powder.

BILIARY COLIC. (See Colic.)

BILIAROUS HEADACHE. (See Sick Headache.)

BITES.

Ammonia, 509. Weak solutions in bites of insects to neutralize the formic acid.

BLADDER, DISEASES OF.

Copaiba, 453. Also cubes and bouche in chronic inflammation of bladder and urethra.
Iodoform, 391. As suppository in painful diseases.
Sulphur, 189. Internally prevent putrefaction of urine.

BLEEDING. (See Haemorrhage.)

BOILS.

Belladonna, 143. With glycerine locally to allay pain.
Camphorated alcohol, 415. Boils in the earliest stages to be smeared with this for half a minute, then, when the skin is dry, it is to be smeared with camphorated oil. A few applications said to disperse the coming boil.
Colloddion, 328. Applied at papular or pustular stage. Matter not to be let out except under Lister’s plan (see ref.).
Counter-irritation, 157. By blisters or iodine around the boil.
Opium, 580. An extract of the consistence of treacle locally applied three or four times a day (see ref.).
Poultices, 89. To assist maturation and allay pain, may be smeared over with belladonna or opium.
Silver nitrate of, 258. In boils beginning as a papule which mature into a pustule and inflame and extend till large dead core produced. To be painted on at commencement—colloddion, perhaps, better for these.

BONES, DISEASES OF.

Cod-liver oil, 335. In strumous disease.
Phosphate of lime, 219. In caries.

X X 2
INDEX TO DISEASES.

BRAIN, DISEASES OF. (See also Paralysis.)

BROMIDE OF POTASSIUM, 169. When overtaxed from study, or over-application to business.

PHOSPHORUS, 327. In cerebral softening.

BREASTS, INFLAMMATION OF.

Belladonna, 542. Especially as liniment to check secretion of milk when inflammation increases. When inflammation has set in, continuous application of belladonna for twenty-four hours often arrests it. It is usually the only useful drug that has formed. Fomentations useful in addition, but skin must be dried well before the belladonna is applied on.

Digitalis, 501. Infusion locally.

BREATH, FOUL

Camphor, 415.

BRIGHT'S DISEASE.

Acouite, 474. Should be given immediately on the appearance of inflammation of the kidneys in scuriflina.

Alkalies, 205. Citrates and acetates in acute and chronic Bright's, being reputed to act as diuretics.

BITARTRATE OF POTASH, 218. To prevent dangerous accumulations in cellular tissue or important cavities. Also to draw off effete matters. Care must be used, as it is a brisk purgative and so is weakening.

BROMIDE OF POTASSIUM, 169. For convulsions.

Incisions, 65, 66. For dropsey better than hot baths. Hot fomentations with boric acid may be employed afterwards.

Cannabis indica, 608. In acute and chronic forms as a diuretic, said to be specially useful where bloody urine.

Cannabis indica, 608. After subsidence of acute stage, a one min. dose every three hours will stop the hematuria.

Colic, 415. In chronic forms.

Coparea, 425. Sometimes useful in removing dropsey.

Digitalis, 500. Very valuable in some cases; only diuretic as long as dropsey exists.

Elatreurn, 541. For the dropsey—caution required.

IODIDE OF POTASSIUM, 151. Possibly only when due to syphilis.

Iron, 4. Astringent preparations when tongue-flabby and pale.

Lead, 426. Diminishes the albumen.

Senna, 649. As a diuretic.

Tannin, 348. In chronic Bright's to lessen albumen.

Tinctures, 293. Excellent diuretics.

Turkish bath, 76.

Warm baths, 65. When uramic symptoms or droopy well marked (see ref.). Discretion needful.

BRONCHITIS.

Acouite, 474. In measles.

Ammonia, 211. Inhalation in chronic bronchitis to lessen over-abundant expectoration.

Ammoniacum, 426. In bronchitis with wheezing and abundant discharge in old people.

Antimony, 12. Small frequent doses of tartar-emetic where skin dry and hot.

BRONCHITIS—continued.

Antimony, 522. To shorten acute bronchitis (see Inflammation). Also in chronic bronchitis when expectoration copious and difficult to expel.

Aspermia, 315. Where emphysema, with wheezing and not much bronchitis, especially where the wheezing has come on simultaneously with the retrocession of a rash as of exsena: where weak bronchitis and dyspepsia, belladonna and lobelia better.

Assafetida, 426. For old people, but ammoniacum generally better.

Balsam of Tolu or Peru, or Coparea, 472. In chronic bronchitis to lessen secretion.

Benzoin, 422. The comp. 5SJ. to 3 drachms to boiling water as inhalation in chronic bronchitis, eases cough and lessens expectoration.

Carbonic acid, 353. Or creosote, twelve to twenty drops as inhalation with boiling water for abundant expectoration or fever.

Carbonate of Ammonia, 211. When expectoration profuse and patient's strength diminishing, often given with chloride of ammonium, which acts similarly; also useful in severe bronchitis or broncho-pneumonia of children, especially when precocious and friable.

Carbonic acid gas, 134. As inhalation in chronic bronchitis.

Chamomile, 77. Worn over flannel in chronic asthma and emphysematous bronchitis.

Chloride of Ammonium, 253. In chronic bronchitis when secretion thick and abundant. May be applied by atomizer.

Colic, 415. To control expectoration in chronic bronchitis.

Cough, 455. In coughy subjects.

Cough-irritants, 126. For shortness of breath in bronchitic asthma and bronchitis with emphysema.

Cotton, 359. With or without boric acid as counter-irritant to chest—caution needed.

Essential oils, 423. Balsam of Peru, tinct. and coparea in chronic bronchitis with copious secretion of pus.

Ginger, 149. The liniment to the chest to lessen cough and expectoration in chronic bronchial catarrh. As inhalation for children with hoarse, hollow cough after measles, &c. Inhalation sometimes employed in chronic bronchitis.

Ipecacuanha, 415. To produce vomiting in children with much mucus in bronchial tubes—420. As wine, when expectoration is profuse and difficult to expel.

The wine used as spray to the pharynx invaluable in many cases of bronchial asthma and winter cough (see ref.).

Iron, 246. To check profuse bronchial secretion.

Jalap, 647. With bitartrate of potash to free purgation for cases where the right heart is engorged from emphysema, bronchitis, &c.

Lead, 395. To check profuse bronchial secretion.

Lobelia, 605. For paroxysmal dyspepsia.

Mustard, 439. As large poultice with linseed or oatmeal in acute bronchitis, or a tablespoon added to a bath, very useful in severebronchitis both of children and adults.

Opium, 581. Where frequent and violent cough without any signs of obstructed respiration.

Phosphate of lime, 219. To check excessive secretions.
INDEX TO DISEASES.

BRONCHITIS—continued.
POULTICES, 83. To excircle the whole chest in children.
QUINIA, 580. To reduce temperature.
GERANIUM, 643. Especially for the chronic bronchitis of the aged.
SILVER, NITRATE OF, 260. Sometimes injected into trachea (see ref.).
SYPHON, 845. As an expectorant.
SULPHUR, 128. Five to ten grs. in severe chronic bronchitis with abundant discharge, especially where constitutional debility.
SULPHURIC ACID, 188. Inhalation, spray or fumigation in chronic bronchitis.
TAR, 235. Two grs. in pill every three or four hours in chronic paroxysmal winter cough. Not quite equal to the ipecacuanha syrup.
TURKISH BATH, 77.
TURPENTINE, 490. Small doses as a diuretic.
ZINC, OXIDE OF, 287. For profuse bronchial secretion.
—SULPHATE OF, 286. As emetic; others generally preferred.

BRONCHOCELE. (See Goitre.)

BRUISES.
CAPSICUM, 432. A strong tincture applied with gum said to act like a charm on discoloured bruises.
SULPHURIC ACID, 188. A solution constantly applied.

BUBO.
IODINE, 131. Applied to produce vesication round a bubo relieves the inflammation.
NITRIC ACID, 178. To indolent and broken bubo.
PERBROMIDE OF HYDROGEN, 131. Applied as in chancre, p. vi.
SULPHIDES, 144. Less useful in maturing than in the case of ordinary boils or abscesses.

BURNS.
COLLODION, 328. Painted over slight burns subdues inflammation.
LIME, 214. As lime-water and oil.
SODA, 194. A saturated solution of the carbonate locally for burns and scalds.
WARM BATH, 67. Immerse for some days.

CALCULI.
ALKALIS, 205. To dissolve uric acid calculi (renal or vesical).
CITRATE OF POTASH, 205. In large doses for patients with bloody urine containing quantities of uric acid crystals.
COUNTER-IRITANTS, 205. Relieve pain from passage of renal and biliary calculi.
NITRIC ACID, 186, 187. Very dilute as injection for phosphatic calculi.

CANCER. (See also Stomach and Uterus.)
ARSENIC, 205. Arsenious acid, pure or with starch as a caustic—enough should be used to set up the active inflammation (see ref.).
CARBOLIC ACID, 230. Pure, as anaesthetic before applying caustics.
CARBONIC ACID, 134. Injected up vagina in cancer of uterus to relieve pain.

CANCER—continued.
CHLORAL, 397. In ten gr. doses three times a day, has relieved most severe pain of cancer.
CHLOROFORM, 359. As vapour to raw, painful surface.
CONIUM, 506. As poaltice to ease pain.
GLYCERINE OF CARBOLIC ACID, 343. As application to fedial cancers on surface or in uterus.
GLYCERINE OF TANNIN, 238. With glycerine of carbolic acid checks discharge and stench of uterine cancer.
IDOFORM, 390. Applied locally relieves the pain of cancerous sores.
MORPHIA, 576. Dissolved in glycerine and spread on lint, very useful where there is much pain. Opium is also used in cancer of the stomach.
OPIUM, 576. To cancerous sores.
POULTICES, 85. Of starch applied cold.
WARM ENEMATA, 90. To relieve pain and straining in intestinal cancer.

CANCER LABIALIS AND ORIS.
ARSENIC, 297. In cancerus oris.
NITRIC ACID, 178. To surface.

CANKERY TASTE.
MERCURY, 248. If podophyllin fail.
PODOHYLLIN, 458. When unconnected with alcoholism.
WATER, 95. Half a tumbler of pure cold water daily half an hour before breakfast.

CARBUNCLE.
BELLADONNA, 143. With glycerine as local application to alay pain.
CARBOLIC ACID, 325. Lint soaked in glycerine or oil and carbolic acid to be thrust into discharging sinuses, the whole to be covered over with more lint similarly prepared.
IODINE, 137, 151. Applied so as to produce vesication round the carbuncle, reduces inflammation.
OPIUM, 580. An extract of the consistence of treacle applied three or four times a day (see ref.).
POULTICES, 85. The inflamed surface having been previously smeared with belladonna and glycerine.
STRAPPING, 328. With plaster concentrically from border inwards, will sometimes arrest extension.
SULPHIDES, 143.

CARDIAC DROPSY. (See Heart Diseases and Dropsies.)

CARRIES.
PHOSPHATE OF LIME, 219.

CATARRH. (See also Bronchitis.)
ACONITE, 470. In catarrh of children and in measles.
ACTA MUGOSA, 465. Has been given, it is said, with much success, when headache, stiffness of muscles, and dull aching pain in bones.
CATARRH—continued.

ANTIMONY, 293. As tartar-emic in acute catarrh of children, which is often accompanied by vomiting and diarrhoea.

CHLORIDE OF POTASSIUM, 215. Should be taken early and frequently, eight or ten lozenges in the twenty-four hours.

CHLORIDE OF AMMONIUM, 239. In chronic catarrh of bronchial and urinary mucous membrane when secretion thick and abundant.

HOT SPONGING, 67. For headache.

IREXACANAHA, 436. In catarrh of stomach or lungs, especially when secretion from lungs abundant and tenacious.

LAMP BATH, 80.

OPTICUM, 681. Or morphia may be given when there is violent and frequent cough but no signs of obstructed respiration.

TURKISH BATH, 72. In chronic catarrh.

WARM FOOT-BATH, 67. Before going to bed.

CATCH IN THE BREATH.

COLD SPONGING, 69, 70. For infants waking with a catch in the breath at night.

CEPHALALGIA. (See Headache.)

CHANCRE. (See Syphilis.)

CAUSTIC ALKALIES, 191. To hard edges.

IODOTHERM, 390. Dusted over soft chancres.

NITRIC ACID, 178. To soft chancres.

PERIODIC OF HYDROGEN, 131. Wash three times a day and apply lint soaked in it—said to destroy specific character.

CHANGE OF LIFE.

ACTEA, 464. For headache.

AMMONEA, 309. As Raspeb’s sedative lotion to be applied to the painful part of the head in the headaches of this period.

BROMIDE OF POTASSIUM, 270. For despondency with sleeplessness and irritability, often also with heart, flushings and perspirations.

CAMPHOR, 416. For drowsiness and headache. Eau de Cologne saturated with camphor to be rubbed into the head.

CHANGE OF AIR AND SCENT, 171. Where other treatment only partially successful.

IRON, 171. For flutterings of the heart.

— 246. Large doses of salisulphide three times a day in flushing of heart with fulness of head, heat and weight on the vertex, frequent flushings and hot and cold perspirations. If symptoms limited to head and face, bichromate of potash, opium and belladonna more successful.

NITRITE OF AMY, 410, 411. In small doses when the head predominates.

VALERIANATE OF ZINC, 287. For hysterical symptoms.

WARM BATH, 67. Once a week.

CHAPS. (See Nipples, Sore.)

COLLODION, 327, 328. Sometimes used, but for chapped hands and lips glycerine of starch, arsenic cerate or eau de Cologne and glycerine better; for chapped nipples sulphur acid and glycerine.

GLYCERINE, 342. Or, better still, glycerine of starch.

SULPHURIC ACID, 182. As solution or fumigation.

CHEST, PAINS IN, NON-INFLAMMATORY. (See Myalgia and Pleurodynia.)

BELLODONA, 193. When tenderness is in skin, pleurodynia.

IODINE, 190. As ointment in muscular pains, myalgia.

CHILBLAINS.

BALSAM OF PERU, 421. In ointment for broken chilblains.

CAFEA, 421. Locally.

CAPRICUM, 423. The tincture painted over unbroken chilblains, but this is inferior to iodine. For De- Reine’s preparation see ref.

IODINE, 190. Ointment is best.

SULPHURIC ACIDS, 185. As solution or fumigation.

CHLOASMA. (See Pityriasis Versicolor.)

CHLOROSIS.

HYPERPHOSPHITES, 222. Of lime or soda.

CHOKING.

BROMIDE OF POTASSIUM, 154. In children who choke with liquids from their birth (see ref.).

CHOLERA AND CHOLERA DIARRHEA.

ARSENIC, 309. Has been recommended for the vomiting of cholera and in collapse in the later stages.

CAMPHOR, 416. Four to six drops of the strong spirit of camphor every ten minutes at the commencement till the symptoms abate and hourly afterwards.

An admirable remedy for summer diarrhoea and cholera.

COFFEE, 264. The salts have been given.

LEAD, 252. The acetate has been recommended in early stages.

MERCURY, 276. A sixth of a grain of grey powder hourly is of great service in infantile cholera with incessant sickness, profuse almost continuous diarrhoea, offensive and nearly colourless stools. A starch injection with a minute quantity of laudanum assists the grey powder, and should be given in urgent cases.

MORPHIA, 375. One-eighth to one-fourth of a grain hypodermically of the greatest value even in the stage of collapse.

SPIRIT. ICE-BAG, 31, 32. For cramps.

CHORDEE.

ACONITE, 476. In drop doses hourly. Said to remove chordee.

CAFFEINE, 477.

CAMPHORIDES, 429. A drop of the tincture three times a day.

CHOREA.

ACTAE RACEMOSA, 472. Sometimes succeeds when rheumatic attacks—inferior to arsenic.

ANTIMONY, 357. As tartar-emic in increasing doses; other remedies better.
CHOREA—continued.

Arsenic, 328. When uncomplicated very successful.
Calabar bean, 519. Three to six grs. of the powder three or four times a day for children, or ten to twenty grs. for adults.
Chloral, 395. Sometimes useful, especially where the violent movements render sleep impracticable.
Chloroform, 379. Inhalations, commence with them three times a day, often of great service in severe cases.
Cod-liver oil, 337.
Cold sponging, 70. Not if rheumatism, fever, or pain in joints. Often well to use water tepid first.
Conium, 511. Apparently only palliative.
Irron, 245. Chorea often relieved or cured by chalybeate waters, generally arsenic is better unless anaemia coexists.
Morphia, 578. Hypodermically when the movements prevent sleep.
Musk, 358. Has been given.
Silver, 362. Both the oxide and nitrate occasionally useful.
Spinal ice-bag, 91.
Sulphate of zinc, 287. In large and increasing doses. (See ref.)
Valerian, 475. The preparations are said sometimes to restrain the movements of chorea.
Veratrum viride, 451. Has been employed.

CLAVUS.
Chloride of ammonium, 233.

COLD, FEVERISH.
Turkish bath, 77. At commencement will cut short, also useful later on.

COLD IN HEAD. (See Coryza.)

COLDNESS.
Cold water, 26. Cold feet should be immersed in cold water nightly for a few minutes, rubbing them all the time, they should then be dried and warm woollen socks put on.
Spinal ice-bag, 92. For cold feet.
Strychnia, 601. For coldness of hands and feet.

Colds, TENDENCY TO CATCH.
Cold sponge-bath, 77. Supplemented by wet-sheet packs, or Turkish bath.

COLIC—continued.

Counter-irritation, 126. For renal and biliary calculi.
Essential Oils, 422. Especially of cloves and cinnamon.
Fomentations, 87. In all forms.
Lime-water, 215, 216. For young children who eject much of their milk in lumpy masses, some of these lumps passing through the intestines causing colic and wind.
Opium, 352. When morphia in frequently repeated small doses for colic of intestines. Where, as is usual, there is constipation a purgative should be given.
—— 590. Small doses with spirit of chloroform every five or ten minutes till the pain gives way in renal or biliary colic, or morphia hypodermically.
Tobacco, 504. As astringent or by the stomach in colic of intestines.
Turpentine, 450. Has been given with advantage in biliary colic.
Warm bath, 66. To ease the pain in biliary, renal or other colic.

COMA.
Bituricates of potash, 258. As a purgative when blood poisoned.
Blistering, 172, 124. In a comatose condition large blisters or mustard poultices should be applied in quick succession to different parts of the body—chest, abdomen, thighs, and calves—often very valuable in the critical condition near the end of an acute illness.
Cold douche, 74. For stupor of drunkenness or of opium poisoning. May have to be repeated if relapses occur. It should be kept up for a long time if pulse and breathing improve or even become no worse.
Croton oil, 341. As purgative—one-quarter or one-third min. every hour.

CONDYLOMATA.
Arsenic, 205. Arsenious acid as a caustic. (See ref.)
Nitric acid, 178. As a dilute wash constantly applied.
Zinc, 288. Chloride, iodide and nitrate locally.

CONFINEMENT.
Actaea racemosa, 461. Strengthens contractions of uterus without prolonging them as ergot does, and so endangers less life of child and soft structures of mother. Sometimes given for after-pains, but ergot preferable here.
Beneficial in mental disturbance before or after confinement.
Useful when lochia are suppressed.
Castor oil, 341. As purgative afterwards.
Chloral, 395. In fifteen gr. doses every quarter of an hour till sleep induced— applicable towards termination of first stage.
Chloroform, 376.
Emetics, 447. Of mechanical irritation of pharynx in floating.
Ergot, 609. In tedious labour where uterus is becoming exhausted, but where there is no obstruction to the passage of the child. (See ref.)
Extremely useful in post-partum hemorrhage.

INDEX TO DISEASES.

679
INDEX TO DISEASES.

CONFINEMENT—continued.
HAMAMELIS, 349. For leg-continued oozing of blood afterwards.
IPRACUANNA, 437. In flooding—also recommended after delivery to promote normal functions.
IRON, 247. Injection of four ozs. of liq. ferr. perchlor, with twelve ozs. water in grave cases of flooding after delivery—care to be taken not to introduce air.
MORPHIA, 570. Hypodermically in tedious labour produced by rigid os uteri.
OPUNITY, 592. A drachm of the tinct. with brandy in profuse flooding.
QUINIA, 631. To strengthen uterine contractions—used by some American writers in preference to ergot.

CONJUNCTIVITIS. (See Eyes, Diseases of.)
BELLADONNA, 549. Locally and internally.
BLISTERS, 127. Behind the ear.
CASTOR OIL, 340. A drop in the eye often attains calm and intoleration of light caused by an irritant.
MERCURY AND MORPHIA, OELATE OF, 467. Outside the eyelid in palpebral conjunctivitis.
OPUNITY, 583. The wine of the 1824 Pharmacopoeia dropped into the eye relieves pain and improves condition of the membrane.
SILVER NITRATE 0/7, 260. Solutions of various strength dropped into the eye.
ZINC, 365. A weak solution of sulphate as drops.

CONSTIPATION.
ALOE, 642, 643. In chronic cases. Often combined with iron.
BELLADONNA, 550. One-sixth to one-fourth of the tincture once a day, especially when dyspepsia. Sometimes a suppository of one or two drs. efficacious in severe cases.
BRASSICA, 249. With alum and gentian in pill night and morning in chronic constipation.
CARBONIC WATER, 272, 275. In habitual constipation—best to use a system as at Carlsbad. (See ref.)
COCONUT OIL, 337. In the obstinate constipation of children.
COFFEE, 611. Is slightly purgative to some persons.
COLOCYNTH, 642. A few drops of the Prussian tincture several times a day in obstinate constipation.
CROTON OIL, 341. A very powerful purgative, sometimes employed in obstruse constipation where other purgatives fail.
DITT, 226. Purridge, brown bread and exercise when busy, worried men become irritable and suffer from headache, unless the bowels act every day. If these remedies fail, try fruit before or after breakfast, or natural purgative waters.
ENEMATA, 57, 59. To unload the bowels, but the habitual use of warm enemata will increase the torque of the bowels.
IPRACUANNA, 437. A grain every morning fasting for constipation from great torque of intestines. It is said to assist the action of the other purgatives.
JALAP, 646. And scammony in obstinate constipation.

CONSTIPATION—continued.
LIME, 217. As saccharated solution—this must not be taken on an empty stomach.
MAGNESIA, BICARBONATE OF, 215. t.c., fluid magnesia and mild aperient. Often combined with rhubarb.
MERCURY, 274. Calomel, or grey powder, as a purgative, especially if stools light. Nitric acid and nux vomica assist its efficacy. (See p. 3.)

NATURAL WATERS, 225. Pullina, Friedrichshall, or Hunyadi—from a wineglass to half a tumbler or more, with an equal quantity of hot water before breakfast.
Pullina or Friedrichshall mixed with milk a good purgative for children.
NUX VOMICA, 365. The ext. with rhubarb or colocynth shortly before dinner, and digestion and the unloading of the bowels. One or two drops of the tinct. two or three times a day will do instead.

ORANGES, 205. One or two before breakfast for moderate habitual constipation, or a glass of cold water before and an orange soon after breakfast.
PODOFILLINUM, 457, 458. One or two drops two or three times a day of the solution of one grain of the resin in one drachm of alcohol for children with hard, clayey, perhaps matted stools occurring after an attack of diarrhoea (often observed in infants who are spoilt). Generally the best purge when stools are dark. Nitric acid and nux vomica should be given simultaneously.

For remarks on indications of the tongue, see p. 3.
RHUBARB, 648. A useful purgative for children, especially when mixed with two or three times its weight of carbonate of soda.
SECKNE, 645. Well combined with a bitter tonic, as gentian.
SOAP, 209. Added to small injections to suspend castor oil or turpentine, or a piece the size of the thumb wetted with castor oil or water may be thrust up the rectum to produce a motion, especially in infants and children.
SULPHATES, 229. In purgative natural waters—small doses often repeated. Sulphate of potash has in some cases proved poisonous.
SULPHUR, 38. Ten grs. with conf. sucrose, or as the German comp. liquefies powder in milk—the latter good for children.
TOBACCO, 204. A smoke after breakfast sometimes beneficial in habitual constipation.

CONValescence.
ALCOHOL, 360. Before or at meals.
CALUMBA, 639. When the stomach is weak.
FATS, 334, 335. Especially cod-liver oil.
LIME, 217. As lime-water or carbonate of lime, in convalescence from serious diseases.
OPTIMUM, 584. As Laudanum injected into the rectum for the wakefulness of convalescents.
SEA-BATHS, 55.

CONVULSIONS.
BITRETRATE OF POTASH, 223. When due to poisoned blood.
BROMIDE OF POTASSIUM, 157. In all forms.
CHOLRALL, 395, 396. In children—five grs. by mouth or the rectum.
CHANTHORUM, 379. Inhalations of great service in children, also in puerperal convulsions.
ICE, 89. To head.
MORPHIA, 379. Hypodermically sometimes arrests puerperal convulsions.
CONVULSIONS—continued.
Spinal ice-bag, 91. In infantile convulsions.
Veratrum viride, 451. Has been employed.

CORYZA AND HAY FEVER.
Aconite, 470. In severe colds with much chilliness, aching of limbs, a hot dry skin and quick pulse.
Ammonia, 209. Inhalation in early stage.
Arsenic, 207. 328. In chronic coryza. Also in periodical attacks of persistent sneezing, with coryza, frontal headache, and often an itching of the nostrils; sore throat, wheezing, and profuse expectoration may supervene. Often this affection, allied to peptic asthma, may be brought on by food or by irritation of dust or pollen. Aconite might be applied to the itching part of the nose.
Arsenic of little use in true hay fever, then aconite internally best.

Campmor, 415. Inhaled or taken by the mouth at the very beginning sometimes prevents it.
Chlorate of potash, 328. Eight or ten lozenges a day will stop many a cold at its commencement.
Iodide of potassium, 157. Ten grains at bedtime at onset to cut short acute cold in head; also useful in chronic colds.
Iodine, 153. Inhalation in daily attacks of cold accompanied by itching of nose or inner canthus.
Ipecacuanha, 445. In hay asthma.
Opium, 591. At night at the very beginning will often cut short an attack of coryza. A glass of hot grog assists its action.
Sulphurous acid, 188. Inhalation, spray, or fumigation in coryza.
Turkish bath, 76. In coryza.
Veratrum viride, 307. If arsenic unsuccessful.

Cough—continued.

Opium, 581. When cough due to inflamed or even ulcerated throat. Morphia lozenges or morphia with glycerine in these cases, which are common in chronic phthisis, very useful. Sometimes also opium and morphia administered so that the medicine clings for some time in contact with structures just outside the larynx effectual in coughs entirely dependent on lung disease.
Tar, 355. In winter cough, especially when paroxysmal.
Turkish bath, 76. In winter cough.

Cracked nipple. (See Nipples, Sore.)

Crick in the neck.
Croton oil, 341. Medicinally.

Croup.
Aconite, 471. Valuable in catarhal croup (spasmodic laryngitis).
Alum, 238. One drachm in honey or syrup every ten or fifteen minutes till vomiting induced. In severe cases vomiting should be caused three or four times a day, treatment to be begun early.
Copper, sulphate of, 283. In small and frequent doses as a vomit.
Lorhia, 643. Has been employed.
Senna, 649. Given by some.
Sulphurous acid, 188, 189. Spray hourly or often in acute attack.
Tannin, 347. A spray containing 5 per cent. of tannin several times a day for fifteen or twenty minutes.
Zinc, sulphate of, 286. As emetic, but others generally preferred.

Cystitis.
Alkalies, 905. Citrates and bicarbonates used to make urine alkaline, when urinary organs irritated or inflamed. When urine already alkaline alkalies must be intermitted.
Buchu, 473. Also copaiba and cubeba in chronic inflammation of bladder and urethra.
Cantabrides, 488. A drop of the tincture (five sometimes) required three times a day.
Carbolic acid, 357. And sulpho-carbates may possibly be used in preserving the urine sweet in cystitis.
Hot reherna, 90. To relieve pain.
Iodoform, 327. A suppository for painful diseases of rectum and bladder.
Opium, 584. An injection of laudanum with starch will subdue pain and frequent micturition.
Turpentine, 400. Has been useful in chronic cystitis.

Dandruff. (See Pityriasis of Scalp.)

Borax, 153. Head to be soaped several times a day with a saturated solution, or the glycerine of borax may be used.

Deafness. (See Ears, Diseases of)
Glycerine, 342. For dryness of meatus—also to form a film to cover ruptured tympanum.
Glycerine of tannin, 346. As application for throat deafness.
DEBILITY.

Alcohol, 5. In aged patients with dry tongue, great care must be exercised and alcohol given in small quantities, the effect on the dryness of the tongue being carefully watched.

— 364. A wine with much ether in debility of old age, especially where sleeplessness, indigestion and stomach cramps.

— 365. Stout or rum and milk, especially in town-living women.

Arsenic, 315. For swelled feet of old or weakly persons and for breathlessness from weakly acting heart.

Calembra, 639.

Chretia, 639.

Cod-liver Oil, 334. In chronic degenerative diseases of old age.

— 335. In chronic diseases of children.

Gentian, 639.

Hydrosolphilus, 522. Of lime or soda in nervous or general debility.

Iron, 243 &c. In anemic subjects.

Morphia, 569. Hypodermically when due to rhinia or hysteria.

Phosphate of Lime, 319. When from prolonged town life or overwork, a grain each of phosphate of lime, phosphate of iron and carbonate of lime for a dose.

Quassa, 630.

Quinia, 621. For pale, badly fed town-dwellers.

Sea-bathing, 55. In chronic illnesses with debility.

Soporifics, 5. In aged patients if tongue is dry great caution must be exercised.

Turkish Bath, 77. When caused by the tropics—caution necessary. When town-dwellers become stout and fleshy.

DELIURIAM.\n
Antimony, 393. In delirium of typhus and other fevers. (See fevers.)

Belladonna, 560. In delirium of typhus and other fevers.

Bromide of Potassium, 169. In delirium resembling delirium tremens, also in acute mania.

Caphor, 417. In large doses.

Chloral, 395. In violent delirium of fevers.

Cold douche, 75. In maniacal delirium—place patient in warm bath during the application.

Opium, 548. Best given in traumatic delirium as a rectal injection.

— 567. Combined with tartar-emetic in fevers, or, better still, morphia may be given hypodermically. Laudanum in low mattersing delirium.

DELIURIAM TRENMS.

Antimony, 394. Tartar emetic with opium to control mania and sleeplessness.

Bromide of Potassium, 169. Especially in earlier stages, and in dispelling delusions remaining after partial subdual of attack.

Capsicum, 433. To induce sleep in early stages.

Chloral, 394. Especially when administered at the onset of the symptoms.

Chloroform, 379. Inhalation has been advised to procure sleep.

Digitale, 502. Half an ounce of the tincture, repeated if necessary in four hours and again in six, and afterwards when needful in two-drachm doses. (See ref.)

DELIRIUM TREMENS—continued.

Hyoscyamus, 370. Or Hyoscyamus, probably useful where delirium like that of acute intermittent delirium.

Ips, 92. To the head.

Opium, 548. Given as rectal injection.

— 558. Hypodermically or with porter or spirits. Test urines first.

If patient strong, delirium boisterous and pulse full, tartar-emetic or acousite should be added.

DEPRESSION AND DESPONDENCY.

Bromide of Potassium, 173. Especially in townpeople.

Phosphorus, 327. In depression from overwork.

DIABETES.

Alkalies, 359. Have been suggested.

Bromide of Potassium, 173.

Glycerine, 343. To be used in place of sugar.

Opium, 550. Very useful.

Oxycr, 326.

Salicylate of soda, 638. Has cured where all other drugs have failed.

Tea-drinks, 94.

Valerian, 645. Large and increasing doses in diabetes insipidus.

DIARRHEA.

Alkalies, 359. Bicarbonates of potash, soda or magnesia when due to excess of acid in intestines.

Alum, 239. Sometimes useful in acute and chronic diarrhoea, even when due to organic disease.

Ammonia, 520. In after stages when mucous membrane continues to pour out watery secretion which perpetuates the diarrhoea.

Arsenic, 301. One drop of lig. arsen. before meals for dysenteries when diarrhoea excited by food.

Also useful in other chronic forms of diarhoea, even when due to organic disease.

— 328. For copious discharge of membranous shreds from bowels and uterus with tenesmus, urination, dysuria, &c.

Attention to Feeding, 277. Small quantities of food frequently.

Bismuth, 249. Half a draught to a draught of the nitrate in chronic diarrhea as in that of phthisis sometimes valuable when all else has failed—should be given in milk.

A grain hourly with milk with sometimes one-sixth gr. grey powder in various forms of diarrhoea of young children.

Caphor, 416. In summer diarrhoea, in acute diarrhoea of infants (may be given in milk), in diarrhoea caused by febrile or exciting drains, or exposure to cold.

Capsicum, 433, 434. In summer diarrhoea and in those persisting after expulsion of irritant.

Castor Oil, 542. In early stages to carry away irritant.

Children's diarrheas sometimes yields to eight or ten drops suspended in muscilage.

Chamomile, 646. An infusion useful in summer diarrhoea of adults, or of children from teething.

Chloride of Magnesium, 222. In catarhal conditions of intestines.

Chloride of Calcium, 316. In chronic diarrhoea with weak digestion.
DIARRHEA—continued.

CHLOROFORM, 377. As sp. chloroformi combined withstringents and opium after removal of excitation.

COD LIVER OIL, 377. In chronic diarrhea of children with pale sinking motions, wrinkled skin and perhaps vomiting.

COLD OR TYPED PACKING, 58. In summer diarrhea of children.

COFFEE SULPHATE, 284. By mouth or as an injection in severe chronic or acute diarrhea with or without organic disease.

FLANNEL BINDER, 277. Round the belly in infantile diarrhea.

INJECTIONS, 99, 300. Of starch water at 100 degrees F. with laudanum and acetate of lead or sulphate of copper. Invaluable in urgent cases such as the choleric diarrhea of children.

IPACALABAHA, 459. Hourly drop doses of the wine, especially if vomiting be present, in dysenteric diarrhea of children.

IRON, 242. Astringent preparations, especially the permanganate of.

LEAD, 259. A few grs. of the acetate with a small dose of morphia, a sure and speedy remedy for summer diarrhea; the acetate with opium in purging due to dysentery, typhoid, or tubercular disease of intestines. It increase the efficacy of a starch injection.

LIME, CARBONATE OP, 217. In the later stages when the irritant got rid of. As chalk mixture in diarrhea from more serious causes as typhoid or phthisis.

For indications afforded by condition of tongue, see p. 3.

Cholera, 274-277. A third of a grain of grey powder every hour or two in diarrhea of children with bad digestion, flatulent distension and clayey sinking motions.

Where children or adults suffer from acute or chronic diarrhea, with slinny, perhaps bloody stools and pain and straining, give frequent teaspoonful doses of a solution of one grain of bichloride in ten oz. of water.

Grey powder, a sixth of a grain hourly, then every two or three hours in infantile diarrhoeas with watery and offensive, muddy or green stools to the number of ten or twelve a day—vomiting is an additional indication for this treatment.

In all cases of infantile diarrhea little food should be given, but frequently.

When children pass large acid, offensive curdy stools, mercury of little use—here milk should be entirely withheld.

The chronic diarrhea of adults with watery pale stools often yields to the hundredth of a grain of corrosive sublimate every two or three hours, this may be employed in diarrhea of typhoid or phthisis. (See also p. 456, 457.

NITRIC ACID, 3. With nux vomica to assist action of mercury or podophyllin.

Opium, 582-4. Or morphia in acute forms after expulsion of offending matter, also in chronic diseases of children with sour-smelling, pale, and pasty motions, especially if acid combined with peptic. (See also p. 456, 457.

DIARRHEA—continued.

and diarrhea, it will often subdue the symptoms.

In dyspepsia with diarrhea, common in children, where there is sinking at the stomach, relieved for a short time by food, and the occurrence of an evacuation of partially digested food immediately after the meal. Two to five drops tr. 0pi a few minutes before each meal very efficacious, but arsenic even more so.

An injection with starch in acute and chronic diarrhoeas, including those severe forms which sometimes carry off young children in a few hours. Also in typhoid tubercular ulceration of intestines and dysentery.

PHOSPHATE OF LIME, 219. In chronic diarrhea, tubercular or otherwise.

Podophyllum, 456, 459. In chronic diarrhea with high-coloured motions and cutting pains; also in morning diarrhea; also in chronic diarrhea with watery, pale, frothy motions, with severe cutting pains. (See also p. 349.

RHUBARB, 647. In early stages to get rid of irritant and afterwards to check the diarrhoea.

RHEUM CRESUN, 459. In morning diarrhoea.

SALICYLIC ACID, 676. As injection in dysenteric diarrhoeas.

SINGERS, 261. In acute and chronic diarrhoea.

SODIUM BICARBONATE, 91. For cramps. Also when due to excessive action of mucous membrane.

SULPHURIC ACID, 184. In summer and choleric diarrhoea. Small doses in chronic diarrhoea, also in hectic.

TANNIN, 347, 248. As catechu, kino, red gum, rhasany and haematoxylin in acute and chronic diarrhoea, internally or as injections.

Vermiculatum, 425. Has been used with advantage in the vomiting and purging of summer diarrhoea.

ZINC, OXIDE OP, 285. Two to four grs. doses every three hours in diarrhoea of children.

DIPHTHERIA. (See Throat, Diseases of.)

CHLORINATED SODA, 148. Strong solution to throat.

CHELIDON SOLUTION, 148. For soothing of throat.

HYDROCHLORIC ACID, 190. Locally.

ICX, 59. To be sucked especially at commencement and continued constantly till disease declines.

IODINE, 154. As inhalation.

IRON, 245. Large doses of perchloride—solution better than tincture—every hour or oftener. Solution also to be gently painted on throat or applied with atomizer.

SILVER NITRATE, 260. Of doubtful benefit.

STROBILIN, 595. Hypodermically for paralysis after diphtheria.

TANNIN, 347. As spray (5 per cent. solution).

DIPSOMANIA.

ANCINE, 308. For distressing vomiting—one drop of liq. arsen, before breakfast.

CAPSICUM, 432. Large doses before meals.
DIPSOMANIA—continued.

and whenever depression and craving for alcoholic occurs. With bromide or arsenic and betters to assist in overcoming habit.

DROPSIES.

Nature and causes of, 208 pp. 20, 41.
Mode of action of remedies, pp. 42, 44.

ACUPUNCTURE, 103, 104. Or, better still, incisions from three quarters to an inch long—one over each external malleolus generally sufficient. Keep a hot moist sponge containing carbolic acid to incisions, and put feet and ankles into hot bath for an hour night and morning. More useful in Bright’s disease and in aortic than in tricuspid mischief.

ARSENIC, 315. For swollen feet from debility. BITARTRATE OF POTASH, 206. Especially in general dropsies; useful in Bright’s disease to prevent watery accumulations and to draw off effete matters.

COCAINIA, 642. Has been used.

CORDIA, 473. In some cases of ascites and Bright’s disease.

DIGITALIS, 498, 499. The fresh infusion is best in heart disease, 497.

ELATERRIUM, 418. In kidney and heart disease: must be employed cautiously. (See ref.)

IDSIDE OF POTASSIUM, 160. In some cases of Bright’s disease.

JALAP, 646. In combination with other substances.

JUNIPER, 474. Esteemed by some in scatatorial dropsy.

SQUILL, 645. Recommended in all forms.

DYSENTERY.

ALUM, 239. For the diarrhea.

ARSENIC, 231, 232. (See Diarrhea.)

CASARCCILLA, 641. Has been employed.

HAMAMELIS, 340. When discharges contain much blood.

INJECTIONS, 301. A pint of water with ten to twenty grains of sulphate of copper in the diarrheas of chronic dysentery.

Large emollient enema useful in early stages of dysentery.

IPESCUANCHA, 437, 439. Large doses required. The dysenteric diarrheas of children will offer yield to hourly drop doses of ipecucuana wine, especially if vomiting present.

LEAD, 252. The acetate with opium for purging.

MERCURY, 275. A hundredth of a grain hourly or every two hours of the bichloride in acute or chronic dysentery, if stools are slimy and bloody.

OPHID, 583. For the purging.

DYSMENORRHEA.

ACTEA, 459.

ARSENIC, 324. When accompanied by copious discharge of membranous shreds from bowels and uterus.

CAPSICUM, 472.

CANNABIS INDICA, 683. Very useful.

CROTON CHLORAL, 399. In dysmenorrhoeal neurinia.

DYSEPSIA.

ALCOHOL, 356. In loss of appetite and digestive power from fatigues, a glass of wine or a little brandy and water before food; useful also in indigestion during convalescence from acute diseases or in town-dwellers. During acute disease alcoholic should be given with food, little and often.

ALKALIES, 354. Shortly before a meal increase gastric juice, markedly better than acids in atomic dyspepsia. (See also p. 511.)

ALKOLS, 643. In combination, for habitual constipation with dyspepsia.

The compound decoction a good after-dinner laxative. One grain of the watery extract with nux vomica, gentian and cinchona, a good dinner pill.

ARSENIC, 3. Indicated by a too clean, too smooth red tongue with prominent papillae.

208. One drop of liq. arsen. before food in irritative dyspepsia and dyspepsia in which diarrhoea is excited by food.

BELLADONNA, 550. One-sixth to one-fourth of the extract once a day when there is constipation.

BISMUTH, 248, 254. Mixed with vegetable charcoal in flatulent dyspepsia.

CALOMEL, 639. Easily tolerated when stomach weak.

CASARCCILLA, 641.

CHALK, 332. 333. Where there is flatulence. (See ref.)

CHERRITTA, 640. Shortly before food.

COD LIVER OIL, 316. In the "craving" at the epigastrium, of the aged if intestinal canal not in an irritable condition.

COLOCHYUM, 455. In gouty subjects.

COLD WATER, 95. Half a tumbler half an hour before breakfast.

CREOSOTE, 339. Often relieves stomach pains occurring after food.

DRINKING LITTLE AND ONLY SOME TIME AFTER MEALS, 514. In "Indigestion of fluids." (see ref.)

GERMIA, 639. Often mixed with senna.

HYDROCHLORIC ACID, 181, 182. Dilute, after a meal increases gastric juice.

IPESCUANCHA, 433, 435. In irritative dyspepsia, acute and chronic. When associated with constipation, depression, and food lying on the stomach like a heavy weight.

MERCURY, 3. As grey powder if constipation with light-colored stools; nux vomica and nux vomica may be given simultaneously.

For remarks on indications of the tongue, see p. 5.

277. A grain of grey powder three or four times a day in dyspepsia occurring during chronic disease or in convalescence.

278. If constipation, half a grain of calomel with three grains extract hyosc in pill for three nights is better.

MINERAL ACIDS, 470. For eructations of offensive gas with or without oxaluria.

MORPHIA, 578. Hypodermically, when dyspepsia of an irritable kind in an irritable subject.

NUX VOMICA, 593. Where flatulence, weight on head or heartburn.

OPHID, 583. When sinking at stomach relieved temporarily only by food which produces an excursion almost immediately of partially digested matters, common in children, two to five drops of tr. opii a few minutes before meals very useful—arsenic even more so.

508. In nervous people, with weight on head, flushings, perspirations, and depression. A drop of laudanum with two of tr. nux vom. three or four times a day.
DYSPEPSIA—continued.

OXYGEN, 120. In phthisis, not febrile.

POODHYPHILUM, 459. Useful when tongue furred, especially if stools dark. This helps when bowels open or constipated, but in latter case 1-30th to 1-20th grain doses only. A mixture containing nux vomica and nitric acid should be given at the same time. If disagreeable taste persists, rinse the mouth with solution of permananganate of potash.

For canker taste, especially in the morning. If this fail, try mercury.

QUINIA, 614. Especially in elderly people living in towns. Checks excessive fermentation in the alimentary canal.

SENA, 648. Combined with gentian when there is constipation.

SUPLPHO CARBO-LATE OF SODA, 354. And carbolic acid both useful in flatulence, especially when it occurs immediately after a meal or gives rise to "spasms." In these cases phosphorus is, however, better.

TANNIN, 347. In irritative dyspepsia.

TURKISH BATH, 377. For slight indigestion and malaise after dining out.

EAR DISEASES. (See also Otorrhoea.)

ACONITE, 476. In otitis.

COUNTER-IRRITATION, 137. By blistering fluid or croton oil liniment behind the ear often relieves earache.

GLYCERINE, 342. For dryness of meatus and as a filter to cover the tympanum when ruptured.

STRACHNA, 595. Hypodermically.

ECHTHYMA.

QUINIA, 611. For mal-nutrition on which the echthyma depends.

ECZEMA—continued.

stage if inflammation not great ten min.

Carbolic acid to one oz. of lard, also in eczema capitis. Sometimes tar better than its ointment: the back of hands undilated petroleum, but rather painful.

328. Petroleum, cade and carbolic soaps useful.

CAUSTIC POTASH, 193. As liquid potassae locally in chronic eczema.

CINCHONA, 613. Powdered bark locally to check profuse secretion, probably cheaper preparations of tannin as useful.

COD-LIVER OIL, 193. Or glycerine applied at night to obviate brittleness of skin when caustic lotions used.

CYANIDE OF POTASSIUM, 574. Or hydrocyanic acid. (See Itching.)

GLYCERINE, 193, 342. Or better still glycerine of starch for rough skin left after eczema.

GLYCERINE OF TANNIN, 345. In most forms.

LEAD, 249, 250. Soluble salts as lotions when much inflammation and copious discharge.

If great inflammation, surface to be covered constantly with rags soaked in the lotion. In some cases a poultice at night and lotion during the day. A strong loton best in diffused eczema without weeping but with much itching. A weak alkaline or sulphur bath assists action of lotion. Equal parts of emp. plumb and fine oil and applied on soft linen twice a day invaluable in subacute stage. (See ref.)

LIME, CARBONATE OF, 214. As dusting powder.

LIME WATER, 314. As sedative and to check discharge. After inflammation subdued lime water and glycerine a comforting application.

MERCURY, 304. Citrine ointment, especially when skin healed, very useful when eczema attacks hairy parts of face, sometimes well to mix it with tar ointment.

MILK, 193. With water as local application.

OIL OF CADE, 193. Equal parts soft soap, rectified spirit and oil of cade, night and morning.

OILS AND PASTES, 330. To prevent irritation from the discharge, generally mixed with oxide of zinc.

Simple oils facilitate the removal of scabs.

Potato poultice, 56. Cold, sprinkled with powder composed of camphor, t alc and oxide of zinc, when much inflammation and sensation of heat, or the powder alone may be dusted over surface.

Poultries, 83. If skin is much inflamed.

SILVER NITRATE, 238. To be painted on limited patches, most serviceable after weeping stage.

SOAP, 192. Moist, weeping surface to be washed with soap and water night and morning.

SULPHIDES, 139. As baths, not in acute stage.

SULPHUR, 120. Internally.

TAR, 355. In treacle, pills or capsules, from three to fifteen min. for a dose in chronic eczema.

TURKISH BATH, 76.

WARM BATH, 56. Especially in acute stages—rain-water best.

YOLK OF EGG, 193. With water as local application.

Zinc, 285. The ointment of the oxide as a mild stimulating application after inflammation subdued when raw surface indolent.

Oxide and carbonate used as dusting powders, generally greasy applications better. (See p. 514.)
INDEX TO DISEASES.

EMETICS, DEPRESSION FROM.
Ammonia, 210. Combined with other emetics to obviate depression.

EMISSIONS. (See Spermatorrhea.)

EMPHYSEMA. (See Bronchitis.)
Arsenic, 315. For emphysematous persons who on catching cold are troubled with slight wheezing and some dyspoea. If bronchitis or dyspoea very severe, lobelia or belladonna better. Arsenic especially useful where this affection can be connected with the recession of a rash.

Chloral, 306. For the shortness of breath brought on in emphysematous persons by catching cold. If obstructed circulation, caution required.

Cod liver oil, 336. Checks degeneration.
Lobelia, 664. Alkalis the dyspepsia which accompanies capillary bronchitis in emphysema.

Purging, 620. In obstruction of right heart.

EMPHYMA.
Carnic acid, 325. A weak solution to be injected after evacuation.

Chlorine solution, 148. For washing out cavity.

Loburne, 151. Solution to be injected after tapping.

Quinine solution, 148. For washing out cavity.

ENERGY, LACK OF.
Turkish baths, 77. Useful to town-dwellers, with soft flabby tissues and mental depression.

EPIDIDYMUS.
Ointment of mercury and morphia, 256. Locally.

EPILEPSY.
Arsenic, 325. Sometimes useful.

Belladonna, 559. For method (see ref.)

Bromides, 261. (See ref.)

Copper, 284. The salts have been given.

Counter-irritation, 122. (See ref. for discussion.)

Iron, 245. Especially when anemia or uterine obstructions.

Musk, 326. Has been given.

Nitrite of amyl, 409. As inhalation or in two or five min. doses in mischief, especially when fits are very frequent.

Silver, 262. Nitrate or oxide, occasionally given with benefit.

Spinal ice bag, 51.

Valerian, 425. Has been used with occasional advantage.

Zinc, 287. As oxide or sulphate—bromide of potassium better.

EPISTAXIS. (See Hemorrhage.)

Aconite, 475. Small and frequent doses often quickly check epistaxis in children and pleasure. Alum, 236. May be injected or snuffed up in powder.

EPISTAXIS—continued.

Compression of facial artery, 447.

Digitalis, 520. The infusion best.

Ergot, 688, 609. Hypodermically if urgent in two to five grain doses. May also be given by the stomach.

Hamamelis, 245. (See Hemorrhage.)

Ipecacuanha, 447.

Spinal ice, 52. Water bag, 93. To cervical and upper dorsal vertebras.

ERUPTIONS, OFFENSIVE.
Mineral acid, 182. To correct the oxaluria on which the eructations depend.

ERYsipelas.
Aconite, 475. Administered at commencement, often at once cuts short the attack.

Very useful in the erysipelas of inflammation following vaccination—belladonna ointment may likewise be used.

Belladonna, 551. Internally and externally may be used with aconite.

Collodion, 328. Painted over superficial erysipelas, but this often cracks and is inferior to a solution of nitrate of silver in water or in nitrous ether.

Digitalis, 520. Infusion locally.

Hot fomentations, 87. When limb extensively affected.

Iron, 245. Paint affected and surrounding skin with solution to prevent spreading.

Iron, 245. Large doses of perchloride very frequently.

Silver, nitrate of, 292. The skin to be well washed with soap and water, then with water, and to be wiped quite dry—next a solution of eighty grn. of the brittle sticke to four drms. of water, to be applied two or three times to inflamed surface, extending two or three inches beyond it.

Sulphuric acid, 283. Equal parts of P.H. acid and glycerine.

EXHAUSTION.
Ammonia, 210. Internally its influence is but brief.

Copper, 284. Or tea, both in hot and cold climates.

Phosphorus, 377. For physical and mental exhaustion. Influence questionable.

EXOPHTHALMIC GOITRE. (See Goitre.)

EYES, DISEASES OF. (See Conjunctivitis.)

Belladonna, 549. Locally and internally in iritis, conjunctivitis, and other inflammations.

Blister, 197. Behind ear or to tampon in rheumatic, gouty and simple inflammation—blistering paper enough. Obstinate forms of tinea tarsi sometimes yield to flying blisters on the temple.

Castor oil, 345. Applied to allay pain from an irritant, as sand.

Chloroform, 369. Vapour of, close to a photophobia eye relieves.
INDEX TO DISEASES.

EYES, DISEASES OF—continued.

MERCURY, RICHLORIDE OF, 282. Of great service in iritis.

AND MORPHIA, OLEATE OF, 566.
Outside the eyelid in palpebral conjunctivitis and hordeolum; also in syphilitic iritis.

STRYCHNIA, 595. Hypodermically in muscular asthenopia, amblyopia, tobacco amnesia, and in progressive nerve atrophy not dependent on intra-cranial disease, also in traumatic amnesia.

FECES, HARDENED.
ENEMATA, 98. A tube may be passed through the mass (see ref.).
EXTRACTION, 98. By finger.

FAINTINGS.
ALCOHOL, 365. As brandy or wine when heart suddenly enfeebled from fright, &c.
AMMONIA, 599. Breathed into the air-passages.

— 510. Internally.
CHLOROFORM, 371. Internally, but effects more transient than those of alcohol—often given to hysterical people.
COLD WATER, 47. Sprinkled on face.
POSITION, 365. Patient should lean forward with the head as low as possible between the legs.

FATIGUE.
ACTRAX, 464. For headache from over-study or excessive fatigue.
ARMICA, 58. A few drops of tinct. internally for aching of muscles.
COFFEE, 611. And tea both in hot and cold climates.
DRIPPING WET COLD SHEET, 58. As a restorative and to prevent aching of muscles.

FAVUS. (See Tinea.)

FEVER, CHRONIC.
This occurs in Abcess, Ague, Leucocytoma, Phthisis, Rheumatism, Syphilis; see under each heading, also p. 50.

FEVERISH COLD. (See Coryza.)

FEVERS, ACUTE.
Condition of pulse, see pp. 7-15.
Condition of skin, see pp. 19-50.
Remarks on temperature, with hints as to diagnosis, see pp. 20-99.
Condition of tongue, see pp. 2-6.

ACETATE OF AMMONIA, 311. Is a good diaphoretic, and is especially useful in the milder forms, as in common catarrh.
ACID DRINKS, 93. Such as raspberry vinegar, cider, or tartic acid. (See also p. 186.)
ACONITE, 19. In small often repeated doses while temperature high and skin hot and dry—most successful when no lung complication. Where there is, tartar-etic better.

— 458, 469. Has a marvellous power of controlling inflammation and subduing fever.

FEVERS—continued.

ALCOHOL, 4. When nervous depression, indicated by dry tongue, delirium, and sleeplessness. When wakefulness is the cause, it is better to try soporifics first.
— 9. When pulse shows cardiac weakness. Effect on pulse to be watched.
— 20. May be indicated by profuse sweating at commencement (see ref.).
— 366. When tongue and skin become moist, the breathing more tranquil, and sleep gained under its use. For rules see ref.
ALKALIES, 204. Citrates and acetates are considered as febrifuge. They possibly eliminate urinary water.
AMMONIA, CARBONATE OF, 211. In scarlet fever and measles.
ANTIMONY, 291. Tartar-etic wine as a diaphoretic; large doses are given by some to cut short acute specific fevers and inflammations. Ague may sometimes be cured by antimony, and this often assists quinine in curing it. Ipecacuanha and other emetics should be preferred.
— 293, 294. When much excitement and delirium, tartar-etic in full, with opium in small doses, but if wakefulness predominates with not very boisterous delirium the antimony to be reduced, and the opium increased.
ARESINIC, 151. Sometimes given in prostrating acute fevers to strengthen pulse and invigorate patient.

BELLADONNA, 560. In delirium.
BITTERS, 150. As orange-peel or cascarilla mixed with acid drinks to quell thirst.
BLISTER, 124. Flying, or mustard poultices in the semi-comatose state sometimes following fevers, &c.
CAMPHOR, 417. In adynamic fevers and where there is delirium.
CASTOR OIL, 341. As purgative.
CHLORAL, 393. In violent delirium of typhus.
COLD APPHUSION, 59. At the beginning of acute fevers.

— 72. Applied gently over forehead for headache.
COLD BATHS, 59. Employed early diminish frequency of pulse, strengthen heart, prevent delirium, produce sleep, lessen risk of bedsores or exhausting suppuration. The only remedy in hyperpyrexia (see p. 75).
COLD PACKING, 75. In specific fevers and acute inflammatory diseases—especially useful on retrogression of the rash.
CONIUM, 511. Has been recommended as it reduces the frequency of the pulse.

CORYZA, 502. Large doses often required to reduce temperature, much used in fevers on the continent, especially recommended in typhoid.

GLYCERINE, 543. For keeping moist the lips, tongue and gums when dry, and coated with mucus in acute diseases.
HOT AFFUSION, 75. Over forehead for headache, sometimes better than cold.
ICE, 53. To be sucked for alleviating thirst.
ICE-BAG, 72 and 88. To forehead for headache.

MUSK, 318. And castor-oil have been given in fevers to prevent prostration.
MUSTARD, 430. As bath on recession of the rash of scarlet fever.

NARCOTICS, 4. Chloral, bromide of potassium or opium when nervous depression, indicated by dry tongue or delirium with sleeplessness.

OPIUM, 587. For delirium, either noisy or muttering with picking of bed-clothes. If
FEVERS—continued.

Furious, tartar-emetic should be combined with the opium. Morphia hypodermically is often the best way of administering an opiate. In extreme weakness with sleeplessness, and brown, dry tongue, laudanum helps a patient over the critical stage with less alcohol than would otherwise have been required. (See p. 388.)

PHOSPHATE OF LIME, 340. In hectic.

QUINIA, 630. Especially in typhoid.

SALICYLIC ACID AND SALICYLATE OF SODA, 656. In large (one drachm) doses every night, or in smaller and more frequent doses, reduce temperature in most febrile diseases, especially in rheumatic fever.

STRYCHNIA, 395. Hypodermically for paralysis after low fevers.

SULPHATE OF MAGNESIA, 292. Or phosphate of soda as purgative (see ref.).

WARM BATH OR WARM SPONGING, 66. In simple fever of children.

FISSURE.

BELLADONNA, 547. The extract locally.

BROMIDE OF POTASSIUM, 152. In five parts of glycerine as local application in fissures of rectum.

CASTOR OIL, 341. In fissure of anus.

FORCIBLE DISTENSION, 547. (See note.)

ICE, 89. As a local application to remove pain after operation.

OPIUM, 584. With gall ointment for fissures of anus. Mild purgatives should be simultaneously employed.

SULPHUR, 137. As a mild purgative to cause soft motions.

FLATULENCE.

ABSTINENCE FROM SUGAR AND STARCHY FOOD, 133. Also from tea.

AMMONIA, 210. In alkaline preparations for flatulent distension of stomach and intestines (palliative).

ASSAPETIDA, 426. When unconnected with constipation or diarrhea—useful for children.

—One drachm of a mixture of one drachm of the tinct. to half a pint of water.

BISMUTH, 132 and 345. Mixed with charcoal in flatulent dyspepsia.

CAPSICUM, 434.

CARBOLIC ACID, 354. Most successful when no acidity.

CARLISBAD WATER, 228. Where acidity, constipation and pain at epigastrium, over liver or between shoulders, with sallow complexion and jaundiced conjunctiva.

CHARCOAL, 134. Five or ten grs. soon after meal if wind half-hour or more after, but just before meal if wind formed during or immediately after it. Obviates both wind and acidity.

CHLOROFORM, 570. Drop doses, pure.

ESSENTIAL OILS, 472. Especially of cajuput and cloves, or spirit of horseradish.

FRECACUNHA, 435, 472. When constipation, depression and weight on stomach, especially in pregnancy.

MERCURY, 374. Half a grain three times a day when flatulence accompanied by clayey stools.

NUX VOMICA, 132 and 596. When constipation, heartburn and weight on head.

SULPHO-CARBAROLATES, 354. Most successful when no acidity.

SULPHOSODA CARBONATE, 354. Or carbolic acid in flatulence occurring immedi-

FLATULENCE—continued.

ately after meals, also when accompanied by "spasms;" here, however, phosphorus better.

SULPHURIC ACID, 158. In five to ten min. doses when produced by fermentation.

FLUSHING HEATS.

BROMIDE OF POTASSIUM, 152. Where mental depression at change of life.

NITRITE OF AMYL, 440, 447. A tenth to a sixth of a grain in thirty times its volume of rectified spirit.

NUX VOMICA, 571. The tinct. combined with small quantities of laudanum in so-called hysteria of middle-aged people with flatulence, weight on head and perspirations.

VALERIANATE OF ZINC, 495. At change of life. Some prefer valerian or its tincture.

GALL STONES.

CARLISBAD WATERS, 228. A system required. (See ref.)

COLORAL, 357. Sometimes relieves the pain.

GELSENIUM, 541. Five drops doses of the tincture every quarter of an hour.

SODA, 293. CARBONATE OF SODA, 351. A teaspoonful in a tumbler or two of hot water.

GANGRENE.

CARBOLIC ACID, 357. Locally.

CHARCOAL, 134. Poultices,—efficacy doubtful.

OXYGEN, 139. As gaseous bath in senile gangrene.

GASTRALGIA AND GASTRITIS. (See Stomach, diseases of.)

GIDDINESS.

COD-LIVER OIL, 335. In giddiness of the aged when no serious brain disease.

GLANDS, ENLARGED.

BLISTERS, 137. Or iodine, 251.

BROMIDE OF POTASSIUM, 154. As ointment.

—159. For mamma and testicle, but especially for thyroid.

MERCURY AND MORPHIA, OLEATE OF, 366. In obstinate and painful tonsillitis and inflammation of lymphatic glands.

SULPHURIC ACID, 158. For hard, swollen glands behind angle of jaw with deep-seated suppuration.

GLAUCOMA. (See Eye, diseases of.)

GLEET.

BISMUTH, 243. (See Gonorrhoea.)

BISPOT, 128. To perineum in obstinate gleet.

CANTHARIDES, 428. Drop doses.

COPII, 428. Solution of the sulphate in injection.
INDEX TO DISEASES.

GLEET—continued.
Glycerine of tannin, 348. With an equal quantity of olive oil or mucilage as injection—two drachms of this mixt. enough. Persevere eight or ten days after discharge ceased, and do not use at bedtime. Iron, 247. (See Gonorrhoea.) Lead, 251. (See Gonorrhoea.) Lime-water, 217. As injection. Oil of sandal wood, 444. Fifteen minims three times a day. Turpentine, 450. Zinc, 285. The sulphate or chloride as injection.

GOITRE.
Belladonna, 586. Five min. of the tinct. hourly, of great service in exophthalmic goitre. Iodide of potassium, 159. Internally and externally in hypothyroid of thyroid. Iodine, 159. Liniment applied as often as state of skin will permit. Mercury, Bihydrode of 368. As ointment assisted by the sun's rays, remarkably useful in India. (See ref.)

GONORRHOEA—continued.
Glycerine of tannin, 348. With an equal quantity of olive oil or mucilage as injection—two drachms of this mixt. enough. Persevere eight or ten days after discharge ceased, and do not use at bedtime. Iron, 247. (See Gonorrhoea.) Lead, 251. (See Gonorrhoea.) Lime-water, 217. As injection. Oil of sandal wood, 444. Fifteen minims three times a day. Turpentine, 450. Zinc, 285. The sulphate or chloride as injection.

GONORRHOEA.
Aconite, 476. A drop of the tinct. each hour in acute stage. Alkalies, 905. As citrates or bicarbonates to make urine alkaline. Avoidance of alcohol, 368. Very important. Bismuth, 249. Half an ounce with equal weight of glycerine and three ounces water, useful as injection in chronic stage. Blistering, 258. A flying blister every night for gonorrhoeal rheumatism. Cannabis indica, 608. Occasionally useful. Cantharides, 450. Drop doses. Coparina, 453. Best in chronic form. Copper, sulphate of, 284. Solutions are employed as injections. Currants, 453. In large doses at commence ment. Glycerine of tannin, 348. One drachm with equal quantity of olive oil or mucilage as injection in after stages. Persevere eight or ten days after discharge ceased. Do not use any urethral injection at bedtime. Iron, 247. Tinct. perchlor. half a drachm, tinct. opli one drachm to a pint of water as injection, or ferr. sulph. gr. xii, tinct. opli half oz. to eight ozs. of water to be used three times a day. Lead, 251. As injection sometimes employed. Oil of sandal wood, 444. Fifteen min. three times a day in acute and chronic gonorrhoea. Silver, nitrate of, 466. An injection of twenty grs. to the oz. said to cut short the attack—or one of one or two grs. to the oz. may be used several times a day. Probably tannin is better both for gonorrhoea and gleet. Sulpho-carbonate of zinc, 357. Twenty grs. to eight ozs. of water as injection two or three times a day. Turpentine, 450. Zinc, 285. A grain or two of chloride in a pint of water injected hourly, often removes the disease in twenty-four to forty-eight hours if used at the commencement. Rest should be observed if possible. If the frequent injection causes pain in testicles, suspend them in hot water and foment them

GOUT.
Aconite, 475. For gouty pains. Blisters, 128. A flying blister every night in chronic or subacute gout. Carbonate of lithia, 156. Five grs. to the oz. on list applied round gouty enlargements and joints, especially if skin broken. Carlsbad waters, 248. A system required. (See ref.) Citrate of lithia or of potash, 197. Used in same way as the carbonate of lithia when skin broken. Cod-liver oil, 336. In chronic gout. Colchicum, 454. A drachm of the wine often removes the severest pain in an hour or two. Useful in bronchitis, asthma, urticaria, dyspepsia, &c., occurring in gouty persons. Collodium, 259. The contractile variety with or without iodine, painted over inflamed part in acute gout, soon relieves the pain. Too many costs must not be applied. Iodide of potassium, 159. Especially when pain worse at night. Iodine, 150. Painted round joints in chronic gout. Iodoform, 251. Not if inflamed. Oil of peppermint, 421. To be painted on painful part. Packing, 57. Strichnia, 595. Hypodermically for later stages of gout paralysis. Sulphides, 193. As baths in chronic gout. Sulphur, 450. Acid, 89. After fumigation, patient to be covered with bed-clothes which have been exposed to strong fumes, this produces perspiration, sleep and relief. Turkish baths, 76. In subacute and chronic gout. Veratrum, 450. A strong ointment to painful joints at onset.

HAY FEVER. (See Coryza.)

HEMATEMESIS. (See Hemorrhage.)

HEMATURIA.
Camphor, 457. Two to five grains when bloody, coagulable urine due to oil of mustard, turpentine, copaiba, or cantharides. Cannabis indica, 608. Said to relieve dysuria and strangury. Bloody urine considered by some to be a special indication for its use. Hamamelis, 347. Quinia, 251. Useful in some cases of intermittent hematuria. Tannin or gallic acid, 347. Turpentine, 458. In very small doses.

Y Y
HEMORRHAGE. (See Hemorrhage.)

COMMON SALT, 293. Half a teaspoonful taken dry and repeated occasionally, till nausea is induced.

DIGITALIS, 292. The infusion in large doses very useful.

ENGOT, 509. Thirty or forty min. of the liquid ext. every three or four hours or hourly in severe cases. Ergotin should be used hypodermically in very urgent hemorrhage, in two to five gr. doses.

HAMAMELIS, 349. (See Hemorrhage.)

ICE, 88. To be sucked.

IPERCUANNA, 447.

IRON, 240. The acetate. (See Hemorrhage.)

MORPHIA, 570. Small doses hypodermically have been employed successfully.

SPIRAL HOT-WATER BAG, 93. To cervical and upper dorsal vertebrae.

SULPHURIC ACID, 173. Supposed to be useful.

TANNIN OR GALLIC ACID, 348.

TURPENTINE, 419. In drachm doses every three hours. This may, however, cause unpleasant symptoms.

HEMORRHAGE.

ACIDS, 170. e.g. Diluted vinegar to leech bites, piles, cuts, &c.

ALCOHOL, 362. Brandy or wine when heart suddenly enfeebled by hemorrhage.

ALEM, 236. In slight hemorrhages as leech bites or piles, it may be dusted on after wiping dry.

— 213. Will often check bleeding from stomach; other astringents better.

COPPER, SULPHATE OF, 283. In stick, solution, or ointment, to arrest bleeding from small vessels.

CRIOTHE, 350. Or carbolic acid.

DIGITALIS, 292. The infusion best.—large doses may be needed.

ENGOT, 508, 509. Most valuable for hemorrhage, epistaxis, hamatosmesis, and intestinal hemorrhage in typhoid fever. In urgent cases ergotin should be administered hypodermically in from two to five gr. doses. In less urgent cases it may be given by the stomach.

HAMAMELIS, 349. In hemoptysis, hamatosmesis, hematuria, epistaxis, bleeding piles, varicole, and the ooze of blood persisting after a confinement. Dose, one or two minims of the tincture every two or three hours.

ICE, 88. In hemorrhage generally, when from stomach small pieces to be swallowed.

IPERCUANNA, 447. In flooding after delivery.

IRON, 240. The sulphate and feric chloride solid or in solution. The chloride controls bleeding from small vessels, but irritates the surface of wounds and prevents union by first intention, which carbolic acid does not.

— 241. Astringent preparations in hemorrhage of stomach.

— 245. In hemorrhage from lungs and kidneys the acetate is best; add sufficient to water to make it taste, but not disagreeably, and let patient constantly sip this.

— 246. In hemorrhage from lungs and kidneys the acetate is best; add sufficient to water to make it taste, but not disagreeably, and let patient constantly sip this.

— 247. Injection of perchloride in post partum hemorrhage.

LEAD, 290. The liquor may be used to check hemorrhage from small vessels; other astringents better.

OPIUM, 591. Tr. of opium in a large dose (one drachm) with brandy in profuse flowing after parturition.

QUINIA, 621. In passive bleeding.

SULPHATE OF, 173. Bleeding leech bites may be touched with a stick of caustic.

HEMORRHAGE—continued.

SPIRAL HOT-WATER BAG, 93. Apply to cervical and upper dorsal vertebrae for epistaxis or hemoptysis.

SULPHURIC ACID, 173. In bleeding from stomach.

— 185. Supposed to check hemorrhage from lungs or womb.

TANNIN, 348. In hemorrhage from stomach, lungs, ovaries and kidneys.

TURPENTINE, 419. A drachm every three hours when from lungs, nose, uterus or bladder. If from kidneys much smaller quantities must be given.

Reported to be useful in hemorraghetic diathesis.

HEMORRHAGE, POST PARTUM.

COMPRESSION OF AORTA, 447. Might possibly be of service.

ICE, 88. Pouched into uterus or rectum.

IPERCUANNA, 447. Large doses recommended.

IRON, 240. Perchloride, diluted, as injection. MECHANICAL EXCITATION OF VOMITING, 447.

OPHIUM, 591. 31 with brandy when much exhaustion of uterus.

HEMORRHoids. (See Piles.)

HEADACHE. (See Sick Headache.)

ACTEA RACEMOSA, 453. In nervous or hysterical women, especially when it occurs at the menstrual period; also in hemorrhage from lungs, ovaries and kidneys.

AMMONIA, 509. (See Change of Life.)

ARSENIC, 390. For throbbing pain in one brow.

BELLADONNA, 168. When pain over brow and in eyeballs—often due to stomach or uterine derangements—not with especiality in young women. Three minims of the tincture every three hours.

BROMIDE OF POTASSIUM, 170. A large dose in nervous or sick headaches.

CAMPHOR, 410. A saturated solution in 1 dr. of alcohol rubbed on the head in headache of uterine origin.

CHLORIDE OF AMMONIUM, 293. When due to menorrhagia or amenorrhoea.

COLD AFFUSION, 73. Water poured gently over forehead, sometimes warm affusion better.

ETHER SPRAY, 90. For frontal headaches after acute illness or fatigue.

FRIEDRICHSMARCK WATER, 168. A wineglassful in a breakfast-cupful of hot water in bilious sick headaches.

HOT SPOONING, 67. To face, temples, and neck in influenza, catarrh, &c.

HOT-WATER, 67. To feet and legs.

ICE BAG, 88. To head.

IODIDE OF POTASSIUM, 165. In peculiar form of throbbing headache (see red.)

MERCURY, 281. As blue pill for sick headache.

— 349. A tooth of a grain of 90 chloride three times a day when sick headache accompanied by light-coloured diarrhoea. (See also p. 28.)

MUSTARD, 431. In a hot foot bath, or as poultice or "mustard leaf" to maps of neck in various forms of headache.

PODOPHYLLUM, 459. In nervous headaches near the menstrual periods with constipation and dark stools. Purgative doses often give relief. (See also p. 5.)
INDEX TO DISEASES.

HEADACHE—continued.

TRA, 612. And coffee in headaches from nervousness or exhaustion.
VERATRUM VIRIDE, 452. Tincture in the congestive headache at the menstrual period.
ZINC OXIDE OP, 867. In two to five grain doses for nervous headache. Bismuth also useful.

HEART, DISEASES OF.

ACONITE, 472. When violent throbbing and extreme pain in pericarditis.
ALCOHOL, 365. Brandy or wine when heart suddenly enfeebled by fright, loss of blood, accidents, &c. Gin in dropsy (see p. 487).
ARSENIC, 315. For breathlessness on exertion from weakly acting heart.
BLISTERS, 124. Flying, over pre-cordial region to stimulate the action of the heart in extreme weakness.
COD LIVER OIL, 315. In chronic inflammation.

--- 326. With quinine, for giddiness due to weak heart in the aged.
DIGITALIS, 485. Of eminent service where dropsy, dyspnoea, livid face, frequent irregular pulse and dilatation of left ventricle. The freshly made infusion best. These cases require alcohol—gin best.

--- 487. Where much dilatation and hypertrophy of left ventricle without valvular disease. It is not contra-indicated when aortic disease.

--- 487. Where, though the heart beats tumultuously and strongly, the pulse is weak and dyspnoea great.

--- 488. Irregularity of pulse best indication for digitalis.

--- 494. A slight palpitation much increased by catching cold often cured by digitalis—sometimes aconite better.

--- 495. Da Costa strongly recommends digitalis for "irritable heart." (See ref., also p. 18.)

--- 496. Very useful in pure hypertrophy due to valvular disease or excessive muscular exertion. Also in aortic regurgitant disease when compensatory hypertrophy excessive. Two to five minims of the tincture enough—aconite often better.

NITRITE OF AMYL, 497. In cardiac dyspnoea due to hypertrophied and dilated heart: also in syncpe.
POTASSIUM, 83. Large, hot, and frequently renewed, in pericarditis.
PURGING, 646. With jalap, &c., in engagement of right side of heart from emphysema and bronchitis, mitral obstructive or regurgitant disease. Where severe headache and pain at epigastrium, bleeding gives instant ease.

--- 647. In persistent tricuspid regurgitation from permanent distension of the right heart; purgatives only useful when an attack of bronchitis causes an exacerbation.
Strychnia, 600. In medicinal doses it is said to strengthen the heart-beats.
VERATRUM, 450. As ointment to chest when rapid irregular pulse, hurried breathing, much lividity and dropsy, palpitation and inability to lie down.

HEARTBURN. (See Stomach, Diseases of.)

HERNIA.

CHLOROFORM, 379. Inhalation to assist reduction.

HERPES.

ACETIC ACID, 178. Applied to a patch of herpes cincinatus to cut it short.
BLISTERS, 127. For obstinate neuralgia following shingles.
COLLOIDIUM, 318. Painted over patches before vesicles developed, but inferior to nitrate of silver.
HOT Fomentations, 88. Will often disperse or restrict development of herpes labialis.
IODINE, 151. Liniment once applied enough for herpes cincinatus.
MORPHIA, OLEATE OP, 267. Locally without friction in herpes rosea.
SILVER, NITRATE OP, 358. To be painted on the warning patch of erythema, before or as soon as the vesicles begin to form.
VERATRIA, 449. The ointment, one scruple to two scruples the ounce in neuralgia following shingles.
CAMPHOR, 417.

HICCUP.

CHLOROFORM, 371. Often combined with opium.
MORPHIA, 579. Hypodermically, often arrests persistent hiccup.
MUSTARD, 421. A drachm infused in four ounces of boiling water has cured most obstinate cases.

HOARSENESS.

ALUM, 238. Ten grains to one ounce of water in chronic coughs and hoarseness as spray.
BORAX, 157. A piece the size of a pea allowed to dissolve in the mouth.
GLYCERINE OF TANNIN, 346. Locally in chronic inflammation of the throat.
IPERACANNA WINE, 445. As spray, when congestion of vocal cords.
SULPHURIOUS ACID, 188. Inhalation, spray, or fumigation, in clergymen's hoarseness.
TURKISH BATH, 77. At commencement of a feverish cold will often cut it short, together with the accompanying hoarseness.

HORDEOLUM.

MERCURY AND MORPHIA, OLEATE OP, 266. The 30 per cent. ointment with lard outside the eyelid.

HYDROCEPHALUS.

CROTTON OIL, 341. Said to remove fluid from ventricles.

HYDROCELE.

IODINE, 151. Tincture, to inject into cavity after paracentesis.

HYPERÆSTHESIA.

BROMIDE OF POTASSIUM, 250, 274.
HYPOCHONDRIASIS.
BROMIDE OF POTASSIUM, 170. Where great despondency amongst male but especially amongst female subjects who live in towns.

HYSTERIA.
ACONITE, 476. For "fluttering of the heart" in nervous persons.
ACTEA, 452. For headache.
ALKOHOL, 377. With plenty of volatile ether—care must be taken that it does not lead to tipping.
AMAPOTE, 466.
BROMIDE OF POTASSIUM, 173. Gives control and prevents paroxysms. When verging on nymphomania large doses required.
CANNABIS INDICA, 607. In some cases.
CHLOROPHYLL, 371. Often combined with opium.
COD-LIVER OIL, 336. In middle-aged people with dyspepsia or "craving" at epigastrium.
IRON, 245. A course often useful, especially when anaemia or uterine obstructions.
MORPHIA, 590. Hypodermically when fittings neuralgia with great depression.
MUSK, 358. Has been given.
NIA VOLICOS, 600. The tincture, especially when combined with small quantities of laudanum, of great use in the so-called hysteria of middle-aged people, with flatulence, weight on head, flushings and hot and cold perspirations.
OPIUM, 591. A drop of laudanum with two of the tr. of nia volicos three or four times a day for weight on head with flushings, perspirations, depression, &c.
PHOSPHORUS, 327. In hysterical paralyis.
VALERIANAE OINTMENT, 425. Especially at the change of life.
VOLATILE OILS, 423.
ZINC, 285. Especially the valerianate in some forms of hysteria.

ICHYTHOSIS.
WARM BATH, 66.

IMPELGIG.
GLYCERINE OF TANNIN, 344, 345.
OILS, 339. To facilitate removal of scabs.
POLITURC, 346. At night, to remove scabs.
QUINA, 621.
SULPHATE OF COPPER, 623.
SULPHUR, 347. Internally.
ZINC, 285. The ointment of the oxide after inflammation subsided, when raw surface indolent; oxide and carbonate used as dusting powders, but greasy applications generally better.

IMPOTENCE.
CANTHARIDES, 490. In large doses (twenty or thirty drops of the tinct., or half a grain of the powder) with iron and phosphoric acid or nia volicos.
STRYCHNIA, 618. Sometimes useful in large doses when spermatorrhoea.

INCONTINENCE OF URINE—continued.
CANTHARIDES, turpentine, santonines or galvanism.
N.F. The child should drink but little some hours before going to bed, and should be waked in the middle of the night to pass water.
CANTHARIDES, 490. One or two drops of the tinct. three or four times a day in middle-aged women and the aged, even when there is no paralysis; sometimes also in children, but for them belladonna is generally better.
COLLOIDON, 379. Painted to form a cap over end of prepuce.
COLLOIDON, 379. Said to be useful.
IRON, 246. Sometimes useful even when no worms.
NITRATES OF POTASH, 834. Has been recommended for children.
STRYCHNIA, 618. Sometimes useful for old people with paralyis of the bladder; also for the incontinence of children.

INDIGESTION. (See Dyspepsia.)

INFLAMMATION.
ACONITE, 470-475. Gives most brilliant results when inflammation not very extensive or severe, as in catarrh of children, tonsillitis and acute sore throat. In the graver inflamations, as pneumonia, pleurisy, &c., the effects are equally manifest though less rapid. In pericarditis, with violent throbbing and extreme pain, aconite will quiet the inordinate action and relieve the pain. It has a beneficial influence in acute specific fevers; it is of marked service in erysipelas and the inflammation sometimes following vaccination. It is also of use in acute rheumatism, oitis and gonorrhoea.
ANTIMONY, 293, 293. Should be given at the beginning a quarter to half a grain every two or three hours, or a lesser proportionate dose every hour; useful in tonsillitis, pleurisy, orchitis, bronchitis, purpural periostitis, inflammation of breast, whitlow, &c.
ATROPINA, 543. In inflammations of eye.
BELLODANNA, 549.
COD-LIVER OIL, 335. In many chronic inflamations, as of the heart, lungs and kidneys.
DIGITALIS, 501. Large doses asserted to be capable of subduing acute inflamations, if used at the commencement. (Aconite much safer and better.)
Fomentations of a small teaspoonful of the leaves in half a pint of boiling water, said to be valuable for acute inflammation of joints and of the breast, and for erysipelas.
(P. 471.)
FOMENTATIONS, 81, 82.
ICE, 88. In very small pieces in a bladder applied to inflamed part.
IODINE, 551. The liniment in the neighbourhood of local inflamations so as to produce vesication.
MERCURY, 282. Bichloride in dritis and inflamations of deep-seated parts of eye and in other inflamations, especially those of serous membranes.
NITRATES, 534. Opinions concerning the efficacy of these in acute inflamations discrepant.
OPIUM, 506, 508. Poultices containing laudum allay pain in superficial and deep.
INDEX TO DISEASES.

INFLAMMATION—continued.
Seated inflammation. Morphia injections sometimes needed in pleurisy, pneumonia, &c. An extract of opium has been recommended as a local application for carbuncles and boils (see p. 544). Opium wine of the 1864 Pharmacopoeia, which contains no spices, is very useful in the pain of conjunctivitis dropped into the eye. Opium mixed with tannin or creosote may be introduced into the hollow of a painful tooth if the pain is produced by inflammation of exposed pulp.

PACKING, 56. In acute inflammatory diseases.

POUltices, 82. To check formation of pus or assist in maturation.

SULPHIDES, 143. In boils, abscesses, and deep-seated suppuration.

INFLUENZA.

Actaea racemosa, 462. Has been given, it is said, with much success.

Hot sponging, 69. For headache.

Sulphurous acid, 188. Fumigation or inhalation. (See ref.)

INGROWING TOENAIL.

Liquor potass. 195. Diluted, constantly applied on cotton-wool.

INSOMNIA. (See Sleeplessness.)

INTERMITTENT FEVER. (See Ague.)

INTERTRIGO.

Bismuth, 248. Nitrate or carbonate, as dusting powder.

Camphor, 415. As addition to dusting powders, to aalay heat and itching.

Carbonate of lime, 214. Or oxide of zinc or bismuth sometimes useful as dusting powder. More often greasy applications better.

Glycerine of tannin, 346. Sometimes useful.

Lime-water, 816. To prevent irritating urines.

Soap, 133, 194. Free ablation with, when caused by acid secretions, smear afterwards with greasy application.

iritis. (See Eye, diseases of.)

iritability.

Chloral, 360. Five grains two or three times a day in irritability with nervousness and restlessness.

itch. — 416.

Alkalies, 193. As soap or ointment to remove cuticle and break up burrows.

Baking of clothes, 188. Must not be forgotten.

Iodide of potassium, 154. As ointment.

Storax, 421.

Sulphur, 124, 135. Ung. sulph. after bath. (See ref.)

Sulphur and lime, 140.

Sulphurous acid, 188. As gaseous bath. This is the quickest method.

itching. (See Pruritis.)

Jaudice. (See Liver, diseases of.)

Mercury, 274. In attacks of jaundice lasting three or four days accompanied by depression and preceded by sickness and coated tongue, one-sixth or one-third of a grain of grey powder taken at the onset and repeated three or four times a day very valuable. If obstinate constipation, a course of Carlsbad waters sometimes more efficacious.

JOINTS, DISEASES OF.

Aconite, 475. For pains in inflamed joints.

Arsenic, 325. Often serviceable in rheumatoid arthritis, and nodosity of joints. Large doses long continued necessary. Action capricious, sometimes useless, at others remarkably good.

Cod-liver oil, 336. When strumous.

Cold douche, 75. For stiffness.

Digitalis, 501. As fomentations. (See inflammation.)

Galvanism, 79. For stiffness.

Iodine, 151. Solution injected into white swellings.

Mercury, 265. Locally applied, as Scott's ointment, in chronic inflammation of knee—better still as oleate of mercury.

Turkish bath, 80. For stiffness.

Kidneys, excessive action of.

Spinal ice-bag, 91.

Lactation, excessive.

Alcohol, 368. As stout often useful—not always.

Belladonna, 548. Internally or externally or both.

Quinia, 621. Has been recommended.

Tobacco, 504. With lard externally said to arrest secretion of milk.

Laryngismus Stridulus.

Bromide of potass, 164. When uncomplicated except with convulsions.

Cod-liver oil, 336.

Cold sponging, 68. Twice or thrice daily—sometimes immediately successful—prevents convulsions. Take care no laryngitis.

Cold water dashed in face, 69. Often arrests paroxysm.

Lancing gums, 69. If swollen, red and hot, may require repetition.

Loebia, 605. Has been employed.

Spinal ice-bag, 91.

Worms, removal of, 69. Treat fatty state of mucous membrane.

Laryngitis.

Aconite, 471. In spasmodic laryngitis or catarrhal cough very valuable.

Silver, nitrate of, 260. Powdered or in solution to chronically inflamed larynx, as in phthisis.

Sulphurous acid, 188. Inhalation, spray, or fumigation.

Lead colic. (See Poisoning by Lead.)
LEAD POISONING. (See Poisoning.)

LEPRA. (See Psoriasis.)

LEUCORRHEA.

ALKALIES, 176. A weak injection when exces-
sive secretion from glands of os.

ALUM, 240. A draught to a pint of water as in-
jection. (See p. 104.)

BELLADONNA, 548. With tannin as bolus
where neuralgia or ulceration of os.

When disease due to over-secretion of
mucous glands about the os, and much pain
present, inject soda bicarb. one draught,
tinct. bellad. two ounces, aq. one pint. (See
ref.)

BICARBONATE OF POTASH OR SODA, 194. One
draught to a pint of water as an injection,
especially when discharge alkaline and
copious. (See ref.)

CARBONIC ACID, 257. Diluted as injection for
vaginal leukorrhoea.

COLD SPRING, 71.

COPPER, 284. Solutions of the sulphate as
injections.

ERGOT, 610. Said to be useful in some cases.

IRON, 644. Internally.

LEAD, 251. As injections.

LIME-WATER, 212. As injection.

PHOSPHATE OF LIME, 219.

SPINAL ICE-BAG, 91.

TANNIN, 548. As injection. If os ulcerated
a suppository of tannin and cocoa-nut fat to
mouth of uterus.

VAGINAL INJECTIONS, 76. Water at 60
degrees F. to prevent recurrence.

ZINC, SULPHATE OF, 286. Sometimes added
to alun injections.

LICE.

ESSENTIAL OILS, 481. (For formula, see ref.)

MERCURY, 263. Nitrato of mercury ointment
of corrosive sublimate wash for lice on all
parts of the body.

— 654. The body louse may be killed
by essential oils, as rosemary, or by powdered
pyrethrum, or by ointment of staphisagria.

The under linens should always be loked.

— 657. The oleate destroys lice imme-
diately, and simultaneously kills the ova.

STAPHISAGRIA, 461. As oil or ointment of
the powder.

LICHEN.

ALKALIES 192. (See Pruritus.)

ARSENIC, 316. Sometimes useful.

CANTHARIDES, 427. Internally.

CHLOROFORM, 379. As ointment to allay
itching.

CYANIDE OF POTASSIUM, 574. Or hydrocy-
amic acid. (See itching.)

MERCURY, 264. Calomel and nitrate of merc.
oint. may be mixed, and tar oint. is some-
times added in patches of obtinate lichen,
especially of the hands, even when not
syphilitic.

SILVER, NITRATE OF, 928. The nitrous ether
solution to be painted every day or second
day on a patch of lichen the size of the palm
with excessive irritation.

SULPHIDES, 129. As baths.

WARM BATH, 66.

LIVER, DISEASES OF.

NITRIC ACID, 184. In long-standing diseases,
avergulation and cirrhosis, will augment
flow of bile after liver has struck work from
excessive use of mercury.

SULPHATES, 279. In purgative natural waters
—small doses of—sulphate of
potash occasionally poisonous.

LOCOMOTOR ATAXY.

CALABAR BBEAN, 520. Has proved very ben-
eficial.

LOINS, PAINS IN.

LEAD, 251. As plaster, when pain due to
weakness, better than a pitch plaster.

Also useful when pain due to uterine
disease or piles.

LUMBAGO.

Aeona racemosa, 462. Said to subdue lum-
bago more effectually than any other remedy.

ACUPUNCTURE, 101, 102. Succeeds best when
local muscles of both sides affected, pain
being more severe on to-and-fro movement.

Needle to be run an inch or more over seat
of greatest pain on each side. Sometimes
on withdrawal cure is complete. When
sciatica associated with it, lumbago hard
to cure. Acupuncture useless when high
fever or when acute rheumatism is con-
mencing.

BELLADONNA, 542. As plaster very valuable
for persistent remains affecting a small
spot.

CAPSICUM, 432. A strong infusion applied on
lint.

ETHER SPRAY, 99, 102. Locally applied as
freezing mixture.

FARADIZATION, 102. Almost as successful as
acupuncture.

GALVANISM, 80, 81, 90. Highly useful.

HOT FLAT IRON, 102. The back to be ironed,
a piece of brown paper intervening.

ICE AND SALT, 50, 202. Locally applied as
freezing mixture.

IODIDE OF POTASSIUM, 539.

MORPHIA, 578. Hypodermically injected,
often successful at once.

NITRATE OF POTASH, 214. Ten grains hourly
or every two hours when urine scanty and
high coloured, becoming turbid on cooling.

PLASTER OF LEAD OR PITCH, 102. Applied
after cure effected.

POTLICKS, 84. Very hot. Should be con-
tinued for three hours, then the skin covered
with flannel and oiled silk.

THERMIC HAMMERS, 102.

TURPENTINE, 419. In twenty-drop doses.

VERATRUM VIRIDE, 457. As tincture, said to
be useful.

LUNGS, HYPOSTATIC CONGESTION

OF.

BLISTERS, 104. Flying blisters to chest and
perhaps along pneumogastric nerves.

LUPUS.

ARSENIC, 295. Arsenous acid as a caustic.

BLISTERS, 107. In erythematous ulcers.

ISOPTIN, 123. As tincture or liniment to edges
and around.
LUPUS—continued.
LEAD, 250. Liq. plumbi with one or two parts glycerine, applied warm after crusts removed in milder forms.
MERCURY, 259. Ointments in erythematous lupus—calomel oint. in scrofulous and tubercular lupus of children. Acid nitrate for touching summit of tubercle; if application painful, cover spots with collodion.
SILVER, NITRATE OF, 258. A weak solution gradually strengthened in superficial kinds of lupus.

MALARIA.
QUINIA, 618, 619. And allied alkaloids (see Ague), also for neuralgia dependent on malarial poison.
TURKISH BATH, 78. The cautious use of, for those suffering from various diseases caused by long residence in a tropical climate.

MAMMARY ABSCESS.
BELADONNA, 542. (See Breasts, inflammation of.) MERCURY AND MORPHIA, OLEATE OF, 466. Locally.
SULPHITE OF CALCIUM, 142. Internally—occasionally the pain is temporarily increased.
TOBACCO, 504. The leaves as a poultice.

MANIA, ACUTE.
ACTEA, 464. After confinement or during pregnancy.
BROMIDE OF POTASSIUM, 170.
CANNABIS INDICA, 608. A drachm of the tinct. with a drachm of bromide of potassium.
CHLORAL, 395. In acute and purpural mania.
COLD DOUCHE, 72. In maniacal delirium—place patient in a warm bath during the application.
CONIUM, 512. The juice.
CROTTON OIL, 341. As a purgative—a quarter or third of a minim every hour.
HYOSCYNAMIA, 570. In violent intermittent fevers.
HYOSCYNAMUS, 570. To produce sleep and calm violent delirium.
MORPHIA, 578. Hypodermically to induce sleep.
OPIUM, 588. Many cases may be satisfactorily treated with opium and tartar-emetic.

MEASLES.
ACONITE, 474. To moderate the catarrh and bronchitis.
CARBONATE OF AMMONIA, 811. In three or five grain doses, every two or three hours.
COLD AFFUSION, 71. At commencement.
FAT, 330. Hands and feet to be rubbed with a firm flat to remove heat and tightness produced by rash.
MUSTARD, 430. As bath on sudden retrocession of rash.
PACING, 57. Especially on retrocession of rash.
PURGATIVES, 299. Must be given with caution.
VETRUM VIVID, 451. Has been employed,

MEGRIM AND MEGRANE. (See Sick Headache.)

MELANCHOLIA.
BROMIDE OF POTASSIUM, 170. For townspeople, especially women, with unendurable despondency.
CAMPHOR, 417.
MORPHIA, 553. Hypodermically—useful in patients with a peculiar idiosyncrasy.
MUSK, 358. Also camphorum.

MENIERE’S DISEASE.
GELSEMIUM, 540. The tincture in 10 min. doses three daily.

MENINGITIS.
ANTIMONY, 588. Tartar-emetic ointment as counter-irritant to scalp in tuberculous meningitis.
BROMIDE OF POTASSIUM, 169. In the convulsions after simple meningitis.
CROTTON OIL, 341. Internally in hydrocephalus supposed to remove excess of fluid.
Ice, 88. In a bag as a cap.

MENORRHAGIA.
ACTEA, 463. For headache accompanying profuse menstruation.
BROMIDE OF POTASSIUM, 173. Most useful in young women; if loss only at natural period commence bromide a week before, and discontinue when it has ceased till a week before next time.
If loss occur every two or three weeks, give bromide continuously—ten gr. dose, but more when organic changes in womb.
CANNABIS INDICA, 608. Very useful.
CHLORIDE OF AMMONIUM, 252. For headaches.
DIGITALIS, 503. Permanently efficacious when no organic disease, often temporarily so when there is.
ERGOT, 610. Of great use in all forms, even when the haemorrhage proceeds from tumours.
OIL OF CINNAMON, 433. Drachm doses.
PYOSPHATE OF LIME, 319. In anaemia from excessive menstruation.
QUINIA, 601. Has been recommended.
SAVINE, 435. When due to want of tone in the uterus.
SPIRAL HOT-WATER BAG, 93. To lower dorsal and lumbar vertebrae.
TANNIN AND GALLIC ACID, 348.

MENSTRUATION, DISORDERS OF.
(See Amenorrhoea and Menorrhagia.)

MICTURITION FREQUENT.
CANTHARIDES, 588. In women who micturate too frequently or involuntarily on coughing, from weakness of sphincter. One or two drop doses.

MICTURITION, PAINFUL.
ALKALIES, 200. When caused by uric acid in acicular crystals in young male children. The citrates are best suited for this.
INDEX TO DISEASES.

MICURITION—continued.

CANNABIS INDICA, 608. Said to relieve dysuria and strangury; bloody urine said to be a special indication for this.
CUCURRANT, 426. A drop of the tincture (sometimes five required) three times a day for frequent desire to micturate with pain.

MOSQUITOES.
CARBOLIC ACID, 357. A weak solution sponged over the body to keep off mosquitoes.

MOUTH, DISEASES OF. (See Stomatitis.)

ARSENIC, 496. In a peculiar circular rash on the tongue, usually in children associated with stomach or intestinal disturbance, or a body rash; also in sloughing of the mouth or throat, cancerous oris, &c.
CHLORATE OF POTASH, 236. In ulceration of gums and the parts of the tongue and cheek in contact with this.
CHLORIDE OF SODA, 359. In follicular and phagedenic ulceration.
CHLORIDE SOLUTION, 148. In ulceration. CHLOROFORM, 372. Or carbolic acid gargle or wash in sloughing.
LIME WATER, 215. In inflammatory and ulcerative diseases.
SALICYLIC ACID, 658. One part (dissolved in alcohol) to 450 of water in catarhal stomatitis and thrush.
SILVER NITRATE, 258. Applied to ulcers of mouth.
SULPHATE OF COPPER, 283. Applied solid to indolent sores of tongue.
Solution painted over edges of gums in ulcerative stomatitis, but generally dried alum is better.

MUCOUS MEMBRANE, DISEASES OF.
NITRIC ACID, 128. When reddened, inflamed and glazed.

MUCOUS TUBERCLES. (See Syphilis.)

MUMPS.

MERCURY, 272. The third of a grain of grey powder three or four times a day very useful, relieving pain and swelling.

MUSCLES, ACHING OF, FROM EXERTION.
ACTINA, 462. In a general "bruised sensation."
ARNICA, 68.
DRIPPING WET SHIRT, 58. Well rub afterwards.
TURKMEN RASH, 77.

MUSCULAR RIGIDITY.
SPINAL ICE-BAG, 91. If due to disorder of nervous centres.

MYALGIA.

BELLADONNA, 542. Often successful as liniment, though sometimes an opium liniment better.
CHLORIDE OF AMMONIUM, 272. ETHER, 85. As spray.
IODINE, 150. The ointment for pain in the muscles of the chest, these being tender on pressure, but the skin may be pinched without pain.
OPHIO, 376. Poultices or frictions with laudanum.
Poultices, 81, 84. Very hot, followed by application of lint and oplin.

NEVUS.
ZINC, 85. Chloride, iodide, and nitrate locally.

NERVEUS HEADACHE. (See Sick Headache.)

NERVOUSNESS.

CHLORIDE OF POTASSIUM, 178. Especially for women who are despondent, irritable and sleepless, from overwork, grief, worry, &c., often connected with migraine.
CHLORAT, 398. When restlessness and debility.
CHLOROFORM, 371. As spirits of chloroform internally.
COLD SPOONING, 71. When from close rooms, &c.

NETTLE RASH. (See Urticaria.)

NEURALGIA.

ACONITE, 464, 465. As ointment or liniment, especially when fifth nerve affected, also in neuralgic sick headache—sometimes very painful better. Spinal irritation and intercostal neuralgia generally yield better to belladonna preparations.
ALCOHOL, 354. With much volatile ether—care must be taken in prescribing it.
ARSENIC, 350. In various neuralgias, also in angina pectoris.
ATROPINE, 548. Hypodermically—generally morphia better.

NEURALGIA.

ACONITE, 464, 465. As ointment or liniment, especially when fifth nerve affected, also in neuralgic sick headache—sometimes very painful better. Spinal irritation and intercostal neuralgia generally yield better to belladonna preparations.
ALCOHOL, 354. With much volatile ether—care must be taken in prescribing it.
ARSENIC, 350. In various neuralgias, also in angina pectoris.
ATROPINE, 548. Hypodermically—generally morphia better.

BROMIDE OF POTASSIUM, 178. Occasionally relieves.
CANNABIS INDICA, 608. Has been found useful.
CARASSICUM, 472. A strong infusion on lint covered with gutta percha.
CARBONIC ACID GAS, 154. Injected into vagina for neuralgia of uterus.
CHAMOMILE, 640. In neuralgia of the fifth nerve.
CHLORAL, 397. Sometimes relieves. Rubbed with an equal weight of camphor and painted on painful part or gently rubbed in, often useful in neuralgia, pleurodynia, and toothache.
INDEX TO DISEASES.

NEURALGIA—continued.

CHLORATE OF POTASH, 235. Has been recommended in facial neuralgia.
CHLORIDE OF AMMONIUM, 223. In half-dram doses in facial neuralgia, much used also for all neuralgias.
CHLOROFORM, 360. Occasionally useful locally. As spray for neuralgia of uterus. Two or three drops on cotton-wool in ear for faceache and toothache.

CONIUM, 518. Internally.
COUNTER-IRRITATION, 136. A blister to temple or behind the ear of the greatest service in frontal and facial neuralgia—that depending on a diseased tooth often yields to a blister, also the migratory neuralgia pains in nervous women and intercostal neuralgia left by shingles. Blisters should be applied, according to Anstie, to a posterior branch of the spinal nerve-trunk from which the painful nerve issues.

If blistering paper does not succeed in neuralgia a stronger preparation to be tried.

CROTCH-CHLORAL, 398. Five-grain doses, especially in facial neuralgia, in that due to curious teeth, in that of the neck and back of head, in dysmenorrhoeal neuralgia, and in epileptiform tic.

EMOSI, 610. Said to be useful.
ETHER, 358. As spray sometimes relieves permanently, often only temporarily.

GREENMINT, 330, 540. In neuralgia of dental branches of the fifth.

HYDROXYANIC ACID, 574. And cyanide of potassium formerly employed locally.

HYOSCYAMUS, 370.

IODOFORM, 391. As saturated solution in chloroform locally.

IRON, 245. When associated with anaemia, but no organic cause. Moderate doses only required.

MORPHIA, OLEATE OF, 959. One or two grains to a drachm, locally.

NITRITE OF AMYL, 407. Inhalation when fifth nerve affected.

OIL OF PEPPERMINT, 421. To be painted over the part in facial neuralgia.

OUCHUM, 576. The liniment rubbed in or a hypodermic injection of morphia—sometimes a single injection will cure old-standing cases, if not it may be repeated every second day or so for some time.

PHOSPHORUS, 366. From 1-10th to 1-10th grain every three hours. Very useful in all forms of neuralgia, especially when uncomplicated.

QUINIA, 619, 650. In periodical neuralgia, whether malarial or not, large doses should be given just before the expected attack. Useful also in small frequently repeated doses in other neuralgias, especially of the supra-orbital nerve.

SPIRAL ICE-BAG, 91.

STRAMONIUM, 573. Has been used.

VALERIANATE OF ZINC, 450. Or of ammonia in neuralgia of face or head.

VERATRIUM, 449. An ointment of the pharmacophenol strength enough for the face, but stronger ones necessary for sciatica and other neuralgias, also for the pain consequent on shingles.

— 452. Tinct. of veratrum viride said to be useful.

NIGHT SCREAMING.

BROMIDE OF POTASSIUM, 172. In children's attacks of night screaming often associated with squinting. Digestive organs to be attended to also.

NIPPLES, SORE.

ARNICA, 328. The cera.

BRANDY-AND-WATER, 214. To be used as lotion before delivery and after each sucking to prevent cracking. Nipples should be washed and dried immediately after child is removed. (See p. 350.)

COLLODION, 348. Sometimes applied to chapped nipples.

GLYCERINE, 358. Of starch or with eau de Cologne.

LIME-WATER, 214. As lotion.

SULPHURUS ACID, 188. Solution neat or diluted, constantly applied.

— 358. With equal quantity of glycerine as lotion.

ZINC SHIELD, 214. Constantly worn.

NODES.

IODIDE OF POTASSIUM, 154, 157. As ointment in conjunction with internal use.

MERCURY, OLEATE OF, 265. Externally very valuable.

NOSE, DISEASES OF.

AMMONIA, 209. Inhalations, in pain and inflammation of nose and frontal bones.

COD-LIVER OIL, 335. For chronic discharge.

GLYCERINE OF TANNIN, 344, 345. For brushing out inside of nose when excreted after measles, scarlatina, &c. Also for impetiginous eruptions of inside of nose, most severe when hair grows—spilation sometimes needful. Glycerine of starch or zinc ointment applied often is a good supplementary application.

— 345. In the discharge of greenish black stinking mucus.

NUTRITION, IMPAIRED.

LIME, 217. As lime-water or carbonate of lime. Small doses as good as large.

NYMPHOMANIA.

BROMIDE OF POTASSIUM, 173. Large doses required, at least twenty grs. three times a day.

CAMPHOR, 417.

OBESITY.

ALKALIES, 290. Solutions of oxides or bicarbonates. Use very questionably.

— 300. Liquor potassii. This usually, however, fails.

VINEGAR, 183. A remedy to be strongly condemned, as it only reduces obesity at the expense of serious injury to the body.

CESEPHAGUS, STRICUTURE OF.

NUTRITIVE REMEDY, 100. When swallowing impossible. For directions, see ref.
ONYCHIA. (See Paronychia.)

OPHTHALMIA.

ALUM, 237. Eight grains to one ounce applied every quarter or half hour in simple and especially in purulent ophthalmia of children.

ANTIMONY, 294. As tartar-emetic 1-35th to 1-45th grain three or four times a day in strumous ophthalmia. Sharp purgation at commencement useful.

CARBONIC ACID OIL, 134. Said to relieve pain and photophobia of scrofulous ophthalmia when applied to the eye.

COD-LIVER OIL, 335. When strumous.

OPIUM, DISAGREEABLE SYMPTOMS OF. (See Poisoning by Opium.)

ORCHITIS.

ANTIMONY, 294. As tartar-emetic in acute orchitis. (See Inflammation.)

ICE, LOCALLY APPLIED, 89. Also in neuralgia of the testis.

OTTIS. (See Ear, diseases of, and Otorrhoea.)

OTORRHEA.

ACONITE, 476. In otitis.

ALUM, 237. Strong solution (sixty grains to one ounce) but inferior to glycerine of tannic acid.

COD-LIVER OIL, 335. When chronic.

GLYCERINE OF TANNIN, 345. May be filled and plugged with cotton-wool—not in acute inflammation of meatus.

LEAD, 320. Solutions of acetate or chloride as injection, especially when acute stage just subsides—in later stages stronger astrigent needed.

LIME-WATER, 215. As a wash when acute inflammation present. In chronic cases far inferior to astrigent such as glycerine of tannin.

OVARIAN TUMOURS.

IODINE, 351. Ten oz. of tincture injected after tapping.

OVERWORK.

BROMIDE OF POTASSIUM, 172. When insomnia, bad dreams and irritability.

OPHIS, 531. A drop of laudanum with two of tinct. hyos. vom. three or four times a day for headaches with flushings and dyspepsia.

PHOSPHATE OF LIME, 210, 230. May be combined with phosphate of iron and carbonate of lime. A grain of each for a dose.

PHOSPHORUS, 337. In depression from overwork.

SEA-BATHING, 52.

OXALURIA.

MINERAL ACIDS, 382. When eruptions of sulphateated hydrogen

OXZENA.

ACETATE OF ALUMINA, 328. Irrigation.

ALUM, 238. Nose to be well irrigated with a solution, a drachm to a pint.

BISMUTH, 248. With equal quantity of Venetian red in chronic non-syphilitic ozena to be smuffed up after clearing the nose by strongly blowing it. Mercury powders better.

CARBOLIC ACID, 353. A weak solution as injection.

GLYCERINE OF TANNIN, 335. Irrigation.

MERCURY, 270. White or red precipitate with 58 times its weight of sugar smuffed up after clearing the nose in the non-syphilitic form.

— 371. Ointment of the nitrate in syphilitic form. (See Syphilis.)

TANNIN, 345. Or glycerine of tannin, even if syphilitic.

PAIN. (See Neuralgia, Colic, &c.)

ATROPINA, 548. Hypodermically in local pain, in neuralgia, sciatica, glaucoma, &c. When it succeeds, affects more lasting than those of morphia.

BELLOC CH, 585. Best remedy for every kind of pain in pelvic viscera (Arnott).

CHLORIDE OF METHYLENE, 385, 385. Inhalation produces general anaesthesia.

CARBOLIC ACID, 350. As local anaesthetic.

CHLORAL, 397. Sometimes relieves neuralgia, chronic rheumatism, gall stones, colic, gastric, and even cancer.

CHLOROFORM, 359. Locally, generally inferior to other anaesthetics.

CLONCHON, 379. Two or three drops on cotton-wool introduced into the ear for faceache or toothache.

VAPOUR ON RAW SURFACE OF CANCERS, NEURALGIA OF UTERUS, A PHOTOPHobic EYE, &c.

— 379. As vapour to produce general anaesthesia. (See ref. for full directions.)

— 379. Inhalation in renal and biliary colic.

CONIUM, 512. In cancer, rheumatism, neuralgia, &c.

ETHER, 380. As spray for local anaesthesia, also inhalation to produce general anaesthesia. (See ref.)

IODIDE OF SODIUM, 391. A suppository in painful diseases of rectum and bladder.

OPHIS, 537. Poultices containing laudanum used in inflammation. Linum, opii rubbed in relieves neuralgia, pleurisy and myalgia; preparations of opium or morphia are applied to irritate, cancerous and simple sores.

— 576, 577. The hypodermic injection of morphia extensively employed to relieve pain. The unpleasant symptoms often accompanying its administration may usually be obviated by combining it with a twentieth part of atropia. At first not more than a sixtieth of a grain of morphia should be injected. A single injection sometimes cures recent and even long-standing sciatica and neuralgia. Useful in lumbago, pleurisy and toothache. Occasionally required in pleurisy or pneumonia if the suffering is severe or persistent. Valuable in venereal, biliary and intestinal colic.

— 384. An injection of laudanum and starch useful in pain of bowels or organs near the rectum, such as cystitis or ulcer diseases; opium and gall ointment excellent for painful bleeding piles and fissures of anus.
INDEX TO DISEASES.

PAIN—continued.
Opium, 590. In chronic cases it is best to try first all other methods of easing pain, as an opiate soon loses its influence.
Stramonium, 573. As ointment.
Wort injections, 59. Soothes the pain of cystitis, prostatitis, abscess of the prostate and pelvic, and abdominal pains generally.

PALPITATION.
Acotis, 476.
Campum, 477. In nervous palpitation.
Hot foot bath, 67.

PARALYSIS.
Belladonna, 557. When depending on chronic inflammation of the cord. Brown-Séquard gave ergot internally, applying belladonna as plaster or ointment along the spine.
Calabar bean, 519. In general paralysis of insane, also in progressive muscular wasting without much mental disorder. Also in some cases of long-standing hemiplegia; sometimes in paraplegia, locomotor ataxy, and writer's cramp.
Cannabis indica, 608. For retention of urine from spinal disease.
Cinbar - irritation, 128. By blistering fluid in peripheral paralysis of seventh nerve.
Ergot, 610. Said to be useful in paraplegia.
Nux vomica, 600. Or strychnia recommended by Brown-Séquard in paraplegia from softening and wasting of cord. Often useful in motor paralysis.
Phosphorus, 371. In hysterical paralysis.
Strychnia, 591. In all forms (except, according to Barwell, in cerebral and spinal paralysis). (See ref.) Dose recommended from 1-8th to 1-1st grain.

PARONYCHIA.
Mercury, 265. As ointment applied for ten minutes every hour. Poultices at other times.
Nitrate of lead, 265. Dusted on diseased tissues night and morning.

PARTURITION. (See Confinement.)

Pediculi. (See Lice.)

Pemphigus.
Arsenic, 316. Largest dose five min. liq. arsenicalis three times a day, not on empty stomach. (See ref.)

Pericarditis. (See Heart, Diseases of.)

Periostitis. (See Nodes.)
Iodide of potassium, 557, 128. In syphilitic children; also in non-syphilitic periosteal thickenings.
Mercury and morphia, oleate of, 266. Locally.

Peritonitis. (See also Puerperal Peritonitis.)
Opium, 583. To quiet intestinal movements.
Poultices, 83. Large, hot and frequently renewed. Should be thin and covered with cotton wool.

Perspiration, Excessive.
Atropa, 357 and 345. In sweating of phthisis and exhausted diseases. (See Phthisis.)
Belladonna, 543. As liniment locally to affected part, also tincture internally especially in weakly children who perspire profusely. Also very useful where the perspiration has caused the skin of the feet to peel off, leaving the dermis red and tender.
Ergot, 610. Said to arrest sweating.
Lead, 251. As ointment of equal parts of emp. plumb. and linseed oil spread on linen and wrapped round the feet when they sweat—to be renewed every third day for nine days.
Oils, 350. Rubbed into the whole skin to prevent sweating accompanying exhausting diseases as phthisis; but sponging with a weak acid wash better.
Opium, 259 and 551. As Dover's powder may succeed after zinc has failed.
Picrotoxine, 497. In 130 gr. doses.
Pilocarpine, 497. In 30 gr. doses thrice daily.
Quinua, 621. In exhausting diseases as chronic phthisis. If a small dose fail, one of six or eight grs. at once or in portions repeated hourly.
In many cases a night draught of quinua, sulphate of zinc, and sulphuric acid very useful.
Spinal ice-bag, 91.
Sponging, very hot, 67. In phthisis.
Sponging, with acclimated water, 176.
Tannin or gallic acid, 348.
Zinc, oxide of, 287. In two-grain doses nightly to control profuse colliquative sweating.

Pharyngitis. (See Throat, Sore.)

Phlebitis.
A blister, 126. Over course of inflamed superficial vein.

Phlegmasia Dolens.
Hamamelis, 349.

Photophobia. (See Eye, Diseases of; also Conjunctivitis.)

Phthisis.
Alcohol, 368. Brandy and milk before breakfast.
Arsenic, 5. When red, smooth, clean "irritable" tongue.
S. 397. As cigarette—caution required. (See ref.)
S. 309. Useful in the diarrhoea.
S. 311. Probably diminishes temperature.
PHTHYSIS—continued.

A TROP i a, 544. 1-tho to 1-tho hypodermically, or 1-tho to 5-tho, or even, in exceptional cases, 1-tho in pill, to check excessive perspiration.

BELLADONNA, 543. Liniment or plaster for hypersensitiveness of the muscles of the chest.

BENZOIN, 395. One drachm of the comp. inst. in boiling water as inhalation to lessen cough and expectoration in chronic phthisis.

BLISTERS, 245. In chronic or fibroid phthisis.

BRANDY, 368. Or rum and milk before breakfast.

CHLORAL, 395. To produce sleep, allay cough, and check sweating.

CHLORATE OF POTASH, 235. A concentrated solution to be drunk ad libitum.

CHLOROFORM, 371. With glycerine or honey for the cough in fibroid phthisis.

CO-LEVER OIL, 335, 336. Very valuable in nearly all forms of this disease, especially at commencement. (See ref.)

COUNTER-IRRITATION, 336. Only to relieve pain in acute forms, as iodine liniment; quietes cough and diminishes expectoration in chronic or fibroid phthisis.

CREOSOTE, 355. Tar, or carbolic acid to check expectoration.

CREOSOT-HYDROCITAL, 403. In the night cough.

CHROMIC OIL, 339. With or without iod. potassae as counter-irritant to chest. Caution must be used.

ENEMATA, 583. Of starch and laudanum for the diarrhoea.

GEISERIUM, 525. For the cough.

GLYCERINE, 343. In last stage with water as wash for dry shabby mouth.

HYDROCHLORIDES, 222. Of lime or soda,—should be given alone. Most useful in early stage and in young subjects.

IODINE, 459. As liniment painted under clavicles in chronic forms to allay harassing cough and to check secretion.

—195. As inhalation in chronic phthisis to lessen expectoration and cough.

IPSACUANNA, 443. Spray to throat when bronchial asthma and emphysa combined with fibroid phthisis.

MERCURY, 577. The hundredth of a grain of corrosive sublimate every two or three hours in diarrhoea.

OPHIS, 581. Or morphia in a viscid vehicle for cough, especially where this is due to inflamed condition of throat—morphia lozenges very useful here.

—591. As Dover’s powder for night sweats.

OXFERN, 129.

PHOSPHATE OF LIME, 219. In diarrhoea.

—220. In chronic forms of phthisis with little or no fever.

PICROTOXINE, 497. (See Perspiration, excessive.)

PILOCARPinE, 497. (See Perspiration, excessive.)

QUINIA, 630. In acute phthisis to reduce temperature.

—631. In chronic phthisis to check sweating. If a small dose fail, a dose of six or eight grs. administered at once or in portions repeated hourly.

SALICYLIC ACID, 628. In five-gr. doses for foul breath and offensive expectoration.

SEA- BATHING, 55. If chronic, little or no fever, without active deposition of tubercle or serous pneumonia.

PHTHYSIS—continued.

SILVER, NITRATE OF, 260. Sometimes injected into trachea. (See ref.)

SPOONING, VERY HOT, 67. For excessive perspiration.

SULPHUROUS ACID, 188. With sulph. zing., to check perspiration.

SULPHUROUS ACID, 188. Inhalation, spray or fumigation in chronic phthisis.

TURKISH BATHS, 76. For the cough.

VINEGAR, 169. With laurel water to check sweats.

PILES.

ALKOLS, 643. To gently relieve bowels.

BROMIDE OF POTASSIUM, 162. In five parts glycerine locally to ease pain.

CALOMEL, 346. As ointment.

CASTOR OIL, 147.

COLD INJECTION, 76. Half a pint before going to stool every morning.

GALAC ACID, 348. With opium as ointment.

HAMAMELIS, 349. As lotion or injection as well as by mouth in piles, whether bleeding or not.

ICE, 65. Locally applied for pain after operation.

LEAD, 951. As plaster for pain in back due to piles.

NITRIC ACID, 185. Strong, applied to intestinal piles, also to granular or ulcerated piles. Half-ounce or one ounce to half a pint of water as lotion for bleeding piles.

OPHIS, 581. Mixed with gall ointment, an excellent application for painful bleeding piles. Mild purgatives also required.

RHUBARB, 645. About ten grs. of the root to be chewed nightly if a laxative is needed. Useful also in hemorrhoidal swellings of pregnancy.

SULPHUR, 138. Five to ten grs. with one drachm conf. sem. in the morning as a laxative.

PITIRVIIAS.

BORAX, 153. Saturated solution locally several times a day in pityriasis of scalp.

If not successful try it as glycerine of borax.

GLYCERINE OF BORAX, 349. In pityriasis of scalp.

LEAD, 95. Liq. plumb. two ozs., glycerine two ozs., to four ozs. of water as lotion.

MERCURY, 264. Citrine ointment especially when signs of hairy parts of face. Often well to add tar ointment.

SULPHUROUS ACID, 188. With glycerine in conjunction with warm baths.

PITIRVIIAS VERSICOLO.

MERCURY, 264. The bichloride in solution two grs. to the oz. of water as a lotion.

—266, 667. The olate of mercury with either applied with a camel-hair pencil.

SULPHUROUS ACID, 188. The B. P. acid with glycerine; warm baths should also be employed.

PLEURISY.

ACONITE, 472. Has marked effect.

ANTIMONY, 202. As tartar-emetic. (See Inflammation.)

BLISTERS, 152. Large and flying after subsidence of inflammation and fever, to further absorption of the fluid. The vesication, if any, should be healed at once.
INDEX TO DISEASES.

PLEURISY—continued.

Cod-liver oil, 335. In chronic form.

Iodide of potassium, 159. To quicken absorption of inflammatory effusions.

Iodine, 149. As liniment to chest to promote absorption.

— 159. Solution (weak at first) injected, after tapping the injection, — may contain other disinfectants.

Morphia injection, 578. Occasionally needed for severe pain.

Packing, 57.

Potash, 293. As liquor potassae is occasionally employed in pleurisy to promote the absorption of the inflammatory formations, but it is unadvisable to use it long.

Poultices, 83. Large, hot, and frequently renewed.

Sinaflisme, 430. Large.

Veratrum viride, 451. Opinions differ as to whether it should be used in athenic or athenic forms.

PLEURODYNIA.

Actaea racemosa, 463. When pleurodynia due to uterine derangements.

Belladonna, 84, 547. Generally liniment best, sometimes the plaster better.

Blistering, 124. Sometimes strong vesication necessary.

Chloral, 307. Made liquid with equal weight of camphor, and rubbed gently in.

Cotolin oil, 149. Has been recommended in obstinate pleurodynia.

Ether, 84. As spray sometimes immediately and permanently removes pain.

Iodine, 149. As a liniment.

Mustard, 149. As poultice.

Opium, 576. The liniment may be rubbed in, or sometimes a hypodermic injection of morphia may be necessary.

Poultices, 84. Very hot; followed by application of lint and ointment; belladonna liniment generally better.

PNEUMONIA.

Aconite, 473. Has marked effect.

Antimony, 19. Small frequent doses of tartar emetic when skin hot and dry—better here than aconite.

— 298. At commencement. If patient weak must take alcoholic stimulants as well.

Blisters, 125. Lessen the pain; should be used in moderation.

Morphia injection, 578. Sometimes needed for severe pain.

Packing, 58. Some pack the chest only, renewing hourly.

Phosphorus, 377. Especially when typhoid symptoms.

Poultices, 83. Large and hot. To encircle whole chest in children.

Quina, 680. To reduce temperature.

Safalicylic acid, 658. And salicylate of soda reduce temperature, but do not seem to shorten fever.

Sinapisms, 431. Large.

Veratrum viride, 451. Opinions differ as to whether it should be used in athenic or athenic forms.

POISONING BY ACIDS.

Alkalies, 198. The least irritating to the stomach to be selected.

Magnesia, oxide op, 212.

POISONING BY ALCOHOL.

Cold douche, 74. Poured for some time from a height on to the head.

Cold water, 47. Smartly sprinkled on face.

POISONING BY ALKALIES.

Acids, 184. Dilute.

POISONING BY ANTIMONY.

Alkalies, 198.

Tannin, 194, 511. Or strong tea or coffee.

POISONING BY ARSENIC.

Bicarbonate of magnesia, 198. Or other alkalies.

Charcoal, 139. Half an ounce or more.

Oxide of magnesia, 212.

POISONING BY BELLADONNA OR ATROPIA.

Alkalies, 198. Especially bicarb. of magnesia in poisoning by alkaloids.

Ammonia, 209. Breathed into air passages.

Charcoal, 139. In poisoning by belladonna.

Half an ounce or more must be given.

Lime-water, 368. Has been recommended.

Physostigma, 565. Possibly.

POISONING BY CHLORAL.

Physostigma, 560.

Strychnia, 577. The antidote according to Liebreich.

POISONING BY LEAD.

Alkalies, 198. Especially bichromate of magnesia in poisoning by metallic salts.

Iodide of potassium, 159. In chronic cases.

Luke warm drinks, 252, 253. Or sulphate of soda, sulphate of magnesia, or freshly precipitated sulphide of iron; promote vomiting — use stomach pump — give milk with white egg in acute lead poisoning.

Sulphides, 140. As baths in chronic form.

POISONING BY MERCURY.

Baths, 267. Simple or sulphurous.

Charcoal, 139. In poisoning by corrosive sublimate, half an ounce or more must be given.

POISONING BY NITRATE OF SILVER.

Alkalies, 198. Especially the bicarbonate of magnesia.

Chloride of sodium, 223.
INDEX TO DISEASES.

POISONING BY ODUM OR MORPHIA.
Ammunia, 305. Breathed into air passages.
Atrophia, 596. Quarter to half a grain hypo-
dermically.
Bicarbonate of Magnesia, 198.
Bromide of Potassium, 174. Controls dis-
agreeable effects of medicinal doses of opium ; 20 grs. an hour before, and the same
dose two hours after, the opiate.
Carbonat, 132. Half an ounce or more.
Cold douche, 74. Poured for some time from
a height on the head.
Cold water, 47. Smartly sprinkled on face.
Stomach pump, 585. Reuse patient, keep
him constantly moving to prevent sleep,
give strong coffee, apply cold affusion to
head, and if necessary adopt artificial
respiration.

POISONING BY OXALIC ACID.
Oxide of Magnesia, 372.

POISONING BY PHOSPHORUS.
Coffee salts, 327. Better than turpen-
tine.
Turpentine, 327.

POISONING BY PHYSOSTIGMA.
Atrophia, 594. One-thirtieth to one-thousandth of a grain hypodermically, repeated till effects
evident.
Chloral, 397. The antidote.

POISONING BY Picrotoxine.
Chloral, 397. The antidote.

POISONING BY STRYCHNIA.
Calabar bean, 516. As an antidote.
Carbonat, 132. Half an ounce or more.
Chloral, 297. The antidote, see p. 603.
Nitrate of Amyl, 408. Inhalation.
Stomach pump, 585. If available before
tetanic symptoms, animal charcoal, tannin solution of iodine, chloroform inhalation,
injection of curare or of methyl and ethyl
compound of strychnia, bruca or of thecalia,
artificial respiration, etc.

PREGNANCY. (See Vomiting.)
Aetna, 463. To prevent miscarriages in irri-
table or prolapsed uterus.
Bromide of Potassium, 174. For frightful
delusions in later months.
Sea-bathing, 53. In earlier months, unless there
have been several miscarriages or the
patient is of very excitable temperament.

PROLABUS.
Alum, 260. In solution, six grains to the
ounce, in prolapsus ani and uteri.
Ice, 69. Locally applied in prolapsus of rec-
tum or uterus when parts inflamed.
Strychnia, 89. In prolapsus ani, especially
in children. If there is constipation nux
venaica may be added to a purgative, as
tinct. of rhiubarb. If there is diarrhoea it
should be checked.

PROLABUS—continued.
Sulphur, 358. In prolapsus recti has a bene-
ficial effect in addition to that due to laxa-
tive properties.
Tannin, 348. As catechu, kino, red gum,
phytaias; hematoxylin injections to restrain
prolapsus ani.

PROSTATITIS.
Cantbrides, 438. A drop of the tinct.
(five may be required) three or four times a
day.
Hot injections, 99. To relieve pain.

PRURIGO.
Borax, 393. (See Pruritus.)
Cantbrides, 437. Internally.
Carbolie Acid, 351. Oil of cade, &c. (See Pruritus.)
Chloroform, 370. As ointment to allay
itching.
Vaniak of Potassium, 574. Or hydrocyanic
acid. (See Pruritus.)
Ice, 86. For prurigo of vulva.
Iodour, 391. As ointment. One dram
to the ounce.
Sulphur, 357. With tar and benzolated lard
as ointment in genuine prurigo.
Turkish bath, 68. When unconnected with
lice.
Warm baths, 66.

PRURITUS.
Alkalies, 292. An alkaline solution such as
a drachm of carbonate of potash or soda to
a pint of water applied with a small piece of
sponge in itching of urticaria or lichen.
Solution of cyanide of potassium, same
strength, better still.
Alum, 260. A strong solution for pruritus
vulvae.
Arsenic, 297. In itching of the nose accom-
ppanying asthma-like affections. (See Asth-
ma.)
Benzoin, 422. The compound painted on the
skin in eczema, urticaria, &c.
Boracic acid, 394. A teaspoonful dissolved
in a pint of boiling water, used tepid or cold
as lotion in pruritus pudendi.
Borax, 395, 396. Five to ten grains to the
ounce of hot water in pruriginous eruption on
mucous membrane of vulva and vagina. In
this complaint infusion of tobacco, iodide of
lead as ointment, bismuth and morphia as
ointment, chloroform as vapor, limemint or
ointment; lead lotion, nitrate of silver, alum
in solution, tannin in solution, are often
useful, especially when alternated.
Campfer, 411. An addition to dusting
powders to allay heat and itching of eczema
and intertrigo.
Carbolie Acid, 371. In chronic eczema,
porosis and erythema, or, better still, ½
carbonate of potash, oil of cade, or oleum
rusellii—353. A weak lotion (1 in 100)
in pruritus ani and pudendi.
Chloroform, 370. As ointment to allay
itching of skin diseases.
Chromic Acid, 190. In solution locally ap-
pplied.
Cyanide of Potassium, 574. A drachm in
a pint of water as lotion for urticaria,
lichen, eczema, and prurigo where the skin
is unbroken.
INDEX TO DISEASES.

PRURITUS—continued.

HYDROXYACID, 574. Thirty drops of B. P. acid in an ounce of water or glycerine may be used instead of the cyanide of potassium solution.

LEAD, 250. Lotions ease itching of urtica. A strong lotion useful in pruritus pudendi, especially where mucous membrane red and excoriated. If this is dependent on worms or tumour, lotion useless.

MERCURY, 269, 269, 269. Strong solutions of hydrochloride, black wash, yellow wash, or mercurial ointment in itching of skin affections.

An ointment of a drachm of calomel to one oz. of lard is best, not, however, in urtica. Calomel ointment useful in pruritus ani, but less so in pruritus pudendi. In obstinate cases of these, blisters to thighs or leeches useful.

Calomel ointment useful in itchy scabbliness of scalp and in pityriasis of scalp. Nitrate of mercury ointment will destroy lice.

SALICYLATE ACID, 639. As ointment in pruritus anal. See ref.

SILVER, NITRATE OF, 258, 259. To be painted every day or second day on a patch of lichen, the size of the palm causing excessive irritation. A weak solution often relieves pruritus ani and pudendi; apply well with camel-hair brush three or four times a day. A strong solution in pruritus cutaneus of the meatus auditorius without eruption on skin; the memb. tym. to be carefully avoided. If itching from dryness of ear or deficient secretion of wax, try first almond oil or glycerine.

PSORIASIS.

ARSENIC, 316. At first apparently aggravates the disease but soon heals it. Largest dose required five min. liq. arsen. three times a day—never on empty stomach. For rules for giving arsenic, see ref.

CANTHARIDES, 437. Internally.

CARBOLIC ACID, 351. Or better still liquor carbonis detersens, oil of cade, oleum truci.

COBALT, SULPHATE OF, 293. Applied solid to spots of psoriasis, simple or specific.

MERCURY, 264. Calomel and nitrate of mercury ointment may be mixed, and tar ointment may be added, in patches of obstinate psoriasis, especially of hands, even when not syphilitic.

OILS AND PANTHS, 330. To lubricate skin, used in conjunction with warm baths.

SILVER, NITRATE OF, 258. Or sulphate of copper. An occasional application useful in psoriasis of the tongue and mucous membrane of mouth. If these are syphilitic, mercurials best.

SOAP, 192. Assists removal of scales.

SULPHIDES, 139. In baths—not in acute stage.

SULPHUR, 139. Internally.

TAR, 357, 357. In obstinate forms may be painted on the patches and left on, or creosote ointment, petroleum, cade, and carbolic soaps of various strengths useful.

TURKISH BATH, 70.

WARM BATH, 66. Especially in acute stage, rain or boiled water.

PUERPERAL FEVER—continued.

BROMIDE OF POTASSIUM, 173. For mania.

CHLORAL, 395. For mania and convulsions.

MORPHIA, 579. Hypodermically sometimes arrests puerperal convulsions.

TURPENTINE, 419. Has been used.

PUERPERAL PERITONITIS.

ANTIMONY, 392. As tartar-etic. (See also Inflammation.)

CHLORIDE SOLUTION, 148. For washing out vagina.

PURPURA.

ERGOT, 609. Has been strongly recommended.

TURPENTINE, 419. Has been used.

PYEMIA AND SEPTICEMIA.

QUINIA, 609. Supposed to diminish temperature.

SALICYLATE, 639.

WARM BATH, 67. Stump to be immersed to avert pyemia.

PYOSIS.

BISMUTH, 428. Useful in the various forms, whether acid, alkaline or neutral.

LEAD, 254. Soluble preparations are recommended.

NITRIC ACID, 181. Or hydrochloric acid in small medicinal doses shortly before meals when pyrosis acid—after when pyrosis alkaline.

SULPHURIC ACID, 189.

QUINSY. (See Throat, diseases of.)

RECTUM, DISEASES OF.

BROMIDE OF POTASSIUM, 162. Locally, in five parts glycerine in fissures of rectum and painful growths.

IDOFORM, 391. As suppository in painful diseases.

PHOSPHORUS, 356. In chronic inflammation.

RENAL COLIC. (See Colic.)

RESTLESSNESS.

ACONITE, 475. One drop of tincture at bedtime, repeated if needful.

WARM SPONGING, 66. To induce sleep and calm restlessness of convalescence.

RETENTION OF URINE.

CANNABIS INDICA, 608. When from spinal disease.

RHEUMATISM, ACUTE.

ACID STEAM-BATH, 81. Relieves pain and checks perspiration.

ACONITE, 475. Often subdues pain in inflamed joints and perhaps shortens the fever.

ACTEA RACEMOSA, 462. Has been much used, said to quell the pain speedily.
RHEUMATISM, ACUTE—continued.
Bicarbonate or citrate of potash, 200, 201. Opinions very divergent. Seems, however, to relieve pain.
BLISTERING, 128. Large flying blisters to inflamed joint.
COLD-WATER TREATMENT, 62. Invaluable in hyperpyrexia. (See p. 63.)
COLD WET COMPRESSION, 57. To painful joints.
CONJUR, 512. Internally to relieve pain.
LIME-JUICE, 185. Eight ccs. daily; lemon juice inferior.
NITRATE OF POTASH, 213. In large doses (half oz. to one oz. in the day) freely diluted in water or lemonade—thought highly of by some.
OPIUM, 590. Hypodermically to relieve pain and induce sleep.
Packing, 57. If patient cannot be moved, front of body may be packed.
Poultices, 83, 84. Very hot on the painful part.
QUINIA, 621. Recommended by some (see ref.).
SALICYLATE OF SODA, 636. Behaves as salicin.
SALICYLIC ACID, 636. Behaves as salicin, but is very slightly soluble and liable to impurities.
SULPHURIC ACID, 169. After fumigation, patient to be covered with bed-clothes which have been exposed to strong fumes, this produces perspiration, sleep and relief.
TEPHIS OR COLD SPONGING, 57. If prejudiced against packing.
TURKISH BATH, 79. For modified form, see p. 80.
VERATRUM, 452. As ointment to rheumatic joints. It often, however, fails. 452. Veratrum viride as tinct. is said to be useful.

RHEUMATISM, CHRONIC.
ACTEA RACEA, 462, 463. Significantly beneficial where after pain in most joints without fever one joint becomes thickened and useless, warm bath allays pain and it almost ceases at night. Also useful in some other forms of chronic rheumatism.
BLISTERING, 128. Nightly in gonorrheal form.
CAPSICUM, 432. A strong infusion applied on lint for rheumatic pains.
CARBONIC ACID, 734. Natural waters containing much carbonic acid used externally.
CHLORAL, 397. Often relieves the pain.
COD-LIVER OIL, 336.
COLD DOUCHE, 75. Salt may be added.
GALANTHIA, 83. For pain and stiffness.
LIME, 317. As lime-water or carbonate of lime.
PHOSPHATE OF POTASH, 226. Small doses as good as large.

RINGWORM. (See Tinea.)

SALIGATION.
Acids, 189. As astringents in salivation. Small medicinal doses.
Alcohol, 359. Diluted, as gargle.
Atropia, 347. Hypodermically.
Chlorate of potash, 235. Whether mercurial or simple salivation.
Chloride of sodium, 148. For joint affections (locally).
Iodide of potash, 158. Sometimes beneficial in mercurial salivation, but sometimes aggravates it.
Iodine, 153. Gargle, two drachms of tinct. to eight ccs. of water.

SARCINAE. Sulphites, 189. And hyposulphites have been employed to destroy sarcinae and torule in the stomach.

SCABIES. (See itch.)
SCARLET FEVER.
ACONITE, 474. To control accompanying inflammatory affections. Should be given if during convalescence any rise of temperature occurs.
ARSENIC, 6. With nitric acid in convalescence if "strawberry" tongue persists.
BELLADONNA, 361. Has been recommended as a preventive.
CARBONATE OF AMMONIA, 211. In three or five grain doses hourly or every two or three hours in all forms, especially if given early.
CHLORINE WATER, 148. In sloughing of throat.
COLD AFFUSION, 71. During first few days when skin hot and red.
COLD WET COMPRESS TO THROAT, 57. Throughout whole course, renew every three hours.
FAT, 330. Rub hands and feet with a firm fat to remove heat and tightness produced by rash.
Some anoint whole body two or three times a day with fat or oil, such as almond oil, to prevent desquamation, sequelae and diffusion of branny particles of skin.
ICH, 88. Sucking, in the sore throat, especially at beginning.
JUNIPER, 424. Esteemed as a diuretic in scarlatinaceous dropy.
MERCURY, 371, 375. The third of a grain of grey powder every hour has marked effect on inflamed tonsils.
MUSTARD, 430. A general mustard bath on the recession of rash to bring it back.
NITRIC ACID, 180. Strong, to slough in throat.
Packing, 57. Throughout its course, especially on recession of rash.
SALICYLIC ACID, 638. And salicylate of soda lessen temperature.
STRYCHNIA, 505. Hypodermically for paralysis after scarlet fever.
SULPHATE OF MAGNESIA, 299. And other purgatives prevent sore throat and other sequelae.
SULPHURIC ACID, 188. Inhalation, spray or fumigation in malignant sore throat.
VERATRUM VIRIDE, 451. Has been employed in convulsions.

SCIATICA—continued.
SULPHUR, 139. Locally.
TURKISH BATHS, 76.
TURPENTINE, 419. In half-ounce doses for four or eight successive nights, has been very successful.
VERATRA, 449. As strong ointment. Veratum viride as tinct. has also been recommended (p. 450).

SCREAMING AT NIGHT. (See Night Screaming)

SCROFULA. (See Sores.)
BLISTERS, 137. For scrofulous glands.
CHLORIDE OF CALCIUM, 217. Ten to twenty grain doses in milk after food when glandular enlargement of neck and chronic diarrhoea.
COD-LIVER OIL, 335. Of great service in the various manifestations of this disease, as chronic discharge from ears and nose, strumous ophthalmitis, strumous disease of bones, abscesses, &c.
IODINE, 151. Tinct. or ointment applied over scrofulous glands—take care not to increase inflammation.
IRON, 243. Must be long continued.
SULPHURIDES, 143, 144. For sores, abscesses, suppuring glands, see ref.

SCURVY.
ACIDS, 185. Especially vinegar to prevent scurry in the absence of lime-juice or fresh vegetables.
ALCOHOL, 339. Diluted as gargle.
ATROPHY, 547. Hypodermically.

SEA-SICKNESS. (See also Vomiting.)
SPINAL ICE-BAG, 92. (Made of Asph., 410
SEMINAL EMISSIONS. (See Spermatorrhoea.)

SEPTICÆMIA. (See Pyæmia.)

SEXUAL DESIRE, INORDINATE. CAMPHOR, 417.

SHINGLES. (See Herpes.)

SICK HEADACHE.
ACONITE, 121. The ointment to be rubbed over the painful brow at commencement.
— 365. As ointment in neuralgic sick headache.
BROMIDE OF POTASSIUM, 170. When associated with "nervous" state, which it often is at the "change of life.
— 400. When due to uterine disorder.
INDEX TO DISEASES.

SICK HEADACHE—continued.

CANNABIS INDICA, 629. Especially valuable in preventing attacks when from fatigue, &c., they become unusually frequent. Useful where much or little sickness, also sometimes in the severe continuous forms.

May be combined in pill with iron or aloe.

CHAMOMILE, 640. A popular remedy.

CHLORIDE OF AMMONIUM, 225. COUNTER-IRRITATION, 121. See ref. for discussion on.

CHOTON-CHLORAL, 407. Especially in the mild forms without severe vomiting and retching. Often bromide useful afterwards.

— 402. When the headache predominates.

FRIEDRICHSHALL WATER, 225. A wineglassful in a breakfast-cup of hot water for bilious sick headache.

GUARANA, 612. A powder every night and in the occurrence of an attack every three hours.

MERCURY, 587. As blue pill.

NITREX OF AMYL, 410. As inhalation.

NUX VOMICA, 596. A drop of the tinct. very frequently in acute gastric catarrh with much headache and slight nausea.

PHOSPHORUS, 326.

POTOPHYLLUM, 429. When there is either diarrhoea or constipation with dark-coloured motions. If the diarrhoea is of a light colour the hundredth part of a grain of chloroform three times a day.

VALERIANATE OF ZINC OR OF AMMONIA, 425.

In two to five grs. doses three times daily.

VERATRUM, 721. The ointment to be rubbed over the painful brow at commencement.

— 450. As ointment where tenderness of skin present. It often subsides pain, prevents vomiting, and shortens the attack.

SICKNESS. (See Vomiting.)

SKIN AFFECTIONS, CHRONIC.

Cod-Liver oil, 376. When syphilitic or otherwise.

SKIN, TORPID.

ACIDS, 179. Greatly diluted nitric or hydrochloric, as bath.

SLEEPLESSNESS.

ALCOHOL, 366. In fevers if it produce sleep and quiet delirium.

BROMIDE OF POTASSIUM, 169, 170. Especially when delirium like that of delirium tremens or accompanying mental anxiety, hysteria, pregnancy, and general nervous irritability. Dose 20 to 30 grs. It increases hypnotic effect of hysoc., bellad., cannabis ind., ether and chloroform.

CANNABIS INDICA, 629. Rather uncertain.

CHLORAL, 394, 395. In old people, delirium tremens, paralysis of insanity, acute mania, puerperal mania, puerperal convulsions, typhus, phthisis, convulsions of children.

CODEIA, 592. And naurein, both soporifics.

CHOTON-CHLORAL, 407, 409. One draught may be given.

ETHYLS, 382. Or spirits of chloroform in a full dose.

SLEEPLESSNESS—continued.

HYOSCYAMUS, 330. When opium disagrees.

MORPHIA, 578. Hypodermically injected in acute mania, delirium tremens, chorea, &c.

OPHOLUS, 384. A rectal injection sometimes succeeds best, e.g., for dyspepsia or convalescents from acute disease, also used in delirium tremens and traumatic delirium.

— 387. In fevers.

— 389. The time of administration important—should be given so as to act at the time when the patient is naturally inclined to doze.

It should not be given in chronic sleeplessness independent of any very not able disease, chloral and bromide of potassium much better in dyspepsia and uterine derangements.

REMOVAL INLAND, 54. When restlessness at night is produced by sea-bathing.

TARTAR-EMETIC, 293. In the delirium of typhus and other fevers.

WARM BATH, 66. Or sponging, in fever and convalescence.

SMALL-POX.

ACYRUM RACEMOSA, 641. Given internally by some who assert that it prevents pitting.

COLLODION, 329. Or solutions of india-rubber or gutta-percha in chloroform prevent pitting in small-pox.

LIME, 315. Cotton-wool cut in proper shapes is dipped into lime liniment and applied to face and neck to prevent pitting.

MERCURY, 570. Formerly used in ointments or plasters to prevent pitting.

PACKING, 57. Especially on retrocession of rash.

SILVER, NITRATE OF, 327. By fourth or fifth day puncture vesicles with needle dipped in solution so grs. to 1 oz., or deeply paint the skin. This plan prevents pitting.

SNEEZING.

ARSENIC, 257, 258. A drop of the liquor three times a day in paroxysmal sneezing allied to asthma.

CAMPHOR, 415. In incessant sneezing with profuse running from eyes and nose. The powder should be sniffed or the alcoholic solution inhaled.

IODIDE OF POTASSIUM, 175. In paroxysmal sneezing ten grs. several times a day.

IODINE, 152. Inhalations in paroxysmal sneezing with itching at the nose.

SOMNAMBULISM.

IODIDE OF POTASSIUM, 175. In the somnambulism of children, which is allied to epilepsy.

SORE NIPPLES. (See Nipples, Sore.)

SORES. (See also Ulcers.)

ALCOHOL, 359. To cover sores with thin protecting layer of coagulated albumen.

ALUM, 356. Dry or in solution to relaxed and abundantly secreting sores.

CAMPHOR, 415. For dusting on indolent sores.

CARBOLIC ACID, 357. Applied as stimulant and antiseptic.

SORES—continued.

Charcoal, 86, 137. Locally to sloughing sores.

Chlorine solution, 148. For sloughing and indolent sores, as a wash.

Cinchona, 613. The powdered bark dusted over sloughing ulcers, &c.

Copper, 583. The sulphate as stick, solution, or ointment to indolent sores.

Glycerine of carbolic acid, 343. A good application to festid sores.

Iodide of starch, 86. As a poultice, cold. (See ref.)

Iodoform, 390. Dustied over spreading or sloughing sores.

Lead, 249. The soluble salts as lotion to unhealthye over-secretting sores.

Lime, 214. As carbonate or lime-water to check discharge.

Mercury, 269. Calomel ointment or black wash in scrofulous or tubercular lupus, and in open scrofulous sores.

Nitric acid, 178. To surface of unhealthy and indolent sores.

Oxium, 526. Or morphia with glycerine as an application to cancerous or simple sores, to relieve pain.

Sulphur, 130. To masonic painful sores.

Sulphide of calcium, 141. When thin ichor discharged.

Tannin, 344. Or glycerine of tannin to coat over wounds and profusely discharging sores.

Yeast, 86. As poultices in sloughing sores.

Zinc, sulphate of, 585. To unhealthy free secreting sores.

SORE THROAT. (See Throat, diseases of.)

SPASMOMATIC AFFECTIONS.

Aconite, 471. In spasmatic laryngitis rapidly produces good effects.

Atropine, 548. Hypodermically in local spasm.

Camphor, 417.

Chloroform, 571. Vapour in spasm of intestines.

Hot sand, chamomile flowers or tile, 87. Locally in painful "spasms."

Oxium, 500. Very useful as an antispasmatic, especially if given with a stimulant, as alcohol, ether, or chloroform.

Sulpho-carbolates, 354. In flatulent "spasms;" sometimes phosphorus better.

SPERMATORRHEA—continued.

Cold douche, 75. To perineum and buttocks with suspension of testicles in cold water.

Cold sponging, 71.

Digitalis, 502. One or two drachm doses of the infusion very efficacious.

Hypophosphites, 332. Of lime or soda.

Phosphorus, 357. For physical or mental debility induced by spermatorrhoea.

Quinia, 651. Has been recommended.

Spinal ice-bag, 91.

Streptom, 691. In large doses, especially when associated with impotence.

SPINAL IRRITATION.

Aconite, 466. As ointment.

Belladonna, 466. Preparations locally applied generally better than those of aconite.

SPRAIN.

Cold douche, 75. Salt may be added. The force must be regulated by condition of tissues.

STINGS.

Ammonia, 295. Weak solutions in stings of insects to neutralize the formic acid.

STOMACH, DISEASES OF. (See also Vomiting.)

Acids, 182. Nitric or hydrochloric in small doses for acid eruptions, heartburn, and discomfort in chest and epigastrium, due to excess of acid in stomach.

Alkalies, 158. In pain of stomach. Liquor potassae generally used.

Ammonia, 210. Internally as an excitant when functions of stomach and upper intestines depressed.

Arsenic, 308. A drop of liq. arsenie before food in irritative dyspepsia, and in vomiting of drunkards. Useful in chronic ulcer and cancer; also in heartburn and gastralgia, and in chronic dyspepsia with diarrhoea which is excited by food.

Belladonna, 549. In some painful affections.

Bismuth, 248. Especially the nitrate, eases the pain in both organic and functional diseases—as cancer, chronic ulcers, chronic inflammation, and especially chronic gastritis of drunkards, also in gastrodynia, and cramp; acute and chronic catarrh of stomach in children causing vomiting yield to this, also the various forms of pyrosis.

Carboxic acid water, 134. In painful and irritable conditions, may be mixed with milk; useful where constipation.

Charcoal, 132. In ulcer of stomach, also in neuralgia.

Chloral, 397. Sometimes relieves pain of gastralgia.

Chloroform, 350. Drop doses in flatulent distension, sea-sickness, and other vomitings.

Conium, 512. Sometimes relieves pain of cancer.

Counter-irritation, 127. At epigastrium often allays pain and obviates vomiting due to disease of stomach.

Carrots, 352. Checks pains after food, also many forms of vomiting.
STOMACH, DISEASES OF—continued.

HYDROXYCYNIC ACID, 574. Much used in painful diseases, as chronic ulcer, cancer, chronic gastritis, gastralgia, &c. May check vomiting as well as relieve pain.

ICR-BAG, 88. To epigastrium, for pain and vomiting in cancer, ulcer, &c.

IRON, 241. Astringent preparations in hemorrhage from stomach.

LEAD, 356. Soluble preparations have been recommended in pyrosis.

MAGNESIA, 213. As oxide and carbonate—action mild—very suitable for children—often combined with rhubarb.

Bicarbonate, or, as it is often called, fluid magnesia, is a useful and mild aperient.

NUTRIENT EREMATA, 100. In painful diseases as chronic ulcer, and when persistent vomiting.

NUX VOMICA, 456 and 506. One or two drops of the tincture every two hours or oftener when tongue is coated and there is chronic catarrh of stomach in the course of chronic disease, also when there is flatulence and indigestion, or heartburn. Five drops a quarter of an hour before food three times a day in dyspepsia with heat and weight on top of head, common amongst women, also in heartburn.

NUX VOMICA, 596. One drop every five or ten minutes for eight or ten doses in acute gastric catarrh with headache or sick headache.

OPIUM, 582. Or morphia, to quell pain of many stomach affections, and to relieve the vomiting, thus it is useful in cancer, chronic ulcer and chronic gastritis from excessive indulgence in alcoholic drinks.

For the pain, nausea, and want of appetite accompanying alcoholism, small doses of morphia combined with tonics very efficacious. For gastralgia with heartburn, small doses of morphia with hismuth.

SILVER NITRATE OF, 261. Given in solution to check pain and vomiting of chronic inflammation, chronic ulcer, and even cancer.

strychnine, 594. Hypodermically for gastralgia and gastralgia.

SULPHITES AND HYDROSULPHITES 185. To destroy sarcome and tumour.

TANNIN, 547. Sometimes given for irritable dyspepsia, also in hemorrhage.

TURPENTINE, 418. In hemorrhage from chronic ulcer, &c., five to ten drops frequently repeated.

ZINC, SULPHATE OF, 286. In less than emetic doses in painful affections due to chronic inflammation of mucus membrane.

STOMATITIS—continued.

SALICYLIC ACID, 618. One part (dissolved in sufficient alcohol) to 290 parts of water eases pain of catarrhal stomatitis.

STONE. (See Calculi.)

STOUTNESS. (See Obesity.)

STRICTURE.

OVUM, 591. In spasmodic stricture.

SUNSTROKE.

COLD AFFUSION, 71. When patient struck down unconscious.

SUPPURATION.

QUINIA, 651. Has been recommended in profuse suppuration.

SULPHIDE OF CALCIUM, 141. When ichor instead of pus is secreted. It will also arrest suppuration, or if that is impossible, will hasten maturation.

SUSPENDED ANIMATION AT BIRTH.

COLD WATER, 47. Smartly sprinkled on face.

SWALLOWING LIQUIDS, CONGENITAL DIFFICULTY IN.

BROMIDE OF POTASSIUM, 154. When no diphtheria or malformation.

SWEATING. (See Perspiration, excessive.)

SYCOSIS.

MERCURY, 265. Bichloride, two grains to one ounce of water applied as lotion after each epilation.

—— 266. The olate.

SYNCOPE. (See Fainting.)

SYNOVITIS.

BLISTERS, 128. A flying blister every night in chronic synovitis.

IODINE, 150. Painted round joint in chronic synovitis.

MERCURY AND MORPHIA, OLEATE OF, 265. Locally applied.

SYPHILIS. (See Chancre.)

COD-LIVER OIL, 336. In chronic skin affections.

IODIDE OF IRON, 246. Where amenia.

IODIDE OF POTASSIUM, 137. In secondary and tertiary syphilis. (See ref.) Large doses required for some syphilitic sores.

LAM-BATH, 80.

MERCURY, 376. Corrosive sublim. half an ounce, ammonia. Chlor. one ounce, in a bath for obsteinate rashes.
SYPHILIS—continued.

Mercury, 269. Black wash very useful in syphilitic sores generally, in mucous tubercles, and in the elevated indurations, larger and more irregular than mucous tubercles occurring near the anus of children. Calomel or carbolic ointment may be substituted for black wash.

Calomel dusted over condyloasma will remove them.

The cyanide, ten to fifteen grains in an ounce of water, may be applied to sores on the breast, tongue, penis, anus, &c., for those on the prepuce five grains to the ounce, quite strong enough. Should be applied with soft brush to chancre, and these should be kept moist with lint soaked in black wash.

Mercurial applications mixed with tar, &c., are useful in syphilitic psoriasis.

Mercurial fumigations, moist or dry, for eradicating syphilis. These sometimes produce prostration.

330. Mercurial and calomel ointments may be rubbed into delicate parts of the skin to mercurialize the system.

Bichloride has been injected subcutaneously.

In syphilitic ozena nitrate of mercury ointment, partially melted, may be applied twice a day after nose well cleared.

For discussion on the use of mercury in syphilis, see pp. 579, 580.

329. The twenty per cent. ointment of the oleate in the axilla useful for both children and adults.

Nitric acid, 186. In secondary syphilis.

Oils of Melissa and Sassafras, 473. Reported useful.

Zinc, 283. Chloride, iodide, nitrate, locally to syphilitic ulcers.

TEETH, AFFECTIONS OF.

Aconite, 464. Ointment or liniment for facial neuralgia due to diseased teeth; will succeed quickly if at all.

Arsenic, 293. As escharotic to destroy pulp.

Chloral, 397. Rubbed up with equal weight of camphor and rubbed gently in externally or put into cavity.

Chlorbrom, 397. Two or three drops on cotton-wool in ear, or into tooth, or hold over hollow tooth a bit of rag moistened with chloroform.

Cinchona, 613. Powdered bark often used in tooth powders.

Colloids, 318, 330. Mixed with crystallized carbolic acid, which has been melted in a test-tube, may be inserted into a tooth with exposed and inflamed pulp on cotton-wool: the pain may be at first increased but is soon abolished.

Conia, 326. Solution in alcohol may be introduced into a hollow painful tooth.

Croton-Chloral, 403. Sometimes promptly relieved toothache.

Gelsemium, 539, 540. In some forms of toothache.

Teeth—continued.

Hot water, 94. Rinse with—sometimes cold better.

Hyposmophites, 223. Of lime or soda in teething.

Iodium, 153. Tincture painted over gums close to teeth when these begin to recede and expose teeth. Also to remove tartar from teeth.

Morphia, 577. Hypodermically injected for severe toothache.

Opium, 586. Mixed with tannin or cresote and inserted into the hollow of a painful tooth, where inflamed pulp exposed.

Volatile oils, 421. In toothache.

Zinc, Chloride of, 284. To destroy exposed painful pulp.

TETANUS.

Calabar bean, 518. If possible by mouth, if not, hypodermically or by anus. It must be pushed till just short of arresting the breathing, and be given at the very beginning. The liquid extract is used.

Chloral, 396. In large doses has sometimes cured.

Conia, 512. Hypodermically.

Nicotia, 508. By rectum or hypodermically, appears to work well in many cases.

Nitrite of Amyl, 408. Inhalation may be tried, or it may be given subcutaneously.

Spinal Ice Bag, 91, 92.

THIRST.

Acid drinks, 176. In fevers, promote secretion of saliva.

Ice, 86, 93. Sucking ice allays thirst.

Trepid drinks, 94. In diabetes.

THREAD WORMS. (See Worms.)

THROAT, DISEASES OF.

Aconite, 470, 471. In tonsillitis and acute sore throat, when temperature high, drop or half-drop doses of the tincture every quarter of an hour for two hours, then every hour, will almost certainly prove efficacious.

Actaea Racemosa, 461. In simple and malignant sore throat, and when mucous membrane of pharynx dry and spotted over with inspissated mucus.

Alcohol, 359. Diluted, as gargle in relaxed throat, scrofula, salivation, &c.

Alum, 237. Dry or in solution, in simple or scariatal sore throat in tonsillitis and even diphtheria.

Gargles in chronic inflammations, but glycerine of tannin better.

Antimon, 200. One-quarter to one-half a grain of tartar-emetic every hour in tonsillitis.

Antiseptic Solutions, 148. In sloughing.

Arsenic, 297. In medicinal doses in sloughing of throat or malignant sores.

Belladonna, 242, 349. Internally in severe inflammatory diseases, especially when throat and tonsils acutely inflamed and much swollen—may be given with aconite.

Capsicum, 433. One drachm of the tincture, to half a pint of water as a gargle in some sore throats, and in the very early stage of tonsillitis and pharyngitis, also in malignant sore throat and in relaxed throat.
THROAT, DISEASES OF—continued.

COLD COMPRESS, 472. Used nightly to harden throat, when tendency to catarh. It should be swabbed daily with glycerine of tannin. Inhalations of sulphurous or carbolic acid useful.

CREOSOTE, 329. Or carbolic acid gargle in coughs of throat.

GLYCERINE OF TANNIN, 346. After acute inflammation; in ulceration in aphthous sore throat; in chronic inflammation; often when accompanied by deafness or cough, preceded no catarh or phthisis or festhing irritation.

ICH, 58. Very valuable, constantly sucked in tonsillitis, sore throat, etc.

IODINE, 153. Tincture applied locally to sore, whether syphilitic or not.

ISGACUANNA WINE, 445. As spray in non-inflammatory sore throats and hoarseness from congestion of vocal cords.

MERCURY, 277. In acute tonsilitis when tonsils almost meet, the third of a grain of grey powder every hour beneficial even if an abscess has formed.

MERCURY AND MORPHIA, OLEATE OF, 266. In obstinate and painful tonsillitis.

NITRATE OF POTASH, 345. Crystals sometimes sucked in acute inflammation, but other remedies preferable.

NITRATE OF SILVER, 180. In early stage of inflammation locally applied may cut it short. Solutions are used in chronic sore throat, but generally tannin and other astrigent but non-irritant applications better unless in a sloughing condition. Sometimes used in diphtheria on inflamed patches only. Sometimes applied to chronically inflamed larynx, as in phthisis, by brush or spray. Sometimes introduced into tracheas in asthma, bronchitis and phthisis (see p. 260).

NEFIC ACID, 180. Applied undiluted to foul sloughs.

SULPHURIC ACID, 188. Inhalation, spray, or fumigation, for malignant sore throat, whether scarlatinal or otherwise.

TANNIN, 347. A spray of five per cent. tannin in diphtheria and croup.

ZINC, SULPHATE OF, 256. As gargle occasionally employed in relaxed throat.

THRUSH.

BORAX, 197. With honey or as glycerine of borax.

COFFEE, SULPHATE OF, 283. A weak solution to be painted over mucous membrane.

GLYCERINE, 343. Will sometimes cure.

GLYCERINE OF BORAX, 343.

SALICYLIC ACID, 658. One part (dissolved in alcohol) to 450 of water.

SULPHURIC ACID, 188. As solution, strong or diluted, locally applied.

TIC. (See Neuralgia.)

TINEA FAVUS—continued.

MERCURY, 265. A lotion of two grains of the bichloride in an oz. of water applied after each evolution.

TINEA SYCOSIS.

MERCURY, 265. A lotion containing two grs. of the bichloride to an oz. of water to be applied after each evolution.

TINEA TARSI.

BLISTERS, 127. To temple, frequently repeated in obstinate cases.

MERCURY, 265. The irritant ointments. Eyelashes to be cut short and ointment applied night and morning after picking out scales. Ung. hydrag. nit. should not be diluted to more than half its strength. Sometimes best undiluted.

TINEA TONsurANs.

IODINE, 251. Two drachms with an oz. of oil of wood tar, as a local application.

MERCURY, 265. For lotion, see Tinea favus.

TINEA TORSION.

IODINE, 251. Two drachms with an oz. of oil of wood tar, as a local application.

TINEA VULVAE. (See Vulva.)

TOWELING,

TOWELING.

TRENCH FEVER.

TOE-NAIL, INGROWING.

POTASSIA, 195. Cotton-wool kept moist with liquor potassae pressed down between nail and soft parts.

TONSILLITIS. (See Throat, diseases of)

TOOTHACHE. (See Teeth, affections of)

TORTICOLLIS.

CAPSICUM, 428. A handful of the crushed pods are infused for 26 hours in a pint of hot or cold water and applied on list covered with gutta-percha.

TORULÆ. (See Sacchar.)

TUBERCULOSIS. (See Phthisis.)

TUMOURS.

CHLOROFORM, 379. In diagnosis of abdominal tumours, also in that of phantom tumours.
INDEX TO DISEASES.

TYMPLANUM, Rupture of. (See Ear, diseases of.)

TYPHOID FEVER. (See also Fevers.)

ALUM, 239. For the diarrhea.

COLD AFFUSION, see pp. 59, 60.

DIGITALIS, 592. Recommended by Wunderlich to lower temperature and slacken pulse.

EGG 82. For intestinal hemorrhage—hypodermically if urgent.

LEAD, 272. The acetate with opium for the purging.

MERCURY, 277. Corrosive sublimate, the hundredth of a grain every two or three hours for the diarrhea.

— 225. Calomel, in small doses at commencement, not to be pushed so as to touch the gums.

OPSIUM, 252. In small doses at night for wakefulness with delirium, and also for the diarrhea.

— 253. May be given as injection for diarrhea.

QUINIA, 600. To reduce temperature.

SALICYLIC ACID, 613. And salicylate of soda lessen temperature.

SULPHURIC ACID, 128.

TURPENTINE, 418. In five to ten drop doses frequently repeated for hemorrhages; and in ten min. doses every two hours in the advanced stage with a dry tongue, or drachm doses every six hours may be given when typhusitis and prostration but without diarrhea. (See also p. 4.)

VERATRUM VIRENS, 452. Has been employed.

TYPHUS FEVER. (See also Fevers.)

ANTIMONY, 293, 294. In the delirium with wakefulness—tartar-emetic combined with opium. (See Fever.)

BELLADONNA, 549. Said to clean the tongue. (See also p. 566.)

CHLORAL, 395. To produce sleep and allay violent delirium.

COLD AFFUSION, 62.

QUINIA, 615. To reduce temperature.

ULCERS. (See also Sores.)

CHLORATE OF POTASH, 234. In solution as a wash to clean and stimulate foul ulcers—other remedies better.

CINCHONA, 613. The powdered bark dusted over foul, indolent, sloughing and gangrenous ulcers promotes the healing process.

CONTUM, 506. Locally applied by means of a poultice, will ease the pain and improve the character of the sore.

NITRIC ACID, 179. Locally to destroy foul, unhealthy surface. As lotion to indolent and painful ulcers. Also to ulcers of mouth (p. 260).

SILVER, NITRATE OF, 241. Applied to unhealthy ulcers. Also to ulcers of mouth.

URIC ACID, EXCESS OF, IN URINE.

ALKALIES, 200. Citrates are best.

URINE, INCONTINENCE.

INCONTINENCE.)

URINE, SUPPRESSION OF.

COPIOUS INJECTIONS, 99. Beneficial in some cases.

URTICARIA.

ALKALIS, 192. (See Pruritus.)

BENZONIA, 479. The comp. tinct. painted on the skin for itching.

CHLOROFORM, 370. As ointment to allay itching.

COCCICUM, 455. In gouty persons.

CYANIDE OF POTASSIUM, 574. Or hydrocyanic acid. (See Itching.)

LEAD, 290. Lotions to ease itching.

NITRIC ACID, 178. A dilute wash controls itching and prevents whelms.

WARM BATHS, 66.

UTERINE DISEASES.

ACTEA RACKMOSA, 463. To prevent miscarriages in irritable uterus and prolapse.

BELLADONNA, 549. With tannin and suppository in neuralgia of uterus.

CAMPHOR, 416. A saturated solution in eau de Cologne to be rubbed into the head for drowsiness or headache of uterine origin.

CARDIAC ACID, 355. A weak solution as injection in cancer. (See also p. 357.)

CARBONIC ACID GASES, 154. Injected up vagina for pain of ulceration of os, cancer and neuralgia of uterus.

CAUSTIC LIME, 214. Mixed with caustic potash as escharotic in affections of neck of uterus.

CHLOROFORM, 369. As spray in cancer, ulceration of os, and neuralgia, must be continued some minutes.

ERGOT, 659. Hypodermically for fibrinous tumors.

— 610. The most valuable medicine known for uterine hemorrhage—must be given in full doses and repeated every hour or so. Dry cupping over the sacrum useful, perfect rest necessary.

GLYCERINE, 243. In congested neck of womb a pledge of cotton-wool saturated with glycerine and applied for several hours will induce a copious discharge of serum which will give as much relief as leeches,—a piece of twine should be fastened to it.

GLYCERINE OF TANNIN, 346. Checks discharge and stench of cancer, better still if mixed with glycerine of carbolic acid.

IODIFORM, 308. As bolus with cocoa fat inserted into excavation produced by cancer.

IRON, 247. Locally in uterine catarrh.

LEAD, 291. As plaster for pain in back due to uterine disease.

OPSIUM, 252. An injection into the rectum of laudanum and starch will subdue the pain of uterine diseases.

VACCINATION.

ACONITE, 475. For erysipelatous redness after vaccination. This treatment may be supplemented by the local application twice daily of belladonna ointment.

VENERITIS. (See Vulvitis.)

WARM OF TANNIN, 345. In chronic cases of children.
VARICOCELE.

COLD DOUCHE, 72. To perineum and buttocks, with suspension of testicles in cold water.

HAMAMELIS, 349.

VERTIGO, AURAL.

GELSEMIUM, 540. The tincture in 10 min. doses thrice daily.

VOMITING.

ACIDS, 182.

ALUM, 285. In six to ten gr. doses in obstinate vomiting of phthisical patients excited by coughing.

ARSENIC, 308, 209. One drop of 10% arsenic, before food in vomiting of drumsticks, also in chronic vomiting without pain or nausea, has been recommended in vomiting of cholera.

BELLADONNA, 249. Has arrested the obstinate forms of the vomiting of pregnancy.

BICARBONATE OF SODA, 215, 216. Half-draught to a draught to a pint of milk for infants, especially if constipated. If lime-water and bicarbonate of soda both fail, stop all milk and feed on soppéd bread, water and chicken or veal broth.

BISMUTH, 248. In many forms of vomiting in children, especially when due to acute or chronic catarrh of the stomach.

CARBONIC ACID WATER, 334. With milk.

CHLOROFORM, 379. In drop doses, pure, in sea-sickness and other vomiting.

COUNTER-I RITATION, 127. At epigastrium often allays pain and obstinate vomiting due to diseases of stomach.

CROCOTE, 353. In sea-sickness, pregnancy, cancer, ulcer of stomach and Bright’s disease.

GELATINE, 215, 216. With milk, cream, and arrowroot, as food for young children.

HYDROCHLORIC ACID, 572. Sometimes checks vomiting as well as relieves the pain of chronic ulcer, cancer, chronic gastritis, gastralgia, &c.

ICE-BAG, 88. To epigastrum for pain and vomiting of cancer, &c.

IPRESSANNA, 213. In sympathetic vomiting.

LIME-WATER, 215, 216. In chronic forms, as from chronic ulcer, mixed with milk— if vomiting incessant, patient should be fed on this only in frequent small quantities. Milk with one-eighth of lime-water, often sufficient for infants in whom the gastric juice coagulates, milk curdling vomiting, wind and colic. If they are constipated bicarb., of soda better.

MACNEILLIA, 213. In sympathetic vomiting—effects very transient.

MERCURY, 372. As calomel, or better still grey powders, one-third grain every two hours in the sudden forcible vomiting of children. Small doses frequently given useful when vomiting accompanied by clay stools.

MORPHIA, 559. Hypodermically in pregnant as well as other severe forms. Often arrest persistent hiccup.

NATRURIS ENEMATA, 100. In persistent vomiting.

NUX VOMICA, 246. When tongue coated with thick fur—may be given with ipecac.

OXALATE OF CERIUM, 213. One grain every three hours in sympathetic vomiting.

QUINA, 213. In sympathetic vomiting.

VERATRUM ALBUM, 435. In vomiting due to purging of summer diarrhoea.

VULVITIS.

ALUM, 236. A lotion, or if inflammable higher up an injection of sixty grains of pith of water, to be used every hour often. The strength is occasionally much.

GLYCERINE OF TANNIN, 345. In chronic vaginitis of children.

LEAD, 313. Solutions of the acetate d i c e t a t e as wash when acute stage subsided—later on stronger astringents needed.

LIME-WATER, 215. As a wash.

WARTS.

ARSENIC, 205. Arsenious acid as a caustic enough to be used to excite active inflammation. (See ref.)

Liquor arsenici may be used over warts.

CAUSTIC ALKALIES, 191. Undiluted mixed with caustic lime, locally.

CHROMIC ACID, 350. A solution of 1 oz. to one oz., applied with a glass rod so just to saturate the diseased growth, 1 superfusious acid to be removed; dress with dry lint.

GLACIAL ACETIC ACID, 178. Very effective in Mercury, nitrate of, 252. Locally piled.

NITRIC ACID, 178. A draught or two of dil. acid to a pint of water, as a wash to keep small syphilitic warts and condyloms constantly moist.

SILVER, NITRATE OF, 237. As caustic, locally.

ZINC, 85. Chloride, iodide and nitrate locally.

WASTING DISEASES.

PHOSPHATE OF LIME, 313. In chronic cases.

WHEEZING.

ARSENIC, 313. In emphysematous persons—(see Euphasma). In the wheezing children with oppressed breathing.

WHITE SWELLING.

IODINE, 371. A solution injected into joint.
INDEX TO DISEASES.

WHITLOW.
ANTIMONY, 202. As tartar-emetic. (See Inflammation.)
CARBOLIC ACID, 350. To benumb the surface during incision.

WHOOPING-COUGH.
ALUM, 239. When acute stage is over and there is no complication two to six grs. every three hours, or less every hour in glycerine or honey.
BELLOCCHIA, 265. Especially during third week. Children bear this drug well; ten minims of the tinct. may be given hourly to a child two or three years old.
BROMIDE OF POTASSIUM, 564. Especially in summer; when uncomplicated, except with convulsions.
CANNABIS INDICA, 608. Has been found useful.
CARBONATE OF POTASH, 303. In one or two grain doses.
CHLORIDE OF AMMONIUM, 223.
CHLOROFORM, 359. Or ether, to lessen violence of paroxysms.
CLOVER, 605. A wingless occasionally through the day of an infusion made of two ounces of carefully dried red blossoms steeped in a pint of boiling water for four hours.
COD-LIVER OIL, 337. In middle and after stages.
COCONUT, 312.
EGG, 610. Said to be useful.
JACUHNA, 446. Useful in many cases.
LIME-WATER, 217. Useful from its astrigency, as in some forms alun and tannin advantageous.
LOBELIA, 604, 605. In spasmodic stages. Children very tolerant of this drug; for a child two years old, ten min. of the tinct., every hour and an additional dose each time the cough is imminent, provided the paroxysm gives sufficient warning.
MUSK, 358. Has been given.
MUSTARD, 432. Said to be useful.
OPUNTIA, 500. In convulsive stage. Sufficient should be given to produce slight heaviness which should be maintained. (See ref.)
SENECA, 648. Given by some.
SILVER, NITRATE OF, 261. A solution for sponging out throat or as spray. As spray when patient more than two or three years old.
TANNIN, 347. Applied to throat.
VALERIAN, 245. Preparations said to control paroxysms.
ZINC, 487. As oxide or sulphate.

WORMS—continued.
COMMON SALT, 525. Chloride of ammonium and antimony to remove catarrhal state of mucous membrane.
FILIX MAS, 569. For tape worm, to be taken on an empty stomach and followed by a purge. (See ref. for directions.)
INJECTIONS, 100. For thread worms; enough liquid should be used to reach a little higher than the rectum. Half a pint enough for an adult. Solution of salt, iron, &c., must not be too concentrated lest inflammation ensue.
IRON, 249. Tinct. ferr. sesquichlor. half an ounce in a pint of water, a good injection for thread worms, conglutinating albumen.
KAMEL, 652. For tape worm.
KOUSSO, 565. For tape worm.
LIME-WATER, 217 and 652. As injection for thread worms.
OILS, 525. Reputed vermicide.
PUNICA GRANATUM, 650. As infusion for tape worms.
QUASSIA, 640. The infusion useful for ascari
dides, as injection or by mouth.
SANTONIN, 651. For round and thread worms, in castor oil by mouth or as an injection.
SCAMMONY, 645. For thread worms in the rectum.
TANNIN, 347, 348. As catechu, kino, red gum, rhatany, hematoxylin, in injections to de
stroy thread worms.
TONICS, 525. As cod-liver oil and iron to restore intestinal canal to healthy condition. Also cold sponging, out-door exercise, and judicious diet. Useful probably by preventing the production of the abundant mucus which favours the growth of worms.
TURPENTINE, 418. As poison to tape and thread worms. (See also p. 652.)
VALERIAN, 245. Especially when convulsions.

WOUNDS.
ALOE, 642. Topically as a slight stimulant—often purges.
CARBOLIC ACID, 350.
COLLODION, 357. Paint over to adjust edges and exclude air.
ICE AND SALT, 90. Applied to wound pre
vents inflammation.
OPINUM, 583. To quiet intestinal movements in wounds of the abdomen.
SULPHURIC ACID, 188. Solution constantly applied, diluted or not.
TANNIN, 344. Or glycine of tannin to coat over wounds.
TURKISH BATH, 76. For pain in the seat of old wounds.

XERODERMA.
GLYCERINE, 342. Glycine of starch to be rubbed in daily after a bath.
OILS AND FATS, 330. In conjunction with warm baths to lubricate skin.
LANE MEDICAL LIBRARY

To avoid fine, this book should be returned on or before the date last stamped below.
U101 Ringer, S.
R58 A handbook of
1882 therapeutics 16094

NAME DATE DUE

ATTIC